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The collimation system must satisfy 2 main functions: 
• Multi-stage Beam Cleaning, i.e. removing stray 

particles which would induce quenches in SC magnets.
• Machine Protection, i.e. shielding the other machine 

components from the catastrophic consequences of 
beam orbit errors.
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What is a (Phase I) LHC collimator
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Actuation system

Jaw Cooling system

Vacuum Vessel

Secondary Collimator (TCSG) Cutaway
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Carbon-Carbon Jaw

Jaw Assembly
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EN Carbon/ 
carbon jaw Graphite jaw

• 5 full intensity shots ranging 
from 1 to 5 mm, 7.2ms …

• Each impact energy equivalent 
to more than ½ kg of TNT

Robustness Test at 450 GeV, 3.2x1013 protons per shot

5 mm
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C-C Collimators are affected by intrinsic limitations which may 
ultimately limit LHC performances:
• Low-Z material (Limited Cleaning Efficiency)
• Poor electrical conductivity (High RF impedance)
• Limited Radiation Hardness (Reduced Lifetime)
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To overcome this, additional advanced collimators (Phase II) 
are to complement Phase I

Innovative Materials for Phase II Jaws 
are the key element for next-generation 
Collimators
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Material Requirements for LHC Collimators

Five Figures of Merit have been identified to classify and rank candidate materials

• Electrical Conductivity
Must be maximized to limit RF impedance

• Steady-state Stability Normalized Index (SSNI)
Indicates the ability to maintain jaw geometrical stability under steady-state losses

• Transient Thermal Shock Normalized Index (TSNI)
Related to highest particle absorption rate before onset of damage (robustness 
indicator)

• Atomic Number
Related to particle absorption rate and cleaning efficiency (Radiation and 
Interaction Lengths)

• Melting Temperature
Indicates maximum temperature a material can reach before melting. 

Figures of Merit
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Additional “standard” requirements include ...
• Radiation Hardness, UHV Compatibility, Industrial producibility of large  components (up to 

400x80x25 mm3), Possibility to machine, braze, join, coat ..., Limited brittleness
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• Metal-diamond composites are advanced thermal management 
materials combining properties of Diamond (high k, low ρ and low CTE) 
with those of Metals (strength, γ , etc.).

• Sintering techniques include Rapid Hot Pressing (RHP), aka Spark 
Plasma Sintering (SPS), and Liquid Infiltration. 

• Candidate materials include Copper-diamond (Cu-CD), 
Silver-diamond (Ag-CD) and Molybdenum-diamond (Mo-CD)

Metal-diamond Composites

Pressure

DC 
Current
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Parameter Indexes for Materials of Interest

Material C-C Mo Glidcop ® Cu-CD Ag-CD Mo-CD

Density [kg/m3] 1650 10220 8900 ~5400 ~6100 ~6900

Atomic Number (Z) 6 42 29 ~11.4 ~22.4 ~17.3

Tm [°C] 3650 2623 1083 ~1083 ~840 ~2623

SSNI [kWm2/kg] 24 2.6 2.5 13.1 ÷
15.3

11.4 ÷
15.4 6.9 ÷ 10.9

TSNI [kJ/kg] 793 55 35 44 ÷ 51 60 ÷ 92 72 ÷ 96

Electrical 
Conductivity [MS/m] 0.14 19.2 53.8 ~12.6 ~11.8 ~9.9

Material Ranking
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• C-C stands out as to thermo-mechanical performances. Adversely outweighed by poor electrical 
conductivity, low Z, expected degradation under irradiation.

• High-Z metals (Cu, Mo) possess very good electrical properties. High density adversely affects 
their thermal stability and accident robustness.

• Metal-diamond composites exhibit a balanced compromise between TSNI, SSNI, electrical 
conductivity , density, atomic number.

• Mo-CD limits the consequences of high temperatures induced by very intense beam impacts.

worse better
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Novel materials Development 1Cu-CD Composites
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• Cu-CD developed by RHP-Technology (spin-off of Austrian Institute of Technology), Austria
• Characterized in the frame of EuCARD / ColMat collaboration

• R&D objectives: 
• Geometrical stability 
• Electrical conductivity
• Intermediate density

Courtesy: E. Neubauer, 
M. Kitzmantel – RHP-Tech

150 x 150 x 4mm3

• Produced by RHP under N2 + H2
Atmosphere

• 60% Diamond, 40% Cu

• Small addition of Boron

• Sintering T ~1000º C

• Good homogeneity and compaction 
rate (~95%)
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• No diamond degradation (in reducing atmosphere 
graphitisation starts at ~ 1300 °C)

• Good thermal (~490 W/mK) and electrical conductivity 
(~12.6 MS/m).

• No direct interface between Cu and CD (lack of 
affinity). Limited bonding surface assured by Boron 
Carbides hampers mechanical strength (~120 MPa).

• BC brittleness adversely affects material toughness.

• Cu low melting point (1083 °C) limits Cu-CD 
applications for highly energetic accidents.

• CTE increases significantly with T due to high Cu 
content (from ~6 ppmK-1 at RT up to ~12 ppmK-1 at  
900 °C)

Novel materials Development 2Cu-CD Composites
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BC “bridge” stuck 
on CD surface

Cu-CD fracture surface. 
Note absence of CD 
graphitization
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Ag-CD Composites
• Developed by EPFL, Switzerland.

• Characterized at EPFL and CERN (EuCARD).

• Manufactured by Liquid Infiltration of cylindrical 
samples (Ø100 mm, H 100 mm)

• ~60% Diamond, ~40% Ag-Si alloy

• Excellent bonding between Ag and CD assured by 
Silicon Carbides formation on diamond.

• High Flexural Strength (~500 MPa) and toughness.

• High Electrical Conductivity.

• Max TService limited by low-melting eutectic phase 
Ag-Si (840 °C).

• Hard to manufacture large components (>100 mm)

• Material non homogeneities due to liquid metal 
infiltration intrinsic limitations.
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• Co-developed by CERN and a SME, Brevetti Bizz, Verona, Italy

• R&D objectives :
• Decrease pure Mo density to optimize deposited energy distribution
• Increase mechanical properties w.r.t. other Metal-CD
• Increase thermal stability and robustness at high temperatures
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Mo-CD Composites

• Manufactured through RHP
• Mo and CD create a good interface by forming Mo Carbides.
• Large components can be produced.
• High sintering T of Mo (~1700 °C) leads to diamond graphitisation. 2 alternative processes:

• Assisted Solid-state Sintering (ASS)
• Liquid Phase Sintering (LPS)

200 x 80 x 20 mm3
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Mo-CD Composites
Liquid Phase Sintering (LPS) 
• Addition of low-melting phase (Cu or Cu-Ag) 

to fill in the pores between Mo and CD

• Good mechanical strength (400+ MPa) and 
Thermal Conductivity (185 W/mK)

• Max TService limited by low-melting phase 
(Cu)

Assisted Solid-state Sintering (ASS) 
• Addition of small amounts of activating 

elements (Ni, Pd) enhances Mo sintering at low 
T (~1300 °C) 

• Absence of low-melting phase increases service 
T up to ~2600 °C

• Large diamond particles interfere with Mo 
compaction.

• Diamond graphitization not fully avoided.

CD lightly graphitized
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Studied material comparison
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• A single, comprehensive comparison of characterized  materials is proposed on the basis of 
normalized Figures of Merit.

• Needless to say, any choice of Figures of Merit, of their combination and target values is arbitrary …

• This said, this comparison confirms that Mo-CD is, so far, the best candidate.
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Simulations and Testing

• Irradiation damage tests at RRC-KI and GSI.
• Preliminary results from GSI on Cu-CD show no 

degradation of Cu/CD interface. Defects in CD 
lattice seem to occur.

• Advanced simulations being performed at 
CERN and Polito on materials under extreme 
conditions.

• Beam tests in CERN’s HiRadMat to 
experimentally assess material models.

CD pristine CD 1.7x1014 i/cm2

Courtesy: M. Tomut –
GSI
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 Bringing LHC beyond nominal performances might require new generation collimators 
embarking novel advanced materials.

 Metal-diamond composites are particularly appealing as they promise to combine 
diamond and metal properties.

 Figures of Merit were defined, allowing to pinpoint “best” candidates and to set 
ambitious goals.

 An intense R&D program has been launched at CERN with partners partly within the 
EuCARD collaboration

 Cu-CD, Mo-CD and Ag-CD were studied and successfully produced. Size challenge has 
been met for Cu-CD and Mo-CD.

 A large characterization effort has been carried out: a magic material does not exist, 
but Mo-CD seems to stand out as a balanced compromise between key parameters.

 Radiation hardness assessment is ongoing for selected materials. Beam tests under 
extreme conditions are foreseen at CERN’s HiRadMat facility.

 The R&D program is still in full progress.

Conclusions
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