Observations of Beam-Beam Effects

at High Intensities in the LHC

W. Herr, CERN

(for LHC Beam-Beam Studies Team)

Beam-beam effects in the LHC

- Some important features of the LHC:
 - > Equally charged beams and separate rings
 - Large number of bunches
 - > Strong-strong beam-beam interaction
 - > Users (experiments) with very different requirements
- All have significant implications for beam-beam effects
- Studied in dedicated tests and during operation
- An overview, details presented in posters

Where it happens: LHC collision layout

- Two rings with 4 interaction regions (4 experiments)
- High luminosity (strong long range) in IP1 and IP5 (opposite in azimuth)
- "Low" luminosity in IP2 and IP8

LHC bunch filling pattern

- Large number of bunches for high luminosity, (nominal: max. 2808 bunches)
- Arranged in 39 trains of 72 bunches, spaced by 25 ns, with gaps between trains

Large number of bunches

Implications :

- Crossing angles (horizontal or vertical, ≈ 200 $300~\mu {
 m rad})$
- **)** Long range interactions
- ightharpoonup Separation typically 8 12 σ
- What about gaps in the train?

Large number of bunches

- Due to gaps:
 - No head-on or long range interactions when bunches "meet" gaps (once named "PACMAN" bunches)
 - Max: 4 head on, 120 long range interactions
 Min: 1 head on, 40 long range interactions
 - > Strong bunch to bunch differences expected

The "nominal" LHC

- Parameters relevant for beam-beam:
 - \rightarrow Bunch intensity (1.15 · 10¹¹ p/bunch)
 - \rightarrow Bunch emittance (3.75 μ m)
 - β^* (0.55 m)
 - Crossing angle α (\approx 300 μ rad)
 - Number of bunches (2808, spaced by 25 ns)
- \longrightarrow Nominal beam-beam parameter: $\xi = 0.0035$
 - Can be considered conservative (not as limits!)
 - Defined to reach design luminosity: $10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

The LHC in 2010/2011

- Energy is 3.5 TeV instead of 7.0 TeV
- Limitations from machine protection, aperture and electron cloud:
 - Bunch spacing 50 ns (max. 1380 bunches)
 - \rightarrow Larger $\beta^* = 1.5 \text{ m}$
 - Emittances smaller than nominal ($\approx 1.5 2.5 \mu m$)
- In very first collisions at injection energy: nominal beam-beam parameter/tune shift exceeded!
- How far can we push the beam-beam parameter?

Observations: head-on beam-beam effects

- Dedicated experiment with fewer bunches
- Test maximum beam-beam parameter achievable (at injection energy), single bunches head-on only
 - Intensity $1.9 \cdot 10^{11}$ p/bunch
 - \rightarrow Emittances 1.1 1.2 μ m

Observations: head-on beam-beam effects

- Dedicated experiment with fewer bunches
- Test maximum beam-beam parameter achievable (at injection energy), single bunches head-on only
 - \rightarrow Intensity 1.9 · 10¹¹ p/bunch
 - \rightarrow Emittances 1.1 1.2 μm
 - > Achieved:

```
\xi = 0.017 for single collision (\approx 5 times nominal!)
```

- $\xi = 0.034$ for two collision points (IP1 and IP5)
- No obvious emittance increase or lifetime problems during collisions

Observations: head-on beam-beam effects

- Dedicated experiment with fewer bunches
- Test maximum beam-beam parameter achievable (at injection energy), single bunches head-on only
 - ightharpoonup Intensity 1.9 · 10¹¹ p/bunch
 - \rightarrow Emittances 1.1 1.2 μm
 - **Achieved:**
 - $\xi = 0.017$ for single collision (≈ 5 times nominal!)
 - $\xi = 0.034$ for two collision points (IP1 and IP5)
 - No obvious emittance increase or lifetime problems during collisions

No long range encounters present!

Head-on beam-beam effects

- Other observations (during normal operation):
 - > LHC allows very flexible bunch filling schemes

 Many different used (≈ 60 !)
 - Different filling pattern implied different collision pattern
 - Different number of head-on collisions (1 4)
 - > Overall beam-beam effect very different
 - > Differences in lifetime and emittance observed

(details: poster TUPZ023)

Collision pattern effects

- Different losses of bunches with different collision scheme
- blue (3 coll), red (2 coll), green (1 coll), black (no coll)
- Largest effect at start of the collisions!

Luminosity leveling

- LHC has 4 experiments:
 - 2 require highest luminosity,
 - 2 require lower luminosity (up to factor 10^{-4})
- Luminosity leveling required (reduce luminosity and keep constant)
 - > Achieved by transversely offset collisions
 - Separation $\approx 4~\sigma~(\text{IP2})$ and $\approx 1~\sigma~(\text{IP8})$
 - > Routinely done without detrimental effects

(details: poster TUPZ025)

Strong-strong beam-beam interactions

- (Main) implications expected:
 - > Coherent beam-beam effects
 - > Strong orbit effects
- Requires self-consistent treatment in many (most) calculations, simple non-linear mapping insufficient
- Self-consistent: many bunches, many particles, "real" collision pattern
- Required new tools and techniques

Strong-strong: coherent modes

- Coherent beam-beam modes have been observed colliding few bunches
- Provide high degree of symmetry
 - Demonstrated by analysis of sum and difference signals between bunches
 - > Symmetry breaking suppresses modes as expected
 - More detailed studies foreseen
- But not a problem for operation

(details: poster TUPZ029)

Experimental study of long range beam-beam interactions

- Test long range interactions with present machine in dedicated experiment, collisions only in 2 experiments
- Colliding in IP1 (vertical crossing) and IP5 (horizontal crossing), alternating planes for partial, passive compensation
- One train of 36 bunches per beam, full complement of long range interactions (50 ns)
 - ightharpoonup Provides pprox 32 parasitic encounters
 - In standard operation (2011): separation is kept at $\approx 12 \sigma$ (normalized)

Experimental study of long range beam-beam interactions

- Procedure:
 - Reduce crossing angle (separation) in one IP (IP1) in steps until effect on losses, life times or emittances
 - At reduced separation in IP1: reduce crossing angle in second IP5 (crossing in other plane)
- From simulations: expect effect on dynamic aperture, i.e. increased losses, but little effect on emittances

Scan of crossing angle: luminosity

- Luminosity in IP1 as function of crossing angle in IP1
- → Reduction factor exactly as calculated!
- "Leveling" with crossing angle, no effect on 2nd IP

Scan of crossing angle: losses

→ Bunch by bunch loss as function of crossing angle in IP1

Scan of crossing angle

Observations:

- Losses start after some threshold (4 5 σ separation) remember: 32 parasitic encounters!
- > Smaller separation leads to increased losses (dynamic aperture!)
- Little (if any) effect on emittances
- > Different bunches have different threshold!
- > Strong evidence for PACMAN effects

PACMAN effects

- Integrated losses of the bunches in the train (36 bunches)
- Losses directly related to number of long range interactions
- So-called 'PACMAN' bunches have <u>better</u> life time!

 (more in: poster TUPZ023)

PACMAN effects

- Due to different number of long range collisions expected:
 - > Systematic tune differences between nominal and PACMAN bunches
 - Could have reduced lifetimes when machine is optimized for nominal bunches
 - > Bunches at head and tail of train would be lost first (origin of the name)

PACMAN effects

- Due to different number of long range collisions expected:
 - > Systematic tune differences between nominal and PACMAN bunches
 - Could have reduced lifetimes when machine is optimized for nominal bunches
 - > Bunches at head and tail of train would be lost first (origin of the name)
- In LHC: alternating crossing scheme (horizontal and vertical crossing planes) removes tune difference by compensation

PACMAN tune effects: calculation

- Horizontal tune along bunch trains with and without alternating crossing
- → Predicted tunes from self-consistent computation

Beam-beam Orbit effects

- Strong beam-beam interaction with static offset produces dipole kick
 - > Orbit changes due to beam-beam kick
 - > Used for LEP: deflection scan
- What about orbits for PACMAN bunches?
 - Different kicks different orbits
 - Cannot be fully compensated by alternating crossing schemes!

(details: poster WEPC081)

PACMAN Orbit effects: calculation

- → Vertical offset expected at collision point in IP1
- Predicted orbits from self-consistent computation (2003)
- Cannot be resolved with beam position measurement, but ..

PACMAN Orbit effects: observation

- Measurement of vertex centroid by LHC experiments (ATLAS)
- → Qualitatively: follows exactly predicted behaviour

SUMMARY

- First clear beam-beam observations in the LHC are presented
- Obtained large head-on tune shifts above nominal
- Effect of long range interactions clearly visible
- Number of head-on and/or long range interactions important for losses
- All observations in excellent agreement with expectations and well understood
- Beam-beam effects should allow nominal luminosity (with 2808 bunches, at 7 TeV)

Back up

- backup slides -

Other signs of compensation?

- Luminosity in IP1 during crossing angle scan in IP5
- ightharpoonup Separation in IP1 kept constant at 40%
- Life time best for equal crossing angles in both IPs

 More studies needed