Mg カソードを用いた高品質電子ビーム生成

黒田 隆之助^{1,A)}、鷲尾 方一^{A)}、柏木 茂^{A)}、大島 崇^{A)}
浦川 順治^{B)}、早野 仁司^{B)}、X.J.Wang^{C)}
^{A)} 早稲田大学理工学総合研究センター
〒169-8555 東京都新宿区大久保 3-4-1
^{B)}高エネルギー加速器研究機構
〒305-0801 茨城県つくば市大穂 1-1
^{C)}Brookhaven National Laboratory
Upton NY 11973, USA

概要

早稲田大学理工学総合研究センターでは、高品質 電子ビームの発生とその反応・物性への応用を目的 として、レーザーフォトカソード RF 電子銃(RF-gun) システムの構築を行っている。その際、カソードに Mg カソードを用いることにより高強度の電子ビー ムを発生することができる。今回、マグネシウムカ ソードの研磨及び周波数調整を行い、銅カソードと の交換を実現した。

1. はじめに

近年、レーザー技術の目覚しい進歩に伴い、超短 パルスの高品質電子ビームが生成可能である、レー ザーフォトカソード RF 電子銃(RF-gun)の研究・実用 化が世界各国で行われている[1]。これまで、早稲田大 学理工学総合研究センターでは、昨年5月~7月、高 エネルギー加速器研究機構(KEK)工作センターに おいて RF-gun 空洞の製作を行った。その際、暗電流 削減のため空洞内部にダイヤモンドバイトを用いた 超精密加工を施し^[2]、同時に周波数調整を行った。そ して昨年10月、準備期間を経て高エネルギー加速器 研究機構試験加速器施設(KEK-ATF)インジェク ター部において、銅カソードを用いた試験加速実験 を行い早稲田大学でのRF-gun 実用化への第一歩を踏 み出した。そして、本年度、早稲田大学理工学総合 研究センター喜久井町キャンパスにおいて 2nC/bunch 以上の大強度電子ビームの生成実験を行 う予定である。

2. 試験加速実験

昨年10月、高エネルギー加速器研究機構試験加速 器施設(KEK-ATF)インジェクター部において、 銅カソードを用いた RF-gunの試験加速実験を行った ^[3]。RF-gunのデザイン値では、空洞にピークパワー で約7MWの高周波を供給することにより、100MV/m の加速電場を誘起し5MeVの電子ビームを得ること ができる。しかし、試験加速実験では、調整不十分 からピークパワー3MW 程度の高周波を供給するに とどまった。これにより、加速電場はデザイン値の約 60%の 60MV/m程度で実験を行った。

実験の結果、電子のエネルギーは最大約 2.7MeV、 電荷量最大約 300pC/bunch、バンチ長約 10ps (FWHM) (ビームスペクトラム解析法により測定)、最小エ ミッタンス約 16mm mrad (スリットスキャン法によ り測定)の電子ビームを得ることができた。

3. マグネシウムカソード

マグネシウムカソードの研究は、これまでブルッ クヘブン国立研究所(BNL)において盛んに行われ てきた^[4]。その研究の結果、ベーキングなどによって 高い熱を加えた場合や高強度の高周波中でも安定に 動作するマグネシウムカソードの開発に成功した。

マグネシウムカソードは、銅の仕事関数(4.65eV) よりも低い仕事関数(3.64eV)を持つため、高強度の電 子ビームが生成可能である。カソードの形状は、カ ソードの中心部分にサイズがコイン程度のマグネシ ウムを埋め込んだ形状をしている(図1)。

図1:マグネシウムカソード

4. カソード交換

KEK-ATF における RF-gun 試験加速実験を終え、 早稲田大学理工学総合研究センター喜久井町キャン パスにRF-gun システムの設置を行った。その際、BNL の協力により製作したマグネシウムカソードを銅カ ソードと交換するため、表面研磨及び周波数調整等 を行った。

¹ E-mail: 601L5054@mn.waseda.ac.jp

4.1 カソード研磨

マグネシウムカソードは、銅カソードの中心にマ グネシウムを埋め込んだあと普通旋盤による加工の みが施されているため、表面祖度が非常に粗く研磨 をする必要がある。研磨は定盤の上にカソードをの せ、面だしを行った後に12µm、6µm、3µm、1µmの 砥粒(ダイヤモンド)の順番に研磨を行った。この とき使用した研磨剤はダイヤモンドに添加物を僅か に加えたものである。

図2:研磨前の接合部分 (左側:銅、右側:マグネシウム)

図3:研磨後の接合部分 (左側:銅、右側:マグネシウム)

図2、図3に研磨前と最終研磨の直前に電子顕微 鏡(SEM:1000 倍)で観測した銅とマグネシウムの接合 部の写真を示す。研磨前の写真(図2)では旋盤で 削った跡をはっきりと見ることができる。また、左 側の銅がマグネシウムの上に旋盤で加工した際に表 面の部分が乗りあげているようにも見える。この写 真からも、微小突起による暗電流の削減を考えた場 合に普通旋盤で加工では、表面粗度の面で不十分と 思われる。そして、研磨後の写真(図3)からは、 表面がきれいに研磨されていることが分かる。銅と マグネシウムの接合面も余計な隙間などはない。し かし、マグネシウムの接合面から 50µm 程度までの 間にクレータのような微小な穴の存在が確認できる。 このクレータのような跡がどのように生じたかは不 明であるが、マグネシウムを銅に埋め込む際に熱に より生じた可能性もある。

4.2 周波数調整

カソードを交換する際、もっとも重要なのが共振 周波数の調整である。今回、周波数調整は、カソー ドプレートを締め付けていくトルクの大きさと各ト ルクでの共振周波数、ネットワークアナライザーで の周波数スペクトラムの振幅(ゲイン)比を測定す る事によって行った。なお、測定は常温(空洞の冷 却水温 20 度)で行った。真空に関しては、ヘリコフ レックスにより多少の違いはあるが、カソードプレ ート締め付けの強さが 10Nm 程度で真空はとまる事 を確認した。

図4: カノート柿の竹りトルク VS 共振周波 及びπモードと0モードの周波 数差

図4にトルクの締め付けの大きさと π モード、0モ ードの共振周波数および共振周波数の差(frequency separation)をプロットした。32Nm まで締めたとこ ろで、 π モードの共振周波数がおおよそ 2856MHz に なり、そのときの周波数差は約3.4MHz であった。

昨年夏のKEKでのビーム摂動法による空洞内の電 場分布の測定から、ハーフセルとフルセルの電場分 布の比(フルセルの電場 / ハーフセルの電場)を0.9 から1.1の範囲に調整するには、周波数スペクトラム 振幅の比(πモード / 0モードの振幅)が約1.5~2.0 の範囲に入っている必要がある。図5から分かるよ うに、トルク 32Nm まで締めた時、上のフィールド バランスの条件を満足する範囲に入っている。

次に、カソードをトルク 32Nm で締めた後の、チ ューナーによる最終調整について述べる。チューナ ーはフルセル内にあり、フィールドバランスを調整 するために非常に有効な調整手法である。以下、図 中のチューナーの回転数は、チューナーを完全に抜 いた状態から何回転分空洞側に挿入したかを表して いる。チューナーが約 8.5 回転したところで、チュー ナー先端が空洞内に届いてしまうため、8.5 回転以下 で共振周波数およびフィールドバランスがとれなく てはいけない。また、チューナーで調整可能な共振 周波数(πモード)の調整範囲は 400kHz 程度である。

図6:周波数スペクトラム(チューナー0回転) πモード2856.10MHz,0モード2852.69MHz

図6、7は、それぞれ、チューナー0回転と7回転 時の π モードと0モードの周波数スペクトラムである。 このときの空洞冷却水温は20度である。これにより、 チューナー7回転時の π モードと0モードの振幅比が 約1.7程度、つまりフィールドバランスを、1:1にす ることができた。しかし、 π モードの共振周波数が S-band (2856MHz) より若干高いため、共振周波数 の最終調整は、空洞の冷却水温で調節し、冷却水温 約 27 度において 2856MHz の共振周波数を実現する ことができた。

5. まとめ及び今後の展開

以上のことにより、早稲田大学理工学総合研究センターにおける RF-gun システムにおいて、銅カソードを、順調にマグネシウムカソードに交換することができた。

しかし、今後、マグネシウムカソードに関する系 統だった基礎研究が必要だと考える。1つは、レーザ ークリーニングによるカソード量子効率向上のメカ ニズム解明である。クリーニング中に真空中の残留 ガス分析を行うことにより、クリーニングの前後で どのような変化がカソード表面で起きているか、ま た実機では困難であるが表面の酸化物などカソード 表面に付着している物の分析など注意深く行う必要 があると思われる。

我々は本年度、マグネシウムカソードを実際に使 用し、その取り扱い方法(加速電界強度、レーザー クリーニングなど)によってどのような違いが生じ るか系統だった測定を行う。また、低仕事関数のマ グネシウムカソードを使用し、かつショットキー効 果を利用した 2nC/bunch 以上の大電流の電子ビーム をフォトカソードにより取り出すことに挑戦する。 基本的には高電界を空洞に生成できれば、ショット キー効果により大電流を引き出すことができるため、 大電流を得るには低仕事関数のカソードを使用し、 かつ高電界による運転が望ましい。しかし高電界運 転を行う場合、暗電流の増加および絶縁破壊などの 困難が付きまとう。頻繁なブレイクダウンによりカ ソード表面の状態を悪化させる可能性もある。そこ で、真空システムのアップグレードを行うことによ って、これらの困難を克服し大電流の高品質電子ビ ームの生成を目指していく予定である。

また、本研究における空洞製作においては KEK 工 作センター、人見センター長、舟橋義聖、渡辺勇一、 高富俊和、各氏に、カソード研磨に関しては春川鉄 工(株)の方々に多大な協力をいただき、ここに感謝の 意を表します。

参考文献

- [1] X. J. Wang et al., Proc. PAC1995 (1995) p.890
- [2] C. Suzuki et al., Proc. 24th Linear Accel. Meeting in Japan, (1999) p.122
- [3] R. Kuroda et al., PAC2001 (2001), WPAH079
- [4] T. Srinivasan-Rao et al., Proc. PAC1997 (1997) p.2790