LEBRA におけるビームダンプの放射線遮蔽効果の評価

猪川弘康^{1,A)}、佐藤 勇^{B)}、佐藤和男^{B)}、早川 建^{B)}、田中俊成^{B)}、早川恭史^{B)}、 石渡謙一郎^{A)}、中村吉宏^{A)}、中澤裕之^{A)}、横山和枝^{A)}、菅野浩一^{A)} 境 武志^{A)}、中尾圭佐^{A)}、橋本英子^{A)}、藤岡一雅^{A)}、村上琢哉^{A)}
^{A)}日本大学大学院 理工学研究科 量子理工学専攻
〒274-8501 千葉県船橋市習志野台 7-24-1 日本大学理工学部船橋校舎 ^{B)}日本大学原子力研究所 電子線利用研究施設
〒274-8501 千葉県船橋市習志野台 7-24-1 日本大学理工学部船橋校舎

概要

高エネルギー電子加速器では、ビームダンプで放 射線が発生するため遮蔽が重要である。現在、LEBRA で使用しているビームダンプでは、y線、中性子の 遮蔽が不十分であるため、放射線遮蔽強化を行う必 要がある。そこでビームダンプ内のグラファイトを 増強したときの放射線遮蔽効果を調べるために、 EGS4 (Electron Gamma Shower Version4)^[1]を用い、 シミュレーション計算を行った。その結果、グラフ ァイトの厚さを 20cm にすれば、銅からの巨大共鳴で 発生する中性子の確率が低くなると見積もられた。

1. はじめに

日本大学原子力研究所電子線利用研究施設 (LEBRA)では、125MeV電子線形加速器の高性能化を 試みており、その結果として 2001 年 5 月に自由電子 レーザー(FEL)の発振するに至った^[2]。また、パラ メトリック X線放射(PXR)用のビームラインも完成 し、今後実験が行われる予定である^[3]。今後は FEL・ PXR の実用化に向け加速器本体以外の周辺機器の性 能改善、その他の問題解決も行っていく必要がある。

LEBRA では図1に示すように加速器室と実験室 が隣接している。そのため、放射線遮蔽は、安全に 利用実験ができるという観点から重要な問題である。 リニアックでは、45 度偏向電磁石の直後にあるスリ ットと、ビームダンプが主な放射線源と考えられる。 ビームダンプでは、前方方向に強い制動放射線と、 制動放射線の光核反応による光中性子が生成される ため、限られたスペースの中で、有効的な放射線遮 蔽強化を行う必要がある。本発表では、物質中での 電磁カスケードのシミュレーションを行う EGS4 を 用いて、ビームダンプで生成される放射線の遮蔽計 算を行った。

2. LEBRA 用ビームダンプ

LEBRAでは、図2のようなビームダンプが、加速 器の直線部、FEL、PXR 用ビームラインの各々装置 向けに計3つ設置されている。ビームダンプ内部は、 主にグラファイト5cm、銅10cm、鉛15cmで電子と y線を遮蔽するように構成されているが、現状では y線、中性子の遮蔽に関しては考慮されておらず、 不十分である。特に現状の問題点として、スペース 上の制約があるため、図3のような形での遮蔽強化 を検討した。しかし、コストや工事の手間を抑える ために、グラファイトの厚さを5cmから最大の厚さ 20cmへの増強を検討し、その効果を見積もることに した。

¹ E-mail: hiroyasu@acc.phys.cst.nihon-u.ac.jp

図2: PXR 用ビームダンプの写真

図3:ビームダンプの遮蔽強化概念図

3. ビームダンプ中の電磁カスケード計算

今回は、高エネルギー加速器研究機構が開発、配 布している PC 版 EGS4 を用いて、電子がビームダン プ内の物質中を通過した際の電子、光子のエネルギ ー等を計算した。

ここでは計算条件として、電子の個数を10,000 個、 入射エネルギーを100MeV に設定し、形状はグラフ ァイト、銅、鉛の半無限平板として考えた。

そこで現在の5cmの場合と、20cmに増強した場合 の2つケースについてシミュレーションした。また、 ビームダンプでは、前方方向の放射線が強いことか ら、今回の計算では後方散乱を無視し、前方散乱の み評価した。

4. 計算結果と考察

今回の計算で最も考慮しなければならない点は、 グラファイトの厚さを増強させた場合の遮蔽効果を 確認することである。

4.1 γ線について

LEBRA 用ビームダンプで、グラファイトの厚さを 増強させた場合の y 線の遮蔽効果を考える。始めに、 グラファイトの厚さ 5cm、20cm での透過した電子及 び光子のエネルギー分布の計算結果を図4に示す。 グラファイト 5cm では、ほぼ100%の電子が通過する が、グラファイト 20cm にした場合は、約30%の電子 のみが通過することが分かった。これは、グラファ イトを厚くすると、銅に到達する前に放射損失を起 こし、大部分のエネルギーを失うためだと考えられ る。また、グラファイト 20cm と 5cm では、光子の 発生数は増えるが、エネルギーが高エネルギー側か ら低エネルギー側に移行する。

これらの計算結果を考慮した上で、電子と光子が 銅を通過し、最終的に鉛においてどの程度、放射線 を発生するのか計算した。その結果を図5、6に示 す。最終的には、外部の鉛で遮蔽を行う予定である。 グラファイト 5cm では、外壁には15cm の鉛が必要 であったが、グラファイト 20cm では、10cm 程度で 遮蔽できることが計算から明らかになった。

図4:グラファイトの電子と光子のエネルギー 分布の比較

図5: **C=5cm** のとき、ビームダンプ中の各層から発 生する光子のエネルギー分布

図 6 : C=20cm のとき、ビームダンプ中の各層ら発生 する光子のエネルギー分布

4.2 中性子について

LEBRA 用ビームダンプでは、巨大共鳴(Giant Resonance)により中性子が生成されると考えられる^[4]。ビームダンプ中では、中性子の発生源は銅と鉛と考えられるが、EGS4では、中性子の計算ができないため、光子の発生量で近似的に見積もった。これらの結果を表1に示す。

銅では、電子が入射して発生するγ線とグラファ イトからの光子が原因で生成される中性子を考慮し なければならない。そこで、1mm 厚の銅のターゲッ トでの光子の発生量を求め、グラファイトの厚さが 5cm、20cm の厚さになるよう整数倍し、光子数を近 似的に求めた。巨大共鳴の起きる光子のエネルギー である 10MeV から 30MeV の範囲にある光子数は、 厚さ 5cm のときでは、厚さ 20cm のときに比べ、極 端に多く、確率的に高く中性子が発生すると推測さ れる。しかし、グラファイトから透過してくる光子 では、厚さを増強させると増える。その結果、20cm の場合で発生する中性子が増えると推測される。鉛 では銅からの電子の透過がないため、銅から発生す る光子のみで見積もった。その結果、中性子の発生 は電子が銅に当ったときに発生するγ線の影響が大 きいことが分かった。以上から、グラファイトを増 強することにより、中性子の発生する確率を抑えら れると推測できる。

表1:銅・鉛から発生する光子数 (光子エネルギー:10MeV~30MeV)

	C=5cm	C=20cm
銅内部で発生		
した光子数	48060	4220
グラファイトから透過してくる		
光子数	2748	4313
 銅から透過してくる光子数	2545	1357

5. まとめ

現在のビームダンプでは、遮蔽が不十分なことか ら、グラファイトの厚さ 5cm からスペース的に増強 可能な厚さ 20cm にすることを検討し、その効果を見 積もった。グラファイトが薄いと、電子が銅でγ線 を発生させるため、中性子の発生数に影響を及ぼす と考えられる。γ線を遮蔽するためには、グラファ イト 5cm の場合、外壁の鉛は 15cm の厚さが必要だ が、グラファイト 20cm では、およそ 10cm の鉛で遮 蔽できることが計算から明らかになった。また、グ ラファイトを厚くし、電子が銅に到達する前に放射 損失を起こさせ、中性子の発生数を少なくできる。 よって、グライファイトの厚さを増強することは、 放射線遮蔽対策だけでなく、スペース的な制約やコ ストの問題も同時に解決できる。今後は、さらに粒 子数を増やし計算の精度を高めると共に、実際に放 射線測定を行い、ビームダンプの遮蔽効果を調べて いく。

参考文献

- [1] W.R.Nelson,H.Hirayama and D.W.O. Rogers,"THE EGS4 CODE SYSTEM",SLAC-REPORT 265(1985)
- [2] I.Sato, et al., "日本大学電子線利用研究施設の高度化と 自由電子レーザーについて", Proceedeings of 26th Linear Accelerator Meeting in
- Japan, Tsukuba, Aug. 1-3, 2001 [3] Y. Hayakawa, et al, "日大パラメトリック X 線発生装置 の 概 要", Proceedeings of 26th Linear Accelerator
- (2) 概要", Proceedeings of 26" Linear Accelerator Meeting in Japan, Tsukuba, Aug. 1-3, 2001 は、世社営業、性社営業、地大図書
- [4] 中村尚司,"放射線物理と加速器安全の工学",地人図書