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1 Foreword 

1.1 From the Chairman 

Weiren Chou, Fermilab 

Mail to:  chou@fnal.gov 

 

The International Committee for Future Accelerators (ICFA) met on February 25-

26, 2010 at BNL. Atsuto Suzuki, Director General of KEK and Chair of ICFA, chaired 

this meeting. The meeting was preceded by an ILCSC meeting earlier on February 25 in 

the same place. 

Jonathan Bagger, the new Chair of ILCSC, gave a report on the status of the ILC. 

GDE and the detectors are on track for issuing design reports by 2012. There is a 

growing connection with CLIC activities. Discussion has started on post-2012 plans. It 

was reported that there was an interesting evolution of the name FALC. It began as 

Funding Agencies for Linear Colliders, then became Funding Agencies for Large 

Colliders, and now stands for Funding Agencies for Large Collaborations. This reflects 

the broadening interest of the funding agencies that joined FALC in order to 

communicate with each other.  Projects of interest to FALC include ILC, CLIC, a muon 

collider and Super-LHC. 

Reports from about 20 laboratory directors and their representatives were presented. 

Some highlights follow. At Fermilab, the Tevatron is working very well, with delivered 

luminosity to each experiment approaching 8 fb
-1

. Muon collider and neutrino factory 

work have been combined into one coherent US effort with the goal of producing a 5-

year feasibility study. At CERN, the LHC will run 6 kA magnet current (7 TeV c.m.) 

until the end of 2011 with an integrated luminosity of 1 fb
-1

, followed by a long 

shutdown in 2012 to prepare for 14 TeV operation. The integrated luminosity over the 

next 20 years is expected to be 3000 fb
-1

. . The first improvement in the injector chain 

will be in the SPS, currently a bottleneck for increasing the luminosity. SPL and PS2 

studies have stopped. At SLAC, the LCLS is operational and has received ~200 

proposals from users this year. A group has been formed to work on Super-B if that 

project moves forward. At KEK, the KEK-B reached its goal of 1000
 
fb

-1
. Super KEK-

B has not yet received final government approval, but there $25M is available for 

upgrades this year. The first T2K neutrino event has been observed. At DESY, a 

company has been formed for the XFEL, with 10 countries signed on so far. PETRA3 

has reached its emittance and current goals. Both JLab and BNL are designing e-ion 

colliders. At IHEP/Beijing, BEPC II reached its luminosity goal. Construction is going 

smoothly on the Daya Bay neutrino facility. CSNS has been approved by the Chinese 

government. 

Four ICFA panels (Beam Dynamics, Advanced and Novel Accelerators, 

Instrumentation, and Interregional Connectivity) presented reports at the meeting. There 

will be three ICFA Advanced Beam Dynamics Workshops (ABDWs) this year: 

FLS2010, HB2010 and Ecloud2010. Details can be found on the panel web site 

(http://www-bd.fnal.gov/icfabd/). ICFA approved the
 
50

th
 ABDW, ERL2011, which will 

take place in October, 2011 at KEK, Japan. Details will come later.  

mailto:chou@fnal.gov
http://www-bd.fnal.gov/icfabd/
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I‘d like to use this opportunity to emphasize again that all ABDWs are required to 

publish formal proceedings via JACoW. This is a requirement, not an option. An 

alternative to ABDW is ICFA Mini-Workshops, which are not required to have formal 

proceedings. Please refer to the panel web site for the requirements of the two different 

types of ICFA workshops. 

This Panel together with the Advanced and Novel Accelerators Panel and the 

International Committee for Ultra Intense Lasers (ICUIL) has formed a Joint ICFA-

ICUIL Task Force chaired by Wim Leemans (LBNL). The task force organized a Joint 

ICFA-ICUIL Workshop from April 8 to 10, 2010 at GSI, Germany. 

(https://indico.gsi.de/conferenceDisplay.py?confId=904) The title was ―High Power 

Laser Technology for Future Accelerators.‖ It discussed the laser requirements for 

applications in future colliders, light sources, medical accelerators and high-intensity 

hadron machines. A summary report of this workshop can be found in Section 4.1.  

The Fifth International Accelerator School for Linear Colliders will be held from 

October 25 – November 5, 2010 at Villars-sur-Ollon, Switzerland. CERN will host this 

school. Please see Section 2.1 for the announcement. The school web address is 

http://www.linearcollider.org/school/2010/.  

The editor of this issue is Prof. Swapan Chattopadhyay, a panel member and 

director of the Cockcroft Institute, UK. Swapan collected 29 excellent articles in the 

theme section ―Accelerator Science and Technology in the UK.‖ These articles give a 

comprehensive review of a variety of accelerator projects and activities in that country, 

covering a wide spectrum including particle and nuclear physics, photon science, 

neutron science, test facilities and accelerator systems R&D, advanced accelerator R&D 

and new initiatives, applications to energy, health and security, and industrial 

engagement. In this issue there are also two recent doctoral theses abstracts (Stephen 

Brooks of Oxford University and Jianjun Yang of Tsinghua University) and three 

workshop announcements (ELOUD2010, BOD2010 and Cyclotrons2010). I thank 

Swapan for editing and producing a newsletter of high quality and great value. 

1.2 From the Editor 

Swapan Chattopadhyay  

Cockcroft Institute and Universities of Liverpool, Manchester and Lancaster 

Mail to:   swapan@cockcroft.ac.uk 

 

This edition of the ICFA Beam Dynamics Newletter is a special one -- rather than 

focusing on a specific scientific theme, it captures a substantive set of research and 

development activities in the field of accelerator science and technology in the United 

Kingdom. The editor thanks the ICFA Beam Dynamics Panel Chair Dr. Weiren Chou 

for kindly agreeing to this theme which allows exposure of the dynamic and diverse UK  

activities in the field to the global community. 

A very special feature of the UK community is its rather small size of less than 200 

full time equivalent (FTE) researchers in the field, aside from the technical operation 

crews of operating accelerator facilities such as the DIAMOND Light Source in 

Oxfordshire, the ISIS Neutron Source at Rutherford Appleton Laboratory (RAL) and 

the R&D Test facility ALICE at Daresbury Lab (DL). Yet this group has a diverse 

national and international portfolio of activities in colliders and accelerators for Particle 

and Nuclear Physics, Photon and Neutron sciences and emerging new initiatives in 

https://indico.gsi.de/conferenceDisplay.py?confId=904
http://www.linearcollider.org/school/2010/
mailto:swapan@cockcroft.ac.uk
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FFAGs (Fixed Field Alternating Gradient accelerators), Superconducting Radio 

Frequency (SRF) science and technology, laser-beam-plasma interactions, photonic 

band-gap structures and meta-matarials, high brightness photoinjectors, advanced 

diagnostics and instrumentation, mathematical physics of plasmas, particle and laser 

beams and applications to societal grand challenges in energy, health, security and 

associated engagement with relevant industries. 

Yet another very special feature of this community is the relatively large number of 

academics from the university sector involved in accelerator R&D. While 60% of the 

community comes from the two large national laboratories (Rutherford Appleton 

Laboratory (RAL) and Daresbiury Laboratory (DL), including the Science and 

Technology Facilities Council‘s ASTeC centre) and the operating synchrotron radiation 

facility DIAMOND, the remaining 40% of the community is comprised of faculty, post-

doctoral fellows, undergraduate and graduate students from universities such as 

Imperial College London, University College London, Royal Holloway University 

London, University of Oxford, University of Cambridge, University of Liverpool, 

University of Manchester, Lancaster University, University of Durham, University of 

Birmingham, University of Huddersfield, University of Surrey, University of Warwick, 

University of York, Leeds Uniuversity, University of Strathclyde, University of 

Glasgow, University of Dundee, Scottish Universities Physics Alliance and  Queens 

University Belfast. In addition, University of Oxford and Royal Holloway University 

London are joined up in the collaborative John Adams Institute while a strong 

collaboration between universities, national labs and local economy/industry makes up 

the Cockcroft Institute (Universties of Lancaster, Liverpool, Manchester, Science and 

Technology Facilities Council and the North West economic Development Agency 

(NWDA)).  

The accelerator community in UK is in substantive international collaboration with 

laboratories such as CERN, DESY (Germany), FAIR (Germany), BESSY (Germany), 

Sincrotone Trieste (Italy), INFN (Italy), ALBA (Spain), CEA Saclay (France), Soleil 

(France), MaxLab (Sweden), ESS (Sweden), proposed Turkish Accelerator Centre 

(TAC), KEK (Japan), J-PARC (Japan), Spring-8 (Japan), RIKEN (Japan), Shanghai 

Light Source (China), BEPC (China), Pohang Light Source (South Korea), Variable 

Energy Cyclotron Centre (India), Bhabha Atomic Energy Research Centre (India), Raja 

Ramanna Centre for Advanced Technology (India), Tata Institute of Fundamental 

Research (India), Budker Institute of Nuclear Physics (BINP, Russia), Fermilab (USA), 

ANL (USA), MSU (USA), LBNL (USA), SLAC (USA), Jefferson Lab (USA), Cornell 

University (USA), BNL (USA), MIT (USA), Harvard University (USA) and TRIUMF 

Laboratory (Canada). The UK community also plays significant international leadership 

roles in the International Linear Collider Global Design Effort, the International and 

European Neutrino Factory Studies and Muon Ionization Cooling Experiment, the 

emerging initiative in the Large Hadron electron Collider (LHeC) at CERN, the 

development of non-scaling FFAGs and novel technologies for hadron therapy and 

accelerator driven subcritical reactors (ADSR). In addition there is a strong activity in 

the emerging next generation national UK synchrotron radiation facility, the Next Light 

Source (NLS). 

The accelerator community in UK has most recently formed its special Topical 

Group in the Institute of Physics (IoP), similar to the Division of Physics of Beams of 

the American Physical Society. There is a strong educational component of the 

community arising from the Education, Training and Outreach programmes of the 
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Cockcroft Institute and John Adams Institutes including jointly organized sessions of 

the Royal Society and ongoing courses at the large number of universities. Recently, 

there have been proposals to have collaborative accelerator schools with the US particle 

Accelerator School (USPAS) and CERN. 

This edition gives a flavour of the set of diverse activities in accelerator science and 

technology in the UK. I am thankful to the entire UK community for their contribution 

and support in the production of this issue of the ICFA Beam Dynamics Newsletter. 

2 International Linear Collider (ILC) 

2.1 Fifth International Accelerator School for Linear Colliders 

Barry Barish, Weiren Chou and Hermann Schmickler  

Mail to:  barish@ligo.caltech.edu, chou@fnal.gov, hermann.schmickler@cern.ch   

 

We are pleased to announce the Fifth International Accelerator School for Linear 

Colliders. This school is a continuation of the series of schools started four years ago.  

The first school was held in 2006 at Sokendai, Hayama, Japan, the second in 2007 at 

Erice, Sicily, Italy, the third in 2008 at Oakbrook Hills, Illinois, U.S.A., and the fourth 

in 2009 at Huairou, Beijing, China. The school is organized by the International Linear 

Collider (ILC) Global Design Effort (GDE), the Compact Linear Collider (CLIC) and 

the International Committee for Future Accelerators (ICFA) Beam Dynamics Panel. 

The school this year will take place at Villars-sur-Ollon, Switzerland from October 25 

to November 5, 2010. It is hosted by CERN and sponsored by a number of funding 

agencies and institutions around the world including the U.S. Department of Energy 

(DOE), the U.S. National Science Foundation (NSF), Fermilab, SLAC, DESY, INFN, 

IN2P3, CEA, Oxford University, KEK, IHEP, KNU and POSTECH. 

We will offer a 10-day program, including an excursion and a site visit. There will 

be 8 days of lectures. The first two days will be an introductory course with an 

overview of proposed future lepton colliders (ILC, CLIC and the muon collider). This 

will be followed by two elective courses, one on accelerator physics and the other on 

RF technology. Both of these will run in parallel for 6 days. Each student is required to 

take the introductory course and one of the electives. A complete description of the 

program can be found on the school web site. There will be homework assignments and 

a final examination but no university credits. 

We encourage young physicists (graduate students, post doctoral fellows, junior 

researchers) to apply. In particular we welcome those physicists who are considering 

changing to a career in accelerator physics. This school is adopting an in-depth 

approach. Therefore, former students are welcome to apply if they have a compelling 

reason to do so. The school will accept a maximum of 70 students from around the 

world. Students will receive financial aid covering their expenses for attending the 

school including travel (full or partial). There will be no registration fee. Each applicant 

should complete the online registration form (which can be found at 

www.linearcollider.org/school/2010/) and submit a curriculum vita as well as a letter of 

recommendation from his/her supervisor (in electronic form, either PDF or MS 

WORD). The application deadline is June 15, 2010. For more information, please 

mailto:barish@ligo.caltech.edu
mailto:chou@fnal.gov
mailto:hermann.schmickler@cern.ch
http://www.linearcollider.org/school/2010/
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contact: Alexia Augier, CERN, CH-1211, Geneva 23, Switzerland, telephone: +41-22-

767-0169, fax: +41-22-767-4194, e-mail: alexia.augier@cern.ch  
 

Organizing Committee 

Barry Barish (GDE/Caltech, Chair) 

Alex Chao (SLAC) 

Hesheng Chen (IHEP) 

Weiren Chou (ICFA BD Panel/Fermilab) 

Paul Grannis (Stony Brook Univ.) 

In Soo Ko (PAL) 

Shin-ichi Kurokawa (KEK) 

Hermann Schmickler (CERN) 

Nick Walker (DESY) 

Kaoru Yokoya (KEK) 

 

Curriculum Committee 

 Weiren Chou (Fermilab, Chair) 

William Barletta (USPAS) 

Alex Chao (SLAC) 

Jie Gao (IHEP) 

Carlo Pagani (INFN/Milano) 

Hermann Schmickler (CERN) 

Junji Urakawa (KEK) 

Andrzej Wolski (Univ. of Liverpool) 

Kaoru Yokoya (KEK) 

 

Local Committee 

Hermann Schmickler (CERN, Chair) 

Alexia Augier (CERN) 

Daniel Brandt (CERN) 

Django Manglunki (CERN) 

Barbara Strasser (CERN) 

mailto:alexia.augier@cern.ch
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Fifth International Accelerator School for Linear Colliders – Curriculum  
(v.3, 03/22/2010) 

 

October 25 – November 5, 2010, Villars-sur-Ollon, Switzerland 
 

Daily Schedule 

 

Breakfast  08:00 – 09:00 

Morning   09:00 – 12:30, including ½-hour break 

Lunch   12:30 – 14:00 

Afternoon  14:00 – 17:30, including ½-hour break 

Tutorial & homework 18:00 – 20:30 

Dinner   20:30 – 22:00  

 

List of Courses (black: required, red and blue: elective) 

 

 Morning Afternoon Evening 

October 25  Arrival, registration Reception 

October 26 Introduction ILC Tutorial & homework 

October 27 CLIC Muon collider Tutorial & homework 

October 28 
Joint lecture:  

Linac basics 

Course A: Accelerator 

physics  

Course B: RF technology 

Tutorial & homework 

October 29 
Course A: Accelerator 

physics  

Course B: RF technology 

Excursion Tutorial & homework 

October 30 
Course A: Accelerator physics 

Course B: RF technology 
Tutorial & homework 

October 31 
Course A: Accelerator physics 

Course B: RF technology 
Tutorial & homework 

November 1 
Course A: Accelerator 

physics 

Course B: RF technology 

Excursion Tutorial & homework 

November 2 
Course A: Accelerator physics 

Course B: RF technology 
Tutorial & homework 

November 3 
Course A: Accelerator physics 

Course B: RF technology 
Tutorial & homework 

November 4 Study time Study time 

November 5 Final exam Free time 

Banquet; 

Student Award 

Ceremony 

November 6 Departure for a site visit to CERN  
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Notes on the Program: 

 

1. There are a total of 10 school days in this year‘s program, excluding the 

arrival day (October 25) and the final examination day (November 5). The 

time is divided as follows: 2 days for required courses, 6 days for elective 

courses, 2 half-days for excursion, 1 day for study time for preparation for 

the final exam. There will also be a site visit to CERN on November 6. 

2. The required course consists of four lectures: Introduction, ILC, CLIC and 

the muon collider. Every student must take this course. 

3. There are two elective courses: Course A (the red course) is accelerator 

physics, Course B (the blue course) is RF technology. They will run in 

parallel. Each student will choose one of these. 

4. The accelerator physics course consists of lectures on four topics: (1) linac, 

(2) sources, (3) damping rings, and (4) beam delivery system and beam-

beam effects. 

5. The RF technology course consists of lectures on three topics: (1) room 

temperature RF, (2) superconducting RF, and (3) LLRF and high power RF.  

6. There is a half-day joint lecture on linac basics for students taking both 

Courses A and B. 

7. There will be homework assignments, but homework is not counted in the 

grade. There will be a final examination. Some of the exam problems will be 

taken from variations of the homework assignments. The exam papers will 

be graded immediately after the exam and results announced in the evening 

of November 5 at the student award ceremony. 

8. There is a tutorial and homework period every evening. It is part of the 

curriculum and students are required to attend. Lecturers will be available in 

the evening of their lecture day during this period. 

9. Lecturers have been asked to cover the basics as well as possible. Their 

teaching material will be made available online to the students well ahead of 

time (a few weeks prior to the school). Students are strongly encouraged to 

study this material prior to the beginning of the school. 

10. Lecturers of the elective courses are required to provide lecture syllabus as 

soon as possible in order to help students make their selection. 

11. All lecturers are responsible for the design of homework and exam problems 

as well as the answer sheet. They are also responsible for grading the exams. 

12. The award ceremony will honor the top (~10) students based on their exam 

scores. 
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3 Theme Section: Accelerator Science and Technology in 

the UK  

3.1 Overview – an Emerging Paradigm of Collaboration between 

Universities, National Facilities and Industry 

Swapan Chattopadhyay 

Cockcroft Institute 

Mail to: swapan@cockcroft.ac.uk 

3.1.1 Introduction 

The UK accelerator programme is presently undergoing a strategic development. 

The achievements of the UK accelerator community to date have already positioned it 

as a unique contributor to science internationally. The current effort is devoted also 

towards applying the underlying knowledge base to the development of solutions to the 

national and global challenges in energy, environment, health and security. An 

integrated and comprehensive programme in accelerator science and technology must 

remain an essential component in the portfolio of investments by the UK in science 

needed to maintain its position as a leading scientific and industrial nation.  

     The UK accelerator strategy aims, in the first place, to be intricately linked to a 

healthy programme in the associated sciences that it enables, namely the particle, 

nuclear, photon and neutron sciences. It is believed that such fundamental underpinning 

to the sciences will automatically ensure, with proper motivation and stewardship, a 

flourishing set of innovations to serve the various societal applications e.g. knowledge 

exchange and technology transfer  in areas of energy, environment, health and security.  

3.1.2  Mission of UK Accelerator Science and Technology 

The UK accelerator program is based on a sustainable and universal Mission, 

qualified by means of the following deliverables:  

 

(i) Innovative and generic R&D at the frontier of accelerator science; 
(ii) Project-specific R&D in accelerators as instruments of science;  
(iii)  Leadership and management of national deliverables to international 

facilities and projects;  
(iv) Competence in crucial and special ―transformational‖ technologies; 
(v) Addressing critical global and national issues in Energy, Health, 

Environment and Security; 
(vi) Exchange of knowledge with Industry; 
(vii) Staff complement of internationally acknowledged expertise; 
(viii)  Seamless involvement of the Universities, National Facilities and Research 

Councils; 
(ix) Education and training to ensure a healthy next generation of scientists 

and engineers to benefit society.  
  

mailto:swapan@cockcroft.ac.uk
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3.1.3 The Model: Integrated Accelerator Community and Stakeholders  

The aspirational modus operandi of the UK accelerator community is depicted in the 

figure below showing the essential roles and synergy of the participating sectors. All 

three of these (the Universities, the National Laboratories (Facilities) and the 

Industry/Economy) retain their identities and missions within the accelerator 

partnership providing synergy of fundamental research (academia), scientific and 

engineering exploitation (national research facilities) and industrial wealth creation. 

This will require a coordinated national stewardship. 

 

                                                         

3.1.4 The Research Program Driven by Science  

Accelerator-driven, intense, beams of charged particles enable scientists to 

addresses fundamental questions from sub-atomic to cosmic scales. The ―facilities‖ 

which result are the grand instruments which make this possible. They range from 

particle colliders (leptons, hadrons and ions with GeV to TeV energies) to various 

photon and neutron sources. Present challenges include collisions with luminosities 

(brightness) up to 10
36

 cm
-2

.sec
-1

 (ph/s/mm
2
/mr

2
/0.1% bandwidth), with beam sizes of 

order nanometres, and with pulse durations in the femto-second to atto-second range. 

Current and envisioned photon sources that will address electronic, atomic and 

molecular scale processes will require photon energies from THz and infrared to hard 

X-rays with varying temporal resolution down to atto-seconds.  

Future challenges therefore include achieving stable and ultra-high accelerating 

fields, producing ultra-cold relativistic beams with very high intensities, developing 

ultra-fast detection and feedback techniques, producing ultra-short pulses with precise 

time synchronization and inherent phase-space brightness, and achieving energy 

efficiency via techniques of energy recovery and re-cycling.  

Existing large accelerators facilities such as the LHC, J-Parc, KEK-B, Tevatron and 

future projects, such as the ILC/CLIC, Super-LHC, LHeC [1], Super-B, FAIR, 

EURISOL, NF/MC, Project-X, etc. illustrate the scope of particle/nuclear sciences 

which are possible. Similarly, existing international facilities like DIAMOND in UK, 

FLASH in Germany and LCLS in USA, facilities under construction such as the XFEL 

in Germany and the proposed Next Light Source (NLS) in the UK -- all illustrate the 

scope of the photon sciences which are possible. Finally an equally challenging 

landscape exists for neutron sciences at existing and upgradeable neutron sources such 

as the ISIS in UK and the proposed future sources such as the Neutron Source in China 

and the European Spallation Source (ESS). 

 

Universities 

 

Industry National 

Laboratories 

Society 
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3.1.4.1 Research Focus: Current 

The UK‘s major accelerator contributions to date in national and international 

projects and advanced R&D have been focused on: (i) high energy particle physics 

facilities (e.g. ILC, MICE for Muon Cooling and Neutrino Factory, Super-B); (ii) fourth 

generation photon sources (e.g. FLASH, DIAMOND, NLS); (iii) prototyping novel 

concepts and technologies (e.g. SCRF and Energy Recovery in ALICE, electron FFAG 

in EMMA, Laser-plasma studies at RAL,  Imperial College, Oxford, Strathclyde, 

Queens University Belfast); (iv) fundamental mathematical/computational beam 

physics;  (v) emerging roles in LHC (including upgrades and LHeC), CLIC, Anti-matter 

research, Neutrino Factory/Muon Collider, Compact High-frequency Linacs and Meta-

materials for particle acceleration. 

3.1.4.2 Reasearch Focus: Future 

The UK aspirations and capacity for the future include:  (i) extending our linear 

collider expertise to multiple TeV-scale linear colliders such as CLIC, or other X-band 

options; (ii) continuing development of novel photon sources/FELs; (iii) contributing to 

the exploitation of LHC and its upgrades including a novel electron-proton collider 

(LHeC) spearheaded by UK scientists; (iv) expand our work to facilities serving nuclear 

and neutron sciences (e.g. HIE-ISOLDE,  EURISOL, FAIR, ISIS Upgrade and ESS), 

(v) expand blue-sky research to include laser-plasma, photonic band-gap structures and 

meta-materials; (vi) increase our core competency in high current proton beams for 

applications in neutron sources, intense neutrino beams,  particle beam cancer therapy, 

and in energy and environmental technologies e.g. Accelerator Driven Sub-critical 

Reactor (ADSR). 

The spectrum of activity spans science and technology from the fundamental to the 

applied.  Much of the knowledge generated can immediately be exploited in other areas 

of endeavour. 

3.1.4.3 Special Comment on the Role of Test Facilities 

The recognition and continuing support of accelerator-based Test Facilities in the 

UK and development of others in the future are vital to the health of the field. The 

existing UK facilities such as the High Current Front-end Test Accelerator, ALICE, 

EMMA, CLF and the Strathclyde ALPHA-X represent first steps in this direction. A 

national Superconducting RF Test Facility and High Brightness Electron and Ion 

Source Development Facility will be vital for the future of the NLS, future involvement 

in Nuclear Physics and Neutron Source Facilities (e.g. HIE-ISOLDE, EURISOL, ISIS 

Upgrade and ESS), in particle physics (Neutrino factory, Muon Collider and Linear 

Collider, LHC Upgrades, LHeC) and high-duty factor electron linear accelerators for 

medical isotope production independent of nuclear reactors.  

3.1.5 The Research Program Driven by Applications 

3.1.5.1 Energy and Environment 

It is generally recognised that nuclear fission will have a vital role to play in 

meeting future energy requirements in the medium term. However, uranium used 

conventionally will only last a few more decades. Alternative fission technologies must 
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be sought that can deliver safer power production, lower proliferation risks, and long-

term security of supply. Accelerator Driven Sub-critical Reactors (ADSRs) using 

thorium, which is plentiful, can secure safe electricity production. The fast-breeder 

technique pioneered in the UK allows the fuel to be recycled to last thousands of years. 

A high-power particle accelerator and target can generate the neutrons required to 

stimulate energy production ―on demand‖, meaning that the reactor cores do not need to 

rely on their own neutron generation. This greatly reduces the risk of critical accidents. 

This new generation of nuclear fission technology offers a way of generating low-

carbon electricity at low cost. Similar accelerator technology can be applied to the 

Artificial Transmutation of Waste (ATW) generated and stored underground, thus 

reducing environmental risks. Both high current Superconducting Radio Frequency 

(SRF) linear accelerator technology as well as development of FFAGs will be crucial 

for this program. In this regard, UK is pioneering the FFAG development program via 

EMMA electron prototype construction, operation and development.  

3.1.5.2 Health and Medicine 

Proton (and ion) therapy for the treatment of cancer offers significant advantages 

over other radiation methods. The combination of penetrative power and localised dose 

(by means of the Bragg peak) allows tumours to be treated with much less damage to 

surrounding tissue than electron or X-ray-based therapies.  At present proton therapy is 

available at several centres overseas, and there is rapidly growing development of new 

facilities in Europe. In contrast, in the UK, the only therapy available is with low 

protons energy which limits the therapeutic use to near-surface cancers such as those of 

the eye. Cost and availability are major barriers to widespread use of existing 

accelerator technology to serve UK health needs (2000 patients/year). Higher proton 

energies are needed to allow therapy throughout the body.  

Clinical understanding of radio-therapy must go hand-in-hand with accelerator 

developments. It is thus essential that any beam therapy facility be tightly coupled to 

clinical health and safety requirements permit to a university-based medical research 

centre.  

Currently, the UK accelerator community is helping the hospital-based bids for two 

to three Proton Thereapy Centres in response to a call from the National Health Service 

(NHS). These will be based on readily available cyclotron or other systems available for 

purchase from industry today, coupled with an adjacent developmental technical 

laboratory. 

Future compact therapeutic facilities could be based on superconducting cyclotrons 

(being actively developed at MIT etc.), FFAG-based synchrotrons (being developed in 

UK and Japan), or recent developments in laser-plasma interactions (being actively 

developed in Japan under the name Photo-Medical Research Valley, near Nara). The 

BASROC (the British Accelerator Science for Research in Oncology Consortium) is 

pursuing R&D at smaller, reliable, flexible, high throughput and cheaper proton/ion 

sources than those presently available (e.g. the FFAG-based designed pursued in the 

PAMELA project by UK accelerator scientists and engineers) while the laser-plasma 

activities in UK, especially the LIBRA project at Queen‘s University Belfast, could 

focus on laser-plasma generated protons for cancer therapy. Together, these approaches 

could give patients much better quality of life after treatment. 

Yet another area of accelerators could be in the production of the diagnostic radio-

isotopes matching the world-wide demand, while not depending on the operational 
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availability of experimental nuclear reactors subject to nuclear regulatory requirements. 

High current continuous pulse trains of 50 MeV electrons from a specially designed 

electron accelerator could supply the necessary production rate of the radio-isotopes by 

photo-fission radio-chemistry of Technicium. Other approaches based on conventional 

cyclotrons or Molybdinum are also viable and could provide more attractive options. 

But a design and demonstration via a prototype will be prerequisite to a production 

facility.  

3.1.5.3 Security 

In today‘s society, heightened security demands speedy and reliable scanning of 

materials and people at ports of entry to countries using rapidly scanning X-rays. In 

addition, compact and mobile security scanning devices are required for use in remote 

parts of the world in sensitive territories. Much of the technology for these purposes is 

based on microwave and linear acceleration. However, rapid and repetitive scanning 

with high reliability depends upon both advanced accelerator and imaging expertise. 

Neutrons can also be used to identify sensitive materials, conventional explosives and 

fissile material inside cargo containers. High power X-ray scanners based on electron 

linacs, and neutron and gamma-ray spectroscopy using powerful proton beams as 

neutron sources, all with advanced detector technologies, are areas of expertise that 

could be developed by the UK accelerator community in close collaboration with 

partner universities and UK industry. 

3.1.6 Summary and Conclusion 

The UK accelerator enterprise offers a unique paradigm combining academic depth, 

national laboratory breadth, engineering integration and industrial perspectives, adding 

to each other in a complementary fashion. Contributing to national and international 

projects is vital to retaining the skills base and preserves the necessary expertise in the 

field.  

Advancing the frontier of accelerator and science and technology at the cutting edge 

gives the UK community the critical edge globally. Simultaneously, many of the 

developments have matured enough to be exploited already. The stakeholders in the 

field expect the accelerator community to generate value for the science and society at 

large, who are expecting to benefit from our community. Hence investment in identified 

―Test Facilities‖ and ―transformational‖ technologies will be a crucial next step. 

The community is seeking long-term sustained national commitment to accelerator 

science and technology to serve the national and global community further. 

3.1.7 Reference 

1. M. Klein, The Large Hadron Electron Collider Project, Proceedings of DIS09, Madrid, 

April 2009, arXiv:0909.2877 (2009). 
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3.2.1 The LHC, LHeC and ATLAS Forward Physics 

The UK has a strong programme in hadron collider accelerator physics, with key 

roles in the Large Hadron Collider (LHC) at CERN and in the conceptual design of the 

LHeC. The UK is also the leading partner in the ATLAS Forward Physics 

collaboration, which will instrument the forward region of the ATLAS experiment of 

the LHC and extend the physics capability of the experiment. 

3.2.2 The LHC 

The UK is active in many areas of the LHC machine. In this section, we describe 

two areas where the contribution is key - the study of machine-induced backgrounds for 

the LHC experiments and the LHC machine protection systems. 

3.2.2.1 Background Conditions in the LHC 

The performance of the Large Hadron Collider and the associated experiments is 

dependent on an understanding and control of particle rates arising in the machine and 

streaming to the experimental caverns and detectors. The understanding and control of 

experimental background is crucial to the successful operation of the LHC experiments.  

This machine induced background (MIB) will be seen with the first few bunches in the 

machine, and is generally proportional to beam current and dependent on the machine 

optics, filling scheme, collimation scheme and so on. The various sources of MIB in the 

LHC can be classified as, 

 

 Halo scattering and subsequent showering, on the tertiary TCT collimators. 

This contribution arises from beam halo collimation in the long straight 

sections. It depends on the optics and collimation apertures, and varies 

greatly depending on the proximity of the experiment from the betatron and 

momentum cleaning sections of the machine. 

 Beam-gas interactions in the long straight section (LSS) of the machine. This 

contribution depends of the local gas pressure profile, and the produced 

secondary particles generally have a visible line-of-sight to the interaction 

point (IP). 

 Elastic beam-gas events in the arc. These events will modify the proton loss 

distribution on the tertiary collimators. 

 Cross-talk from other experiment. This background is proportional to 

luminosity, and is possibly only be a problem for ATLAS and CMS 

providing a background to the lower luminosity LHCb and ALICE. 

mailto:robert.appleby@manchester.ac.uk
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The UK is making calculations of the machine induced background to the 

experiments of the LHC from all sources in the machine, and working with CERN on 

understanding the measurements of background made at a beam energy of 450 GeV, 3.5 

TeV and 7 TeV [1,2]. 

 

 
Figure 1: The charged hadron (solid) and muon (dashed) beam-gas background flux from early 

machine beam-gas interactions flowing to the LHCb cavern of the LHC. 

The running at 450 GeV at a beam energy gave the first opportunity of the UK and 

CERN groups to study measurement of the background conditions. The initial running 

was made at a beam energy of 450 GeV and few bunches in the machine, and the 

background conditions into the experiments is dominated by beam-has interactions in 

the long straight sections of the LHC. Taking LHCb and the backgrounds associated 

with beam 1 as an example, the rate of inelastic beam-gas interactions in the LSS to the 

right of LHCb is 2.6 /s for a proton fill of 40E9 protons. The resulting production of 

forward secondary charged hadrons and muons results in a flux into the experimental 

cavern of 5.6 /s and 0.4 /s. The spatial and kinetic energy distribution of the charged 

hadrons (solid line) and muons (broken line) is shown in Figure 1.  The UK is studying 

the measured backgrounds around the LHC to bench mark the calculations and prepare 

tools to mitigate the background conditions in the machine for 3.5 TeV and 7 TeV 

running. Features in the calculations such as high multiplicity events and magnitude of 

non-colliding beam trigger rates are present in the simulation and the data. 

3.2.2.2 Machine Protection 

The Large Hadron Collider (LHC) has a nominal beam momentum of 7 TeV/c per 

beam, a design luminosity of 1034 cm-2 s-1 in 7 TeV p-p mode and a nominal beam 

stored energy of 362 MJ, which is enough to cause considerable damage to the elements 

of the machine and the experiments. To deal with these levels of stored energy a 

complex system of machine protection has been designed to protect the machine, 

including beam loss monitors, current monitors and quench monitors, which are 

connected to a beam dump and interlock system. The strategy of these systems is to 

manage the continuous losses from the beam, handle failure scenarios over a large range 

of time scales and provide protection to the machine and the experiments. The system is 

designed around the beam interlock system (BIS), which receives input from passive 

and active systems and is capable of triggering a beam dump or inhibiting further 

injection.  

The UK is studying the performance and response of the LHC machine protection 

systems, both in simulation and with beam [3]. To demonstrate the protection of the 

near-beam experiments from hardware failures, Figure 2 shows the time-dependent 
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proton distribution for a 450 GeV beam with collision optics at the TOTEM experiment 

roman pots located 220 m from the interaction point of CMS. At t=0 the power 

converter RD1.LR1 powering the separation dipoles D1 fails, the beam orbit distorts 

around the ring and the beam is lost after about 5 ms on the primary and secondary 

machine collimators. During this time the beam does not scrape any of the experiments. 

The machine protection therefore relies on the passive collimator protection combined 

with beam loss monitors to detect the loss and magnet current monitors to detect the 

current change. All these subsystems are inputs to the BIS. The commissioning of the 

LHC in 2009 included time for a study of the machine protections systems. For 

example, the power converters powering dipoles around the LHC ring were turned off 

to study the beam and system responses. In all cases, the beam orbit deviation was in 

agreement in the simulations and the BIS successfully dumped the beam. 

 

 
Figure 2: The horizontal and vertical proton distribution at the TOTEM roman pots as a 

function of time, for a circuit error in RD1.LR1. The calculation was made for a 450~GeV 

stored beam with nominal collision optics. 

3.2.3 The LHeC 

The LHeC proposes to collide the LHC 7 TeV proton beam (or ion beam) with a 50-

70 GeV electron beam in one of the existing LHC interaction regions, exploiting the 

LHC beam for high energy lepton-hadron scattering [5]. The physics reach of this 

machine would allow studies of the parton structure of the proton, new Tera-scale 

physics, high density matter and many other topics, including a broad nuclear 

programme from eN collisions.  The LHeC CDR is planned for the end of 2010. The 

LHeC baseline design contains two different possibilities to generate the electron beam. 

The first, the ring-ring option, installs an electron ring in the LHC tunnel, whilst the 

linac-ring option proposes a recirculating (and possibly energy recovery) linac to 

produce the electron beam. Both options are expected to meet the LHeC physics goals 

and both will be studied for the LHeC CDR.  

The UK is contributing to several aspects of the machine design of LHeC, especially 

in interaction region and optics studies. There are also synergies to the UK programmes 

in energy recovery linacs, the production of polarised positron beams and crab cavity 

design. 

3.2.3.1 Interaction Region Design 

The UK is developing the interaction region designs for the LHeC ring-ring option. 

A key challenge in a ring-ring electron-proton IR is the separations scheme of the two 

beams, and the associated synchrotron radiation emission of the electron beam. The 

baseline LHeC physics programme calls for two distinct phases of operation: 
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 High luminosity of 10
33

 cm 
−2

 s 
−1 

with low forward acceptance of 10 <  < 

170 

 Lower luminosity of 10
31

 cm 
−2

 s 
−1

 with a high forward acceptance of 1 <  

< 179 

 

The baseline designs for both interaction regions rely on achieving electron-proton 

separation using dipole separators, displaced electron final triplet quadrupoles and an 

electron-proton crossing angle of around 1.5 mrad at the IP. The synchrotron radiation 

is screened from super conducting elements (specifically the proton inner triplet) by a 

series of radiation masks. The elements of the layout such as the separation scheme, 

electron and proton optics, components of the detector and the production of 

synchrotron radiation are inherently coupled.  

The 10-degree acceptance layout is shown in Figure 3, which has a total radiation 

power of 60 kW. The inner electron triplet is located 1.2 m from the electron-proton IP. 

Figure 4 shows the 1-degree acceptance IR, which is constrained by the detectors in the 

forward region and locates the electron triplet 6.2 m from the IP. A variant with a dipole 

at 6.2 m is under study. The UK is developing both IRs in collaboration with CERN and 

DESY.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The LHeC 10 degree IR. 

 

 

  
Figure 4: The LHeC 1 degree IR. 
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3.2.4 ATLAS Forward Physics 

The ATLAS Forward Proton (AFP) international collaboration is proposing to 

upgrade the forward region of ATLAS by installing forward proton detectors at 220 m 

and 420 m from the interaction point on both sides of the LHC ATLAS experiment. The 

UK is leading the collaboration and coordinating the machine related studies At both 

the 420 m and 220 m locations it is proposed to install movable beam pipes which will 

host silicon tracking and fast timing detectors, giving four independent detector stations 

located on both sides of the ATLAS detector. 

 The AFP detectors are designed to operate at intermediate and high instantaneous 

luminosities of up to 10
34

 cm
−2

 s
−1

. The primary goal is to enhance the ATLAS baseline 

physics program, particularly the search for and identification of new particles such as 

Higgs bosons and supersymmetric particles. Full details about the AFP proposal can be 

found in [4].  

3.2.4.1 The Integration with the LHC Machine 

The experiment acceptance at 220 m is depending upon the setting of two 

collimators designed to protect the LHC straight section and dispersion suppressor 

around ATLAS from the physics debris generated at the 2 high luminosity experiments. 

Such collimators (at about 140 m and 190 m fro the IP) are foreseen to be removed 

from their parking position (as needed for machine protection) for luminosity higher 

than a few 10
33

 cm
−2

 s
−1

. Since the presently foreseen collimators setting would heavily 

compromise the AFP acceptance, the role and dynamics of the LHC straight section 

collimators was made. The simulations consist in loss maps from protons generated by 

ATLAS collisions and tracked along the beam line. Such protons include the AFP 

signal and background. Figure 4 shows a result example, for which two collimation 

settings are proposed, either displacing an existent collimator after AFP (red line) or 

adding a third collimator and relaxing the collimator settings in front of AFP (green 

line). In both cases all losses in superconducting elements are below the quench limit 

(blue line).  

 
Figure 4: Loss maps generated at the right side of ATLAS in the region 190m-450m. Among 

the different elements, the collimator (TCL4,5,6)  and the proposed AFP positions are indicated.   

3.2.5 References 
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3.3.1 Introduction 

Collimators and kicker magnets within the LHC and SPS have an associated 

impedance which can cause an appreciable wakefield and will dilute the overall 

emittance of the beams.  The upgrade of the LHC, for example, will feature modified 

collimators with reduced overall beam impedance. We have been involved with various 

impedance mitigation techniques and also understanding fundamental models of beam 

impedance [1-5], in particular, in the low frequency regime for the resistive wall 

wakefield [1]. Current work is focused on beam impedance of both collimators and 

kickers for the LHC and SPS.  Firstly, the work on impedance of LHC Roman Pots and 

collimators is discussed.  

3.3.2 Analysis of Beam Impedance for LHC and FP420 

At the LHC, four Roman Pot (RP) [2] type detectors are installed on both sides of 

the ATLAS experiment with the aim of measuring elastic scattering at very small angles 

and determining the absolute luminosity at the interaction point.  During dedicated LHC 

runs, the detectors will be positioned at approximately 1 mm from the nominal beam 

orbit.   Numerical simulations and laboratory wire measurements were carried out to 

characterize the RP impact on the total LHC beam coupling impedance budget.  We 

also investigated the longitudinal coupling impedance of the FP420 double pocket 

stations [3-5], which, it turns out, are dominated by a narrow band component with 

significant modes from 2 to 3GHz.  This has been characterized by means of laboratory 

measurements and numerical calculations that are in good agreement.  The already 

small impact on the LHC impedance budget will be even smaller after implementing in 

the next design tapering foils at the pockets indentations. The stretched wire technique 

has been successfully used for determining the characteristic loss factor.  This quantity, 

after scaling for the real LHC bunch shape is used to predict the energy loss. 

The work on the low-frequency impedance prediction of the transverse wall beam 

impedance at the first unstable betatron line (8 kHz) of the CERN Large Hadron 

Collider (LHC) is particularly important for understanding and controlling the related 

coupled-bunch instabilities. We performed laboratory measurements and numerical 

simulations to cross-check the analytical predictions. The experimental results based on 

mailto:roger.jones@manchester.ac.uk
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the measurement of the variation of a custom built probe coil inductance in the presence 

of sample graphite plates and LHC collimator jaws. Both the experimental and 

simulation component of this work is continuing in detailed experiments being made on 

both collimators.  We have also expanded this area of work to include impedance issues 

associated with LHC and SPS kicker magnets.  This area of work is discussed in the 

next section. 

3.3.3 Current Research: Collimator and Kicker Beam Reduction Research 

Current models of the CERN accelerator system attribute a significant proportion of 

the beam impedance to either the kicker magnet systems (highly prevalent in the SPS) 

or the beam collimators (expected to dominant in the LHC) and hence present attempts 

at reducing the beam impedance, both longitudinal and transverse, are focused on for 

these components. To properly mitigate for these sources of beam impedance losses, 

accurate models of beam impedance are being developed and applied to structures 

within the accelerating structures.  

In the case of kickers, multiple resonances are being explored. These resonances are 

the source of reduced rise time in the magnet response. These cause periodic heating in 

the magnets, potentially above the Curie temperature, and threaten the effective 

operation of the magnets. A variety of potential impedance reduction methods are under 

consideration, based on data from existing methods such as using beam screens and 

implementing serigraphy on internal walls of components, together with new 

implementations. 

We are also studying the impedance of collimators, thought to be the primary source 

of transverse impedance in the LHC and hence are a significant source of emittance 

dilution. At present the beam dynamics are severely impacted by the impedance of the 

collimators and this research will have the potential to make a major impact on the 

LHC. Means to damp the wakefields in these collimators are being explored, including 

a consideration of new composite materials specially developed for this application.  

This work is performed in close collaboration with our CERN colleagues. 

3.3.4 Summary 

Our earlier work on the impedance of various components in the LHC and FP420 is 

continuing. We are developing a detailed understanding of the mechanisms behind the 

existing resonances and operation of the kicker magnets and collimator systems, using 

theoretical descriptions, computational simulations and experimental measurements. 

Subsequent to this, further measurements will be made of other magnet systems and 

collimators to allow a comparison of alternative construction methods; ferrite-loaded 

magnets, laminated steel-strip magnets, and the existing theoretical models 

(predominantly assume a continuous aperture of a uniform material). From this 

comparison it is expected to understand the different sources of resonant phenomena 

from the components, and if possible expand upon these phenomena and develop new 

models to more accurately describe the resonance observed. 

3.3.5 References 
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3.4 The International Linear Collider 

3.4.1 The Positron Source 

Jim Clarke, on behalf of the HeLiCal collaboration 

STFC Daresbury Laboratory and Cockcroft Institute, Daresbury, Warrington, 

Cheshire WA4 4AD, UK 

Mail to: jim.clarke@stfc.ac.uk 

3.4.1.1 Description of the Source 

The positron source is a highly challenging subsystem of the ILC. In the solution 

adopted the electron main linac beam passes through a long helical undulator to 

generate a multi-MeV photon beam.This photon beam is transported ~500 meters to the 

positron source target hall where it hits a 0.4 radiation length thick Ti-alloy target 

producing showers of electrons and positrons.  The positrons are captured, accelerated, 

separated from the shower constituents and the unused photon beam and then are 

transported to the Damping Ring.  

 More details on the source parameters and layout can be found in a previous 

newsletter [1]. The UK has leadership responsibility for the complete positron source 

design effort for the ILC and takes special responsibility for the undulator, the target 

and the overall system engineering and integration. In addition, the UK group has 

played a strong role in advancing the development of simulation tools for understanding 

depolarisation processes in the ILC and hosted an ICFA mini-workshop on Advanced 

QED Methods for Future Accelerators at the Cockcroft Institute in 2009.  

3.4.1.2 The Undulator 

The undulator must be superconducting to achieve the required parameters of 0.86 T 

transverse field on-axis with only an 11.5 mm period [2]. Two interleaved helical 

windings of NbTi spaced half a period apart generate the transverse helical field. The 

undulator will consist of 4 m long cryomodules containing two separate undulators with 

an active undulator length per cryomodule of 3.5 m. A number of short superconducting 
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prototypes have been constructed by a joint collaboration between Daresbury 

Laboratory and Rutherford Appleton Laboratory (RAL) to help select the optimum 

undulator parameters. A full scale 4 m long cryomodule has been manufactured at RAL 

and is now in the final stages of commissioning [3].  

The 1.75 m long undulators have been successfully measured magnetically in a 

vertical cryostat. The tests show that both magnets can deliver the nominal design 

current of 216A corresponding to 0.86 T. The maximum observed quench current was 

301 A and 306 A for magnets 1 and 2 respectively [1]. A photo of the complete 

cryomodule is given in Figure 1. 

 

 
Figure 1. The 4m long cryomodule under commissioning at RAL. 

A serious concern for the ILC is the impact of the undulator on the electron beam 

that travels through it since this electron beam later takes part in the collisions at the 

Interaction Point. Clearly the emission of synchrotron radiation within the undulator 

leads to a loss in energy by the electrons. On average the electrons will lose about 3 

GeV of their 150 GeV at the undulator and this energy has to be supplied subsequently 

in the linac. The emission of synchrotron radiation also increases the energy spread of 

the electron bunches, in this case from a relative value of 0.16% to 0.23% at 150 GeV. 

The narrow bore of the undulator vacuum vessel (5.85mm diameter) means that strong 

wakefield effects can also be generated. Fortunately these effects are relatively small so 

long as a smooth copper beam tube is utilised [4]. 

3.4.1.3 The Target 

The positron production target is a rotating wheel made of titanium alloy. The 

photon beam is incident on the rim of the spinning wheel, whose diameter is 1 m and 

thickness is 14 mm. During operation the outer edge of the rim moves at 100 m/s. This 

combination of wheel size and speed offsets radiation damage, heating and the shock-

stress in the wheel from the ~130 kW photon beam. A shaft extends on both sides of the 

wheel with the motor mounted on one shaft end, and a rotating water union on the other 

end to feed cooling water. The target wheel sits in a vacuum enclosure at 10
-8

 torr. The 

rotating shaft penetrates the enclosure using two vacuum feed-throughs, one on each 

end. A strong positron capture magnet is mounted on the target assembly, and requires 
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an additional liquid nitrogen cooling plant. The motor driving the target wheel is sized 

to overcome forces due to eddy currents induced in the wheel by this capture magnet. 

Several numerical eddy current simulations of the wheel moving in the field of the 

capture magnet have been carried out using alternative codes and techniques. Whilst 

broad agreement is found between these studies, showing power loading on the target of 

~10 kW for a static 1 T field, it has been decided that this is such a crucial issue that a 

target prototype has been developed at the Cockcroft Institute and this is being used for 

eddy current benchmark measurements [5]. A photo of the target test stand is shown in 

Figure 2. Whilst understanding of the exact eddy current losses is important, equally 

vital will be the demonstration of stable full speed operation. The experiment is 

currently taking data and comparison is being made against the numerical models. At 

present the wheel has operated successfully at up to 1800 revolutions per minute (94 

m/s at the rim), no attempt has been made to go beyond this speed at present. 

 

 
Figure 2. Photo of the 1m target wheel manufactured from Ti passing through the poles of the 

dipole test magnet. This eddy current experiment is housed inside a solid personnel safety 

enclosure due to the high rotation speeds being used. 

3.4.1.4 Summary 

The UK has leadership responsibility for the complete positron source design effort 

for the ILC and takes special responsibility for the undulator, the target and the overall 

system engineering and integration. A full scale undulator cryomodule has been 

fabricated and tested as part of a joint collaboration between Daresbury and Rutherford 

Appleton Laboratories. Additionally, a rotating target test stand has been built at the 

Cockcroft Institute and this is currently being used to measure the effect of the induced 

eddy currents on the target performance. 
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3.4.2 The Beam Delivery System 

D.Angal-Kalinin, ASTeC, STFC Daresbury Laboratory and Cockcroft Institute, UK 

 N. Watson, Birmingham University, UK  

For the LCABD Collaboration 

Mail to: deepa.angal-kalinin@stfc.ac.uk 

3.4.2.1 Introduction 

The beam delivery system in the future linear collider will deliver the high energy 

electron and positron beams to the interaction/collision point. The design of the beam 

delivery system can essentially be divided in to four main areas, namely: the final focus 

system to achieve nanometre vertical beam size at the collision point; the collimation 

system to reduce the background in the detector and provide machine protection; 

dedicated diagnostics and tuning of the beam and finally post collision extraction line to 

transport the highly degraded beams after the collision to the beam dumps. The UK 

programme has contributed to all these areas for the ILC in addition to a few specific 

areas such as collimation and post collision extraction line for CLIC. We describe here 

two highlighted topics: interaction region configurations and the collimation studies for 

the ILC. 

3.4.2.2 ILC Interaction Region Configurations 

The cold technology choice for the ILC implies in principle the possibility of head-

on collisions, which has advantages from both the machine and physics point of view. 

However, to extract the highly disrupted beam after the collision is extremely 

challenging. The problem of extraction at 800 GeV CM was not solved for TESLA 

[1,2] when the decision on cold technology was announced in August‘04. During the 

first ILC workshop at KEK (November‘04) a working assumption was made to consider 

two interaction regions, one with a large crossing angle of 20 mrad and one with a small 

crossing of 2 mrad, due to the pros and cons of both the schemes. In the 2 mrad scheme 

[3,4,5] as shown in Figure 1, the outgoing beam passes off-axis through the large bore 

final focus magnet and gets an additional dipole kick. Another scheme named ‗modified 

head-on collision‘ was proposed during the Snowmass 2005 workshop. This scheme 

combines the head-on extraction using electrostatic separators with off-axis quadrupoles 

further down in the final focus to separate the incoming and outgoing beams [6,7] as 

shown in Figure 2. A careful design of the interaction region is required in both of these 

schemes to avoid background in the detector and losses in the superconducting magnets. 

A highly-degraded beam at the collision point with a long low energy tail poses several 

problems in extracting, avoiding backscattering, transporting and providing polarisation 

and energy measurements desirable for physics. The machine detector interface 

evaluation of both the 20 mrad and 2 mrad schemes showed larger backgrounds in the 

detector due to pairs when the 20 mrad configuration was used with the proposed 

Detector Integrated Dipole (DID) for correcting the vertical angle at the IP to avoid spin 

misalignment. As a result of these studies, an intermediate crossing angle of 14 mrad 

with Anti-DID was proposed [8]. The final configuration chosen for the ILC Reference 

Design includes one interaction region with 14 mrad crossing angle with two 

complementary detectors in the push-pull mode [9].   
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Figure 1: The layout of minimal 2mrad crossing angle configuration. The beamstrahlung 

photon cone is shown in blue.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Plan view of modified head-on extraction from interaction point to charged and 

photon beam dumps. Green line shows the incoming beam, magenta line shows the outgoing 

beam and red lines indicate the beamstrahlung photon cone.  

3.4.2.3 Collimation Design for the ILC 

A two stage collimation design consisting of thin (<1 radiation length) spoilers and 

thick absorbers (20-30 radiation lengths) is essential to collimate high energy beams 

(250-500GeV) in ILC. In order to reduce the background in the detector, very narrow 

gaps (full gap ~1mm) are required in the spoilers. However, the wakefields generated 

by a short bunch (300m) in these collimators degrade the luminosity at the IP. 

The studies in the UK with collaborators included the estimations of required 

collimation depths for different interaction region configurations and different beam 

parameters [10]; improving the lattice design for improving the collimation efficiency 

[11]; beam halo tracking to estimate the backgrounds [12] and effect of wake fields on 

the luminosity [13].  

To investigate further the disagreement between the measured and simulated wake 

fields in the bunch length regime of linear collider [14], an extended experimental 

programme at SLAC End Station A was undertaken to measure the wake fields from 

different types of spoiler jaws as shown in Figure 3 and to compare with the simulations 

[15]. Different materials and geometries were used to separate the geometric and the 
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resistive effects from these jaws. The relative uncertainty on the reconstructed kick 

factor was typically less than 10% for most designs considered, with some systematic 

dependence on the analysis method employed. 

 

 
Figure 3: Collimator jaws tested at SLAC ESA for wake field studies. 

Different spoiler designs were also investigated for the ILC beam delivery system 

[16] which can survive impact of two bunches at 250 GeV and one bunch at 500 GeV 

[17]. Titanium spoiler with Beryllium tapers has been proposed, and a first conceptual 

mechanical design of the collimator assembly was produced [18].  

Experimental work to evaluate the behaviour of the proposed spoiler materials under 

rapid beam heating are part of the ATF2 programme, following successful first tests at 

ATF in 2008, and preparation for these tests is currently in progress in the UK [19]. 
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3.4.3 Laser-Wire Transverse Beam Profile Monitor 

Grahame A. Blair, on behalf of the LC-ABD laser-wire collaboration 

John Adams Institute, UK 

Mail to:  g.blair@rhul.ac.uk 

3.4.3.1 Introduction 

The laser-wire transverse profile monitor works by focusing a laser into the particle 

beam.  Laser-wire systems can be employed at H
-
 machine, such as the Front End Test 

Stand at RAL, discussed elsewhere in this newsletter. Here, we concentrate on UK 

involvement in laser-wires at the electron machines ATF and PETRA, at which the laser 

photons are Compton scattered into the direction of the electron beam, where they can 

be detected downstream. The laser spot is scanned across the beam and the Compton 

signal gives the convoluted electron beam-laser spot size. If the laser spot size is known, 

the electron beam size can be calculated from this measurement provided effects such as 

Rayleigh range etc. are included; from such measurements the transverse beam 

emittance can be inferred [1]. 

3.4.3.2 PETRAIII Laser-Wire System 

The PETRAII laser-wire system was completed in 2008 and rapid-scanning was 

achieved in both horizontal and vertical dimensions.  Example results are presented in 

Figure 1 for (Left) a horizontal scan and (Right) a collection of vertical scans [2].  

 

 
Figure 1: Laser-wire scans performed at the PETRAII machine.  Left: a typical horizontal scan. 

Right: an amalgam of vertical scans with a fit to the laser Rayleigh range profile. 
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The PETRA laser-wire was upgraded and successfully relocated to its new position 

in the PETRA ring during the spring of 2009 and first data was taken soon thereafter 

during the running of PETRAIII. 

Very good results have been achieved, building rapidly on the experience gained at 

the PETRAII system and beam studies with the laser-wire are taking place throughout 

2010. A wide-aperture electro-optic scanner based on electrostatic quadrupole fields has 

been developed [3]; possible implementation of this ultra-fast (~130 kHz laser pulses, 

~10 kHz scans) system is being explored as a possibility for PETRAIII and other 

machines. 

3.4.3.3 ATF Laser-Wire System 

The layout and preliminary results of the first ATF laser-wire system have been 

described in a previous newsletter [4]. Since then, the results from the runs using the 

first laser-wire system at the ATF extraction line at KEK have demonstrated electron 

beam-size measurements of order 3 μm [5]. The optics and light transport system are 

now sufficiently well understood such that a factor ~2 in improvements seems readily 

achievable. This can be achieved by reducing the input beam size on the final focus lens 

to limit the effect of aberrations and by improving the laser system.   

The laser system has been commissioned, requiring all services to be installed in a 

new laser laboratory, located above the ATF2 extraction line. The light transport system 

from lab to accelerator enclosure final focus line has been installed and the laser is 

currently (spring 2010) being commissioned. The combination of all the planned 

upgrades should yield a very good spot size (~1 μm) for laser-wire measurements. In 

addition a transport line from the ATF2 laser system has been installed so that the UK 

laser-wire team can also aid the development of the sub-micron profile monitor system 

(Shintake-monitor). 

3.4.3.4 Fibre Laser R&D 

Lasers for accelerators development in the John Adams Institute at Oxford is 

currently working specifically on building an innovative fibre laser for the laser-wire 

experiment at the ATF2 in KEK [6]. This experiment requires a high energy pulses (~ 

100μJ) that have a nearly perfect Gaussian spatial, The pulses also have to be at the 

same repetition rate as the electron bunches, 6.49MHz, and to be approximately the 

same duration – in the case of the ATF2 ~ 1-30 ps. In addition, the radiation 

environment of the accelerator restricts the bandwidth of the laser to < 1 nm. These 

stringent requirements prompted the design of a new laser using doped optical fibres, to 

exploit the excellent efficiency and beam quality of these systems.  The architecture of 

the final laser system is: 

1) a solid state oscillator operating at ~1 μm locked to an external accelerator 

frequency reference at 52 MHz; 

2) reduction of the repetition rate to 6.49 MHz and chirped pulse amplification 

(CPA) in two stages of ytterbium (Yb) doped double clad fibre up to 1 μJ; 

3) final power amplification up to 100 μJ in Yb doped photonic crystal fibre rods; 

4) pulse compression to 1 – 10 ps using fused silica gratings; and  

5) frequency conversion to ~500 nm. 
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This laser is under development at Oxford. 100 μJ pulses at 6.49 MHz have not been 

achieved in fibre systems to date, so high gain photonic crystal fibre (PCF) rods are 

being used as amplifiers. These are operated in a transient regime, where gain is 

allowed to build up in the fibre and then extracted by a train of amplified signal pulses. 

This has proved very successful, with initial experiments showing that the first pulse in 

a signal train can be amplified from 1 μJ up to ~ 75 μJ (25 dB/m) in a 70 cm fibre.  

While this laser has been specifically optimised for beam size measurement in an 

electron accelerator, the general principle of a seed and amplifier stages is extremely 

flexible, and the expertise developed in the JAI during this project can be used to design 

and build laser systems for many applications in accelerator science. The laser team at 

Oxford is already advising on a fibre laser amplifier for the photoinjector for the CLIC 

accelerator R&D project at CERN, and on tunable laser systems for interferometric 

tunnel measurement projects. Additionally, an interdisciplinary research group has been 

formed at Oxford to investigate laser based acceleration schemes, to which the laser-

wire group is contributing expertise in high power short pulse lasers. 
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3.4.4 Beamline Full Simulations Using BDSIM 
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3.4.4.1 Introduction 

Traditional particle accelerator tracking codes are mainly concerned with the 

tracking of the primary particles and are not so concerned with material interactions and 

tracking of secondary particles, which may be produced when a primary particle hits an 

aperture in the machine.  In an advanced particle transport code such as Geant4 [1] one 

can in principle describe and simulate single-particle beam dynamics in electromagnetic 

fields. BDSIM [2] was developed by a UK team to combine the benefits of both 

techniques. It is based on Geant4, a Monte-Carlo framework, thus giving access to 

many electromagnetic and hadronic interaction models as well as a powerful geometry 

description framework. On top of this, fast particle tracking routines and some 

additional physics processes are introduced, and a high level geometry description 

language GMAD [3] was added. Since GMAD is an extension of MAD, a standard for 
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beam optics description, this allows complex accelerator descriptions to be loaded from 

existing repositories with just a few modifications. BDSIM has been benchmarked 

against other tracking codes in vacuum to ensure tracking accuracy at the nm level over 

several kilometers. 

3.4.4.2 Linear Collider Applications 

BDSIM has been applied to the simulations of a future linear electron–positron 

collider, both for the beam delivery system and for the post-IP line [4], as described 

elsewhere in this newsletter. It has also been used in the detailed simulation of a laser-

wire beam diagnostics system [5], to understand the issues of signal extraction at the 

ILC; corresponding studies are ongoing for CLIC. 

Simulation of beam halo in CLIC collimation system has been studied [6], including 

the effect of collimator wakefields on the beam halo.  An example of the use of BDSIM 

in the simulation of CLIC is shown in Fig. 1, where the effect of full simulation and 

tracking of secondary particles is shown, as compared with the ―black‖ collimator 

approximation normally applied in machine tracking codes.  

The simulation of muon production in the spoilers and collimators was performed 

for the ILC and is now being applied to CLIC. Full simulation of the CLIC tunnel in the 

BDS will enable realistic tracking of muons from their point of production to the 

detector.  These studies will also be input to the detector working groups as part of the 

preparations of the CLIC CDR in 2010.  

 

 

Figure 1: Energy deposition along the CLIC Beam Delivery System using BDSIM with the 

origin (at 1800 m) being the exit from the linac and the IP at the end.  Black: all initial particles 

hitting a spoiler deposit all their energy immediately without the production of secondary 

particles.  Red: all physics processes are turned on, with full tracking of secondaries [6]. 

3.4.4.3 Application to Hadronic Machines 

BDSIM has been applied to the forward detector systems at the Large Hadron 

Collider [7] and is currently being applied within the LHC background study group and 

in the LHC collimation working group. For LHC collimation, particle four vectors 

provided at the collimators by the LHC collimator group are then simulated fully in 
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BDSIM; this will complement ongoing full simulation using FLUKA and enable new 

functionality, such as the full simulation of the LHC beam loss monitors, to be included. 
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3.4.5 Fast Beam-Based Feedback Systems 

Philip N. Burrows, on behalf of the FONT collaboration 

John Adams Institute, UK 

Mail to:  p.burrows@physics.ox.ac.uk 

3.4.5.1 Introduction 

A number of fast beam-based feedback systems are required at future linear 

electron-positron colliders. At the interaction point (IP) a very fast system, operating on 

nanosecond timescales within each bunchtrain, is required to compensate for residual 

vibration-induced jitter on the final-focus magnets by steering the electron and positron 

beams into collision. A pulse-to-pulse feedback system is envisaged for optimising the 

luminosity on timescales corresponding to 5 Hz. Slower feedbacks, operating in the 0.1 

– 1 Hz range, will control the beam orbit through the Linacs and Beam Delivery 

System.  

The key components of each such system are beam position monitors (BPMs) for 

registering the beam orbit; fast signal processors to translate the raw BPM pickoff 

signals into a position output; feedback circuits, including delay loops, for applying gain 

and taking account of system latency; amplifiers to provide the required output drive 

signals; and kickers for applying the position (or angle) correction to the beam. A 

schematic of the IP intra-train feedback is shown in Figure 1, for the case in which the 

beams cross with a small angle; the current ILC [1] and CLIC [2] designs incorporate 

crossing angles of 14/20 mrad respectively. 

3.4.5.2 All-Analogue Systems 

Critical issues for the intra-train feedback performance include the latency of the 

system, as this affects the number of corrections that can be made within the duration of 
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the bunchtrain, and the feedback algorithm. We have built all-analogue feedback system 

prototypes in which our aim was to reduce the latency to a few tens of nanoseconds, 

thereby demonstrating applicability for ‗room temperature‘ Linear Collider designs with 

very short bunchtrains of order 100ns in length, such as CLIC. We achieved total 

latencies (signal propagation delay + electronics latency) of 67 ns (FONT1) [3], 54 ns 

(FONT2) [4] (Figure 1) and 23ns (FONT3) [5]. 

 

 

Figure 1: Left: Schematic of IP intra-train feedback system with a crossing angle. The 

deflection of the outgoing beam is registered in a BPM and a correcting kick applied to the 

incoming other beam. Right: Feedback performance of FONT2 [4]. 

3.4.5.3 Digital Systems 

More recently we have developed and tested ILC prototype systems that incorporate 

a digital feedback processor based on a state-of-the-art Field Programmable Gate Array 

(FPGA). The use of a digital processor allows for the implementation of more 

sophisticated algorithms which can be optimised for possible beam jitter scenarios at 

ILC. However, a penalty is paid in terms of a longer signal processing latency due to the 

time taken for digitisation and digital logic operations. This approach is now possible 

for ILC given the long, multi-bunch train, which includes parameter sets with 

3000/6000 bunches separated by 300/150 ns respectively. Performance results have 

been reported [6,7,8,9]. 

FONT4 was designed [7] as a bunch-by-bunch feedback with a latency goal of less 

than 140ns. This meets the minimum ILC specification of c. 150ns bunch spacing, as 

well as the smallest spacing allowed in beam tests at ATF. This will allow measurement 

of the first bunch position and correction of both the second and third ATF bunches. 

The correction to the third bunch is important as it allows test of the ‗delay loop‘ 

component of the feedback, which is critical for maintaining the appropriate correction 

over a long ILC bunchtrain. 

The design of the front-end BPM signal processor is based on that for FONT3 [5]. 

The top and bottom (y) stripline BPM signals were added and subtracted using a hybrid, 

to form a sum and difference signal respectively. The resulting signals were band-pass 

filtered and down-mixed with a 714 MHz local oscillator signal which was phase-

locked to the beam. The resulting baseband signals are low-pass filtered. The hybrid, 

filters and mixer were selected to have latencies of the order of a few nanoseconds, in 

an attempt to yield a total processor latency of around 10 ns [7,8].  
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The custom digital feedback processor board is shown in Figure 2. There are two 

analogue signal input (output) channels in which digitisation is performed using Analog 

Devices ADCs (DACs) which can be clocked at up to 105 (210) Ms/s. The digital signal 

processing is based on a Xilinx Virtex4 FPGA which can be clocked at up to 500MHz. 

The FPGA is clocked with a 357 MHz source, derived from the ATF master oscillator 

and hence locked to the beam. Logic operations are triggered with a pre-beam signal. 

The ADC/DAC are clocked at 357/4 Ms/s. The analogue BPM processor output signal 

is sampled at the peak to provide the input signal to the feedback. The gain stage is 

implemented via a lookup table stored in FPGA RAM, alongside the reciprocal of the 

sum signal for charge normalisation. The delay loop is implemented as an accumulator 

on the FPGA. The output is converted back to analogue and used as input to the driver 

amplifier. 

The driver amplifier was specified to provide +-30A of drive current into the kicker, 

whose striplines were shorted at the upstream end (nearer the incoming beam). The 

risetime, starting at the time of the input signal, was specified as 35ns to reach 90% of 

peak output. The output pulse length was specified to be up to 10 microseconds. 

Although current operation is with only 3 bunches in a train of length c. 300ns, it is 

planned in future to operate ATF with extracted trains of 20 or 60 bunches with similar 

bunch spacing; the design allows for this upgrade. The feedback performance 

(correction of bunch 3) is illustrated in Figure 2. 

 

 
Figure 2: Left: FONT4 digital feedback processor. Right: Feedback performance of FONT4 

[9]. 
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3.5.1 Introduction 

It is generally agreed within the particle physics community that a lepton collider 

will be the successor to the LHC and to prevent excessive synchrotron radiation losses, 

this will necessitate a linear collider. The compact linear collider (CLIC) design 

accelerates leptons and collides them at a 3 TeV centre of mass energy. CLIC features 

normal conducting (NC) cavities with accelerating electric field gradient of 100 MV/m 

at an X-band frequency of 12 GHz.   

The passage of a charged particle beam within a cavity, results in the excitation of 

an electromagnetic field, which can be decomposed into a series of modes which affect 

both the longitudinal and transverse motion of the beam.  In linear colliders the beam is 

travelling ultra-relativistically and these modes constitute the wakefield excited by the 

beam. It is important to ensure this wakefield is kept to within acceptable limits. The 

short-range wakefield, or the wakefield along the bunch, is tied to the average radius of 

the individual cells and the long-range wakefield, or the wakefield along a train of 

bunches, can be suppressed by both modifying the cell geometry and by adjusting the 

damping Q.    

 There are two main approaches being followed to damp the long-range wakefield 

for CLIC: firstly, heavy damping (Q~10) and secondly, moderate damping (Q~500) 

combined with detuning of the individual cell frequencies of each structure.   The CLIC 

baseline design focuses on the former option and this entails attaching large damping 

waveguides to each individual cell. We are spearheading the effort of a damped detuned 

structure (DDS) which incorporates a pair of higher order mode (HOM) manifolds and 

modifying the frequencies of each cell in a precise manner.  It is notable that monitoring 

a small fraction of the manifold radiation allows both the beam position and the 

structure alignment to be inferred.   

The structure bears comparison to those structures used in NLC programme [1-2] 

but it is quite different in the degree of interleaving of structures required and in the 

detuning characteristics. The detuning has been obtained by carefully modifying the cell 

geometry. In designing these cells attention has to be paid to two main issues: firstly, 

that the accelerating field and frequency are largely unaffected, and secondly, that the 

surface electromagnetic field and pulse surface temperature rise are kept within 

acceptable limits. These two issues, and in particular the latter, constrain the design 

considerably.  

This research is conducted in close collaboration with our CERN colleagues. An 

overview of work in this area was presented at the 44
th

 ICFA structures and beam 

dynamics workshop [3], hosted by the Cockcroft Institute. The damped and detuned 

design being applied to the CLIC main linac is now described in the next section. 
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3.5.2 Wakefield Suppression with CLIC_DDS 

We have investigated a design which entails strong detuning of the cell frequencies 

and moderate damping (Q ~ 500-1000). The latter is reflected through four manifolds 

running along the walls of the accelerator.   Several potential structures have been 

considered to suppress the wakefield in this manner [4-5]. This included structures 

closely tied to the CLIC baseline geometry, suitably modified to facilitate detuning of 

cell frequencies, and structures relying on a zero crossing in the wakefield. However, 

the present optimised structure relies on interleaving of the frequencies of 8 successive 

structures and has relaxed the CLIC baseline design of 6 rf cycles to 8 rf cycles.   The  

 

 
Figure 1: Spectral function (a) and wakefield (b) prediction for 8-fold interleaved CLIC_DDS.  

Points indicate the position of each bunch in the train.   

spectral function and the overall wakefield for this structure, effectively consisting of 

192 cells, is illustrated in Fig. 1. Detailed simulations on the passage of a train of 

electron bunches through 21 km of main linacs puts a limit on the wakefield that will 

not cause appreciable emittance dilution and this is indicated by the horizontal dashed 

line in Fig 1(b).  The vertical dashed line denotes the point at which the modes in the 

structure recohere (36m) and also corresponds to the minimum mode separation in the 

spectral function (8 MHz). 

 

 
Figure 2: Rf properties of single accelerating CLIC_DDS suitable for high power experimental 

evaluation.  The input power, accelerating electric field gradient, surface pulse temperature rise, 

and surface electric field, are indicated by Pin (MW), Eacc(MV/m) , T (K), and Esuf (MV/m), 

respectively.  Those corresponding to a structure without beam, the unloaded case, are indicated 

by dashed curves.  

Esur 

Eacc 

Pin 

∆T 
Dashed curves: Unloaded condition 

Solid curves: Beam loaded condition 

 

(a) (b) 
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An initial structure will be fabricated this year and will focus on the ability to 

withstand high accelerating field gradients. This will be tested at the CTF3 or high 

power test facility at CERN.  The rf properties of the fundamental mode are illustrated 

in Fig 2. This design is being finalised and a representative set, suitable for high power 

testing and requiring an input power of ~71 MW, is illustrated in Fig 3.  In this structure 

there will be no attempt to ensure the wakefield is adequately suppressed from the 

perspective of emittance dilution in the complete CLIC main linac, as it will not include 

interleaving of adjacent structure frequencies. However, the cells will be precisely 

machined and a comparison between experimental measurement of the modes to that 

predicted is anticipated. Particular parts in the structure are especially sensitive to 

fabrication errors [6] and this will form part of the experimental study.  Subsequent 

structures will incorporate full damping and detuning features, including HOM couplers 

and damping materials. 

 

 
Figure 3: CAD representation of a CLIC_DDS prototype.   

3.5.3 Summary 

Studies on an alternative means of long-range wakefield suppression scheme for the 

main linacs of CLIC is now sufficiently mature to enable an initial prototype structure 

to be built. This will verify the ability of the damped and detuned structure to withstand 

high accelerating gradients for CLIC. The main cells of a complete 8-fold interleaved 

structure have also been designed and adequate wakefield suppression is predicted. 

These DDS accelerators achieve the dual purpose of suppressing the wakefield and, 

through monitoring of the radiation of the modes, allows remote diagnosis of the beam 

position and inter-cell alignments [7]. Results of this work were presented at the 44
th

 

ICFA X-Band Structures Collaboration meeting [8].  This research has received funding 

from the European Commission under the FP7 Research Infrastructures grant agreement 

no.227579. 
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3.6.1 Introduction 

Crab cavities are a subset of transverse deflecting cavities, utilised for rotating 

particle bunches in order to align them for head-on collisions in colliders with finite 

crossing angles. This idea was first proposed in 1988 by Palmer [1] however was not 

realised until 2007 at the KEKB collider in Japan [2]. After this successful proof of 

principle experiment many colliders have included crab cavities in their baseline 

designs. Of particular interest are the big future colliders SLHC, ILC and CLIC which 

all propose the use of crab cavities. The Cockcroft Institute (CI) has a major role in the 

design of the crab cavities and their control systems for all three of these accelerators. 

3.6.2 ILC Crab Cavity Development 

The 1
st
 crab cavity system investigated at the CI was the ILC crab cavity. The CI led 

a collaboration including FNAL and SLAC which were responsible for the design of the 

cavities and LLRF control system. The cavity was based on the FNAL superconducting 

Kaon separator [3]. This was a 13 cell niobium cavity resonant at 3.9 GHz. A study of 

mode spacing, cavity tuning and higher order modes concluded that 13 cells would be 

problematic for the ILC requirements hence a 9-cell version was adopted (see Figure 1).  

 

mailto:graeme.burt@stfc.ac.uk


 49 

 
Figure 1: 9-cell ILC crab cavity design 

 

A major part of the design would focus on the excitation of unwanted cavity modes 

and their removal. Crab cavities operate using the first dipole mode of the system, 

meaning that the fundamental accelerating mode of the system is now unwanted and 

can lead to beam instabilities, in addition the dipole mode is degenerate and has a 2
nd

 

polarisation which also strongly couples to the beam, these modes are referred to as the 

lower-order-mode (LOM) and same-order-mode (SOM) respectively. In addition the 

regular higher-order-modes (HOMs) of the system must also be considered. A study of 

the 1
st
 200 monopole and dipole modes of the cavity suggested that a set of problematic 

dipole modes existed at 8.0 GHz which should be the main focus of the HOM dampers.  

For the ILC a new set of couplers were required to remove these modes. Initially a 

separate coupler was envisioned each for LOM, SOM and HOMs. The LOM coupler 

was a hook type coaxial coupler where the inner conductor was bent towards the cavity 

at the tip. This coupler was supported by a single stub which impedance matched the 

coupler to the LOM. The SOM coupler was a large diameter coaxial coupler. Both these 

couplers relayed on geometry to avoid coupling to the crabbing mode, as this mode is 

highly polarised by two dents made on the cavity equator. A HOM coupler was 

designed at the CI, based around an integrated LOM/SOM coupler. This coupler was 

again a hook type coupler, but the diameter was increase to improve coupling, and a 

second stub was added to improve impedance matching at both frequencies. This freed 

up space on the beam-pipes to include two HOM couplers (see Figure 2).  

 

  
Figure 2: HOM coupler and and notch filter sensitivity. A 0.1-MHz/micron notch sensitivity 

achieved with the new design. 

 

The 1st HOM coupler was the original SLAC HOM coupler as this mode had 

excellent damping of lower frequency HOMs near the operating frequency. The 2
nd
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coupler was a small waveguide coupler designed specifically to damp the dipole modes 

at 8.0 GHz, it was found that these modes were optimally damped when the waveguides 

cut-off was near to their resonant frequency. 

After the cavity was designed a normal conducting prototype including the 1
st
 

version of the couplers was constructed. Bead-pull, wire testing and coupler 

measurements were made to fully characterise the cavity. Measurements were in good 

agreement with the simulations (see Figure 3) and in addition, the CI performed major 

development and testing of the LLRF control system (see later). 

 
Figure 3: Model impedance characterisation, including damping couplers  

3.6.3 CLIC Crab Cavity Development 

Having made advances in the ILC crab cavity progression into the CLIC crab cavity 

[4] seemed natural. However as the beam structure was very different for CLIC a 

different technology was required. The smaller transverse bunch size required a tighter 

phase tighter phase tolerance, and hence a higher frequency was needed to counteract 

this. Also the bunch spacing was very short meaning a lower Q factor and higher 

frequency was required to reduce the effects of beam loading. This led to the decision to 

base the CLIC crab cavity of normal conducting X-band technology, similar to the 

CLIC accelerating structures. 

Due to the very tight phase tolerances a major focus of the cavity design was 

focussed on reducing beam loading. The chosen solution was to use a low shunt 

impedance structure, with a high group velocity and use a very high power RF source to 

drive it, in this way any perturbations were quickly removed from the system. The 

cavity optimisation was based on maximising group velocity and R/Q, while 

minimising the peak surface fields. Short range wakefield calculations were performed 

to set a minimum iris radius, which is a very important parameter in crab cavities due to 

the large surface current flowing around the iris. This leads to the design of a 2/3 

travelling wave structure with a 5 mm radius iris, and an iris thickness of 2 mm (see 

Figure 4). 
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Figure 4: Multi-cell 11.9942 GHz CLIC crab cavity design 

 

To investigate the high power performance of this cavity a copper prototype is 

under construction at Shakespeare Precision Engineering in the UK [5]. The Cockcroft 

Institute has been in collaboration with Shakespeare on the construction of X-band 

cavities and the company has been upgrading its infrastructure and experimenting in 

order to meet the stringent manufacturing requirements. This cavity is expected to be 

tested at high power at SLAC at some point in 2010. 

The small transverse bunch size at the IP in CLIC, means that the luminosity is very 

sensitive to transverse offsets at the the IP. Due to the large R12 between the crab cavity 

and the IP, and perturbation at the cavity can have a huge effect on the luminosity, 

hence the long range wakefield must be reduced by severe damping of any spurious 

modes excited. The LOM and SOM of the CLIC crab cavity are particularly dangerous 

and must be damped to Q values of around 10-100 (see Figure 5).  

 

 
Figure 5: Optimised 7-cell, waveguide damped design  
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A major study is underway into the different damping methods possible, it is 

envisioned that waveguide damping will be utilised however, choke mode and manifold 

damping has also been considered. In addition we are investigating the use of damped 

detuned structures similar to the scheme envisioned for NLC [6], however such a 

scheme would only be effective for either the LOM or the SOM, not both, hence we 

must first investigate which mode is likely to cause the largest problems [7]. 

3.6.4 LHC Crab Cavity Development 

 
Figure 6: 800MHz Phase –I ‗Global‘ test structure 

  

The Cockcroft Institute are also involved in the design of the LHC crab cavity [8]. 

As the LHC is a working accelerator, any crab cavities installed as part of an upgrade 

will have to fit into the existing system, this places tight requirements on the transverse 

size of the cavity and it‘s beampipe diameter. Initially efforts were focused on a Phase-I 

test of an 800 MHz elliptical cavity similar to the KEK-B cell shape [9], as it was 

initially envisioned that a prototype could be tested in the LHC in the near future (see 

Figure 6). Such a test would have a single crab cavity installed, which would rotate the 

beam around the entire circumference of the LHC (‗Global‘), aligning collision at the 

Interaction Point (IP) and dealing with the rotation with appropriately positioned 

collimation systems around the ring.  

The LHC crab cavity initially had three teams working on separate elliptical 

designs. One of these teams was a collaboration between Cockcroft, TJNAF and 

TechX. The LHC crab cavity needs significant damping of the LOM and SOM modes, 

to loaded Q factors of around 100. As such the optimisation of the UK-TJNAF-TechX 

design focused on the damping structures. The final design utilised novel on-cell 

waveguide damping (originally proposed for the APS crab cavity [10]), where two 

waveguide dampers are connected to the cavity equator such that it damps the SOM and 

LOM but does not couple to the operating mode (see Figure 7). This scheme also 

benefits from a large frequency separation between the SOM and the operating mode 

caused by the waveguide dampers. Multipactor simulations were carried out in 

VORPAL [11] and Particle Studio [12]. These studies revealed a two-point multipactor 

at the peak magnetic field on the iris, the on-set of this multipactor was found to occur 

when the peak magnetic field reached a value consistent with the operating frequency 

being double the cyclotron frequency. 
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However, such ‗Global‘ tests are now unlikely and efforts have been shifted to a 

novel parallel rod cavity operating at 400 MHz. For a more compact 400 MHz crab 

cavity design, there are four teams each with a separate solution. The Cockcroft is 

collaborating with TJNAF and TechX on a 4-rod crab cavity based on an SRF version 

of the current CEBAF separator [13] (see Figure 7). The cavity utilises a thick conical 

rod geometry to minimise microphonics, and has an optimised profile to reduce surface 

fields. Owing to its more compact design, installation tests on LHC will allow for 

‗Local‘ crabbing at individual IP‘s, ensuring no change is required for machine 

collimation systems.  

 

 
 

Figure 7: 4-rod Phase-II ‗Local‘ test structure 

3.6.5 Crab Cavity LLRF System  

The choice of RF technology for crab cavities must respect constraints determined 

by beamloading. Figure 8 illustrates electric and magnetic fields inside a single cell 

dipole cavity. It is immediately apparent that beam loading only occurs when the bunch 

is off axis. Beamloading changes its sign depending on which side of the centre that the 

beam passes.  

 
Figure 8: Dipole mode cavity fields 
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At crab cavity locations bunch offsets are typically large. For a chosen machine the 

deflecting voltage required in the crab cavity is determined as 
12

or

R

cE
V






 where r is 

half the crossing angle,  is the cavity RF frequency, Eo is the beam energy and R12 is 

the ratio of offset at the IP to deflection angle at the crab cavity. 

When a bunch of charge q passes through a dipole cavity with repetition frep , phase 

 and horizontal offset  the power extracted from the cavity is 
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hence at the perfect crabbing phase  = 0 we obtain 
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 . We note that 

beamloading is zero for a bunch which is perfectly on axis. How much power one 

requires in practice to provide the kick depends on the loaded Q factor of the cavity. For 

optimum power transfer one matches the loaded Q to worst case beamloading and 

cavity losses. For superconducting cavities the cavity losses can be neglected. For 

copper cavities there is the option to make losses much larger than worst case beam 

losses which minimizes amplitude errors in the absence of control action [14]. 

Table 1 computes this peak power requirement Pb for the ILC at 1 TeV c.o.m, for 

CLIC at 3 TeV c.o.m and the LHC at 14 TeV c.o.m.. Before any consideration of cavity 

frequency is made one realizes that the ILC, LHC and CLIC crab cavities will be low, 

medium and high power installations respectively. 

 
Table 1: Crab cavity peak power requirements 

 
 Max bunch 

offset () 

half crossing 

angle r 

bunch 
charge 

bunch 
repetition 

Beam 
energy 

R12 Crab peak 
power 

ILC 0.6 mm 0.0070 rad 3.2 nC 3.03 MHz 0.5 TeV 16.4 m/rad 1.24 kW 

LHC 0.2 mm 0.00016 rad 18.4 nC 40.0 MHz 7.0 TeV 30.0 m/rad 8.12 kW 

CLIC 0.4 mm 0.0100 rad 0.6 nC 2.00 GHz 1.5 TeV 25.0 m/rad 288.0 kW 

 

A key issue for crab cavity RF systems is phase synchronisation between cavities on 

opposing beams so that bunches in each do not miss in the crabbing plane [15] 

(horizontal for linear colliders) as illustrated in Figure 9.  

 

 
Figure 9: Crab cavity synchronisation 

 

For circular machines one needs in addition extremely low phase noise at offset 

frequencies from the cavity RF frequency that coincide with betratron resonances. The 

cavity to cavity phase synchronization requirement can be estimated as  
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where x is the bunch width in the crabbing plane, f is the cavity RF frequency and Srms 

is the minimum acceptable luminosity loss factor (usually about 0.98). The cavity 

frequency has to be equal to the bunch repetition frequency or one of its harmonics. For 

the ILC, the crab cavity frequency was chosen to be three times the linac RF frequency 

so that it would fit between the beam lines. For the LHC the crab cavity frequency has 

been chosen to be equal to the accelerating RF frequency to cater for long bunches. For 

CLIC the frequency was chosen to be 12 GHz to meet availability of high power 

Klystrons. Table 2 gives nominal parameters for ILC, LHC and CLIC crab cavity 

applications. 

 
Table 2: Collider nominal parameters 

 

 Luminosity 
fraction S 

f 
(GHz) 

x 

(nm) 

c (rads) rms 

(deg) 

t (fs) Pulse 
Length 

(s) 

ILC 0.98 3.9 655 0.014 0.1271 90.5 1000.00 

LHC 0.98 0.40 16500 0.000316 14.4 99800 CW 

CLIC 0.98 12.0 45 0.020 0.0188 4.4 0.14 

 

For crab cavity applications one must consider flexibility of the power supply [16]. 

At the arrival of each bunch train, the power supply does not know whether it will need 

to deliver power into the cavity or provide a 180
o
 phase shift to assist power leakage 

from the cavity through a circulator to a load. Without compensation beamloading gives 

amplitude fluctuations in the cavity. Amplitude fluctuations change the crabbing angle, 

however small changes in the crabbing angle have a very much smaller effect on 

luminosity compared to phase fluctuations that move the bunches out of alignment.  

For the ILC, amplitude fluctuations of 1% or more are acceptable. For 

superconducting cavities operating with external Q factor above 10
5
 microphonics give 

large undesirable phase shifts which require active compensation with the RF power. 

Control implementation with an FPGA or DSP opens the possibility for feedforward or 

adaptive control. For sub microsecond bunch trains (CLIC for instance) timing latency 

rules out digital control. 
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Figure 10: ILC crab cavity LLRF concept 

 

The critical parameter for a linear collider crab cavity scheme is the cavity to cavity 

phase error. As long as the two cavities are in perfect phase with each other there can be 

a small phase error to each beam. Phase errors between cavities and beams cause lateral 

and longitudinal displacement of the IP. Limits on the phase error are determined from 

defocusing and vertex detection. The control system must have cavity synchronization 

as an integral feature. The strategy we have adopted for testing phase synchronisation 

concepts for ILC Crab cavities is set out in Figure 10. 

The scheme takes a timing signal from the linac to ensure the cavities are 

synchronised to the beam. This signal stablises a 1.3 GHz master oscillator for the crab 

system. The reference oscillator shown alongside in the figure is only used in between 

bunch trains to determine and cancel amplifier offset errors. The master oscillator is 

used to establish a standing wave on a coaxial cable between the control systems for the 

two cavities, effectively forming an interferometer. A control circuit adjusts a two way 

phase shifter on the coaxial line to compensate for cable fluctuations. The desired 

outcome is a standing wave whose phase is identical at the mixers comparing cavity 

phase for each beamline.  

In the adopted measurement scheme we chose to measure phase and amplitude of 

each cavity separately. Control action of digital signal processer (DSP) for each cavity 

is on the I and Q power components of each cavity and hence the first action of the DSP 

is to convert amplitude and phase to I and Q. This avoided the complexities of direct 

digital sampling of a down converted cavity signal. A distinctive feature of the control 

system used for the tests to date is the use of Hittite HMC439QS16G digital phase 

detectors on the phase detector boards (shown with mixer symbols). These detectors 

were investigated as their linearity offer advantages with respect to system calibration. 

Their phase jitter performance however is significantly worse than double balanced 
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mixers. The phase noise at 1280 MHz is about -135 dBc/Hz and is relatively flat with 

offset. Noise in 1 MHz bandwidth is about -80 dBc. corresponding to an r.m.s. phase 

jitter of 1.41  10
-4

 radians = 8 milli-degrees and a timing jitter of 17 fs. This is quite 

large but still significantly less than the ILC crab cavity to cavity timing requirement. 

Frequencies greater than 1 MHz have virtually no effect on the cavity phase jitter 

performance where a superconducting cavity with a bandwidth near to or less than 1 

kHz is used.  

Digital phase detectors only operate up to a frequency of 1.3 GHz hence they must 

be used either after down conversion or with frequency dividers. Down conversion adds 

the complexity of generating multiple phase locked frequencies. For simplicity we 

chose to divide the frequency using HMC437MS dividers; these generate an additional 

2 milli-degrees r.m.s. phase jitter at 1.3 GHz. The big drawback of frequency dividers is 

that the phase gets divided hence 8 milli-degrees of phase jitter at 1.3 GHz implies 

24 milli-degrees of phase jitter at 3.9 GHz. The LLRF system in figure 3 with its 

interferometer uses four digital phase detectors. Assuming that their noise is 

uncorrelated they contribute 48 milli-degrees of phase jitter at 3.9 GHz. The dividers 

add a further 2.82 milli-degrees hence system performance cannot be expected to 

exceed 51 milli-degrees of phase jitter. Another source of jitter is the digitization error. 

The sixteen bit ADCs used, have just 13 significant bits on a sample to sample basis. 

Without averaging, one nominally resolves the angular range into 8192 levels. For 

convenience of obtaining the lock a phase range of 100
o
 at 3.9 GHz was mapped to the 

8192 levels hence the digitization error for two uncorrelated channels is approximately 

9 milli-degrees. 

In tests using a slightly simplified version of the circuit in Figure 10 where two 

single cell cavities were mounted in the same cryostat, the cavity phase to phase jitter 

measured with a double balance mixer between the cavity outputs and for a 

measurement bandwidth of 1 MHz achieved 80 milli-degrees RMS. A sample output is 

shown in Figure 11. 

 

 
Figure 11: The cavity phase to phase jitter measurement. 

 

Phase synchronisation for the LHC is trivial and no interferometer is needed. 

Suppression of noise at specific frequencies will be the key challenge for the LHC crab 

cavity system. The phase control specification for the CLIC crab cavities is well beyond 

anything that has been demonstrated at the 100 kW input power level. Given that beam 

loading is likely to be completely unpredictable for CLIC, our proposed solution is to 

have a power flow into and through the cavity that is significantly higher than the 

maximum beam loading power requirement. This is most easily realized with a high 

group velocity travelling wave cavity. 

A reason for not favouring standing wave (SW) over travelling wave (TW) cavities 

is that measurement of phase in multi-cell cavities can have inaccuracies at the level of 
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milli-degrees caused by the excitation of modes adjacent to the operating modes [17] 

and we expect these to be somewhat smaller for TW cavities. This is because the TW 

cavity will have lower Q factors and we expect that the phase shift when the cavity is 

not precisely on frequency will be distributed along the structure rather than being all 

across the input coupler as it would be for the SW cavity. Beamloading calculations for 

a preliminary cavity design have been made to ensure that the amplitude fluctuations in 

the uncontrolled cavity are acceptable. In this case the TW cavity has 16 cells and 

operates in the 2/3 mode, R/Q = 53.92, group velocity = 0.0295c, Q = 638. Table 3 

gives estimated power balances for maximum offsets and the consequential kick. Figure 

12 shows the calculated fill and amplitude dip when an offset bunch train arrives. 

 
Table 3: RF power balances for maximum deflection kick offsets 

 

Beam offset (mm) -0.4 0.0 0.4 

Power entering cell 1 (MW) 6.388 6.388 6.388 

Power leaving cell 16 (MW) 5.619 5.341 5.063 

Ohmic power loss (MW) 1.071 1.047 1.023 

Beamload power loss (MW) -0.302 0.000 0.302 

E max for cell 1 (MV/m) 51.1 51.1 51.1 

Efficiency 12.04% 16.39% 20.74% 

Kick (MV) 2.428 2.400 2.372 

 

Figure 12: Calculated fill and amplitude dip for offset bunch. 

 

The proposal for synchronising the cavities is to use the scheme proposed for the 

NLC by J. Frisch where the output from a klystron is split and carried along equal 

lengths of temperature controlled waveguide to the crab cavities on opposing beams. 

With an advanced optical interferometer it may be possible to provide reference phases 

at the cavities that are synchronized to 1 fs [18]. The strategy is then to design a cavity 

which follows the input phase as closely as possible. To do this one might for instance 

mount the cavity centrally so that expansion gives phase errors that cancel. Careful 

attention to cavity temperature control will be needed so that the two systems perform 

in an identical fashion. 

It is unlikely that cavity phase could ever be measured to an accuracy of milli-

degrees and then corrected on the timescale of a few bunches (say 40 ns). If after 

Input           = 6.45 MW 
Initial kick   = 2.40 MV 

Plateau        = 2.37 MV 
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actively matching waveguide paths to the input couplers it turns out that the relative 

phase of the two crab cavities drift with respect to each other during the pulse then the 

only possible correction scheme is to mix an RF power correction with the main split 

power using feed forward estimation from the previous bunch train. 

 
Figure 13: Calculated fill and amplitude dip for offset bunch. 

 

The control procedure might run as follows: 

1. Send pre-pulse to cavities and use interferometer to measure difference 
in RF path length 

2. Perform waveguide length adjustment at micron scale 
3. Measure phase difference between oscillator and outward going main 

beam 
4. Adjust phase shifter in anticipation of round trip time and add offset for 

main beam departure time 
5. Klystron output is controlled for constant amplitude and phase 
6. Record phase difference between returning main beam and cavity 
7. Alter correction table for next pulse  

3.6.6 Outlook 

The application of crab (or deflecting mode) cavities for next generation colliders 

and storage rings, to facilitate beam manipulation for optimising luminosity, shortening 

bunches or to enable precision diagnostics, is now widespread, and the CI is playing a 

major role in the design of these systems for ILC, CLIC and LHC. Having demonstrated 

that working tolerances can be maintained to within required ILC stability margins, the 

CI has utilised such development skills to determine appropriate crab cavity system 

solutions for both CLIC and LHC. As part of the FP7 European Framework 

programme, ‗EuCARD – European Coordination for Accelerator Research & 

Development [19]‘, the CI is leading the development in these areas, with an intention 

to design optimised crab structures, with effective wakefield management attributes and 

to also understand and determine appropriate mechanisms for providing precise, 

synchronised control of the deflecting cavity fields.  
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3.7.1 Introduction 

The neutrino is, perhaps, the most mysterious of the particles that make up the 

Standard Model. It has long been known that neutrinos carry spin ½ and occur in three 

flavours: νe, νμ, and ντ. One of the most exciting developments in particle physics over 

the past decade has been the establishment of the phenomenon of neutrino oscillations 

in which neutrinos produced in a particular state of flavour (say νμ) may be observed to 

have evolved (oscillated) into a different state (say ντ) by the time they are detected. The 

implications of these observations are far reaching for, not only do neutrino oscillations 

require the Standard Model to be extended to include neutrino mass and mixing 

between the flavour states, but, neutrino oscillations open the possibility that neutrinos 

violate the matter-antimatter (CP) symmetry. Indeed, the possibility of CP-violation in 

the lepton sector means that the interactions of neutrinos may be responsible for the 

matter-dominated Universe. The Neutrino Factory, in which intense, high-energy 

neutrino beams are produced from the decay of stored muon beams, has been shown to 

be the ‗facility of choice‘ for the study of neutrino oscillations [1]. 

The idea of a Neutrino Factory (NF) was first put forward as far back as the 1970‘s 

when it was suggested that neutrino beams might be generated from the decay of kaons 

and muons in the straight sections of large storage rings. However, predicted intensities 

were well below the required level of about 10
21

 neutrinos a year. The first viable 

scenario was published by Steve Geer in 1997 [2], followed by a seminal paper by Bob 

Palmer, Colin Johnson and Eberhard Keil [3] that prompted major design reviews. The 

first review, undertaken by Fermilab in April 2000 and known as US Study I [4], 

demonstrated the feasibility of the NF concept. A design with improved performance, 

through changes in the target and the muon cooling and accelerating systems, was 

completed by Brookhaven in 2001 (US Study II [5]). Additional studies were carried 

out at CERN in 1999 [6] and in Japan in 2001 (Nufact-J [7]). The Japanese study was 

notable for its use of very large acceptance fixed field alternating gradient (FFAG) 

accelerators, which seemed to obviate the need to cool the muon beam. A revised US 

Study IIa [8] subsequently included FFAGs of the recently developed non-scaling type, 

but with the cooling retained. 

August 2005 saw the setting up of a one-year review, called the International 

Scoping Study (ISS), which assessed the status of Neutrino Factory work and identified 

a fully self-consistent and viable accelerator scenario. The ISS Accelerator Working 

Group Report [9] made recommendations for all parts of the Neutrino Factory complex, 

ranging from a high intensity proton driver, through muon production, control and 

acceleration, to the design of the storage rings that direct the neutrino beams through the 

Earth to distant detectors. The ISS scheme has subsequently been adopted by its 

successor, the International Design Study for the Neutrino Factory (IDS-NF) [10], 

which is due to deliver a Reference Design Report (RDR) by 2012-13 [11]. This should 
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include a detailed specification of the accelerator complex, some engineering plans, 

identification of R&D and costing. 

The UK has been involved in Neutrino Factory accelerator studies from the outset, 

initially through work on the proton accelerator that drives the complex, and then 

developing into ideas for muon capture and acceleration schemes. The UK Neutrino 

Factory R&D activity is now established as the UK contribution to the IDS-NF. The 

following paragraphs outline the UK contributions to the international effort.  

3.7.2 The Neutrino Factory Accelerators 

The IDS-NF baseline for the Neutrino Factory is shown in Figure 1 [12]. A high 

intensity proton driver directs a multi-megawatt beam onto a pion production target. 

Charged pions are captured in a focusing channel at low energy; they decay to muons, 

whose phase space is controlled and reduced in size by ionisation cooling. The resulting 

muon beam is then accelerated rapidly to an energy of 25 GeV. Finally the muons are 

stored in designated storage rings with long straight sections, where the neutrinos 

produced by their decay can be directed towards the detector sites. The proton driver, 

target station, and muon front end of the Neutrino Factory have been proposed as part of 

the accelerator facility required to deliver multi-TeV lepton-antilepton collisions at the 

Muon Collider. The Neutrino Factory may therefore be seen as a step on the way to a 

Muon Collider, conceivably the next big particle accelerator project after the LHC.  

  

Figure 1:  Layout of the Neutrino Factory, showing the component accelerators 

drawn to relative scale. 
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3.7.2.1 Proton Driver 

At the start of the accelerator chain, a proton driver capable of delivering a peak 

power of 4 MW at a repetition rate of 50 Hz is required. The proton-beam energy must 

be in the multi-GeV range in order to maximise the pion production. In addition, the 

Neutrino Factory requires a particular time structure consisting of three very short 

bunches separated by about 100 µs. The short bunch length of 2 ns rms is dictated by 

the efficiency of the muon-beam capture and the bunch separation is constrained by 

beam loading in the downstream muon accelerator and the disruption time of the 

mercury-jet target. In order to achieve such short bunches, a dedicated bunch 

compression scenario needs to be carefully designed in order to deal with very strong 

space-charge forces. Several proton driver schemes fulfilling these requirements have 

been proposed. Typically they consist of an H
–
 ion source followed by an RFQ, 

chopper, and a linear accelerator. The main hardware R&D activity for the front-end of 

the multi-MW proton driver, the Front End Test Stand (FETS) is described elsewhere in 

this newsletter. The final energy of the proton driver may be obtained directly in the 

linac, as in the CERN design based on the SPL [13] or in the recent studies based on the 

Project-X at Fermilab [14]. In these scenarios the beam time structure is obtained with 

the help of charge exchange injection into the accumulator ring followed by fast phase 

rotation in the dedicated compressor ring. Alternatively, the beam from the linac may be 

accumulated and further accelerated in a Rapid Cycling Synchrotron (RCS) as in the 

solution proposed at RAL in the ISS study [15,16]. In this proposal, bunch compression 

is accomplished adiabatically in the second RCS or, alternatively, in the FFAG ring, see 

Figure 2 (left). Recently the attractive idea of the common proton driver for the 

spallation neutron source and the Neutrino Factory was proposed [17] in the framework 

of the ongoing megawatt ISIS upgrade programme. In such a scenario (see Figure 2, 

right panel), the proton drivers for both facilities share the same source, chopper, linac, 

accumulation and RCS acceleration to 3.2 GeV. After extraction, three bunches will be 

sent directly to the neutron-spallation target while three others will be injected into a 

Figure 2: Left: Layout of the proton driver based on an RCS and an FFAG. Right: Layout 

of the common proton driver for ISIS and the Neutrino Factory. 
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second RCS where, after acceleration and bunch compression, the beam will be 

extracted towards the Neutrino Factory pion production target. 

3.7.2.2 Target 

The Neutrino Factory target station presents a formidable engineering challenge.  It 

must efficiently produce and capture sufficient pions, while simultaneously dissipating 

the 4 MW of proton beam power. The IDS-NF baseline calls for a free-flowing liquid-

mercury jet target.  The free-flowing jet has the advantage that the portion of the jet 

disrupted by the beam is replaced in time for the next proton-beam pulse. The 

measurements made by the MERIT collaboration [18] indicate that the mercury-jet 

technology is capable of operating successfully at the Neutrino Factory.  However, the 

liquid-mercury technology has the disadvantage that the mercury delivery and re-

circulation system is complex and the mercury itself presents substantial safety issues 

that must be overcome in the design of the target station. 

In view of the high level of the technical risk associated with the Neutrino Factory 

target, work in the UK has focused on the development of alternatives to liquid 

mercury.  A novel ‗powder jet‘ scheme, in which tiny tungsten balls are ‗fluidised‘ in a 

high-velocity ‗carrier‘ gas, offers some of the advantages of the mercury jet while 

avoiding the chemical and some of the radiological issues associated with mercury. A 

prototype of a powder-jet target has successfully been built and operated. Initial results 

of the power-jet tests are promising. 

The possibility that a solid target for the Neutrino Factory can be designed is also 

being energetically investigated. The principal issue that must be faced in the design of 

a solid target is that of beam-induced shock caused by the enormous power density 

deposited by the short proton pulses. The shock induced in the target can exceed the 

mechanical strength of materials such as tantalum or tungsten if the target is operated at 

room temperature. Experiments have been carried out to study the response of tantalum 

and tungsten to shock at high temperatures. The passage of the beam through the 

Neutrino Factory target is simulated using a high-current pulse in a thin wire. Results 

obtained to date indicate that tungsten is a better choice of target material that tantalum. 

Extrapolation of the measurements indicates that a solid target system for the Neutrino 

Factory could be designed using solid tungsten rods, so long as a mechanism to 

exchange the tungsten rods at an appropriate frequency can be implemented. 

The simulated shock studies are now being augmented with studies of the modes of 

excitation of the tungsten wire by the current pulse. Measurements using a Laser Dople 

Vibrometer are being compared with dynamic finite element analysis, the calculations 

are performed using LS-DYNA. By comparing the measurements with the LS-DYNA 

simulation it will be possible to understand the lifetime measurements and to 

extrapolate more precisely to the Neutrino Factory configuration. In parallel, design 

work on a solid-target station based on a rotating wheel bearing a number of tungsten 

rods has been initiated. 

3.7.2.3 Muon Capture and Cooling 

Pion production and the distribution of the dissipated power in the target area have 

been studied for solid and liquid-mercury targets as shown in Figure 3. Yield 

calculations have been used to optimise the proton-driver energy to be in the range 

between 6 GeV and 10 GeV. While for a proton energy of 10 GeV, nearly all energy is 
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dissipated near the target area with the consequence of an improved shielding of the 

superconducting solenoids, for higher proton energy the power dissipation is maximum 

in the mercury beam dump raising concerns about mercury splashes damaging the 

containment vessel. 

The muon front-end is designed to optimise the number of muons that can 

successfully be transmitted through the downstream accelerator complex. The baseline 

design has a 12 m solenoid capture channel with fields tapering from 20 T down to 

1.75 T (see also Figure 3 left), and a decay section of about 100 m, after which the 

muons undergo adiabatic bunching in a system of RF cavities of fairly modest gradient. 

This is followed by RF phase rotation with higher gradients and frequencies that 

decrease with progress down the channel. The energy spread is reduced and the beam is 

formed into trains of about 50 interleaved 

 bunches [19]. This process is shown in 

Figure 4 (left). An approximately 80 m section of ionisation cooling channel - a novel 

concept and the proof-of-principle experiment, MICE, is described elsewhere in this 

issue - is used to increase the number of muons that can be accepted by the accelerators. 

Experiments at the MTA at Fermilab showed that the strong magnetic fields required to 

Figure 3: Left: Simulation of the pion distribution delivered by a solid target (courtesy S. 

Brooks). Right: Simulation of the power distribution dissipated in the baseline liquid 

mercury target area for a 10 GeV proton beam (courtesy J. Back). 

 

Figure 4: Left: Simulation of the muon Front-End showing the formation (left to right) of a 

train of interleaved 

 bunches (courtesy D. Neuffer). Right: Influence of achievable RF 

gradient in the cooling section on particle yield for different RF phases (courtesy C. Rogers). 
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transport the muon beam may have a seriously detrimental effect on the effective 

gradients that can be achieved. Quantifying this effect and finding appropriate solutions 

form a major R&D project that is being carried out by the MuCOOL collaboration. 

3.7.2.4 Muon Acceleration 

The muon accelerators have a transverse phase space acceptance of 30  mm.rad to 

be able to accelerate the beam, which is enormous compared with conventional beams 

in proton and electron machines. In their rest-frame, muons have a half-life of only 

2.2 s, so acceleration has to be very rapid to benefit from the effects of time dilation 

and to reduce losses through decay. FFAG accelerators are promising in this respect but 

work less efficiently at low energies. The chosen system, the central part of Figure 1, 

therefore starts with a 201 MHz pre-accelerator linac, which accelerates the beam to 

0.9 GeV while adiabatically reducing the phase-space volume. The linac has been 

developed by A. Bogacz (JLab) and confirmed using MAD-X. Design and EM 

simulations of the linac components (solenoids and cavities) have been completed and 

the results are shown in Figure 5. While the design of the niobium sputtered 

superconducting cavities is straightforward, the solenoid design is optimised to reduce 

the magnetic fringe field at the position of the cavities (to avoid degradation of 

achievable field) by using a counter-excited outer shell together with an iron shield. 

Multi-particle simulations based on the results of the EM simulations have been 

performed using GPT. The output distribution of the longitudinal phase space after the 

cooling section is shown on Figure 6A. The huge momentum spread in the bunch 

results in particle losses in the first part of the linac of roughly 5% but this assumes a 

Figure 5: A: Simulation of the electric field distribution in a 2-cell SC linac cavity running 

in -mode at 201.25 MHz using COMSOL. B: The design of the linac solenoids consists of 

two SC coils with opposite excitation and an iron shield to reduce stray and fringe field 

effects. C: Magnetic field distribution in one quadrant of the solenoid simulated with ROXIE 

(courtesy M. Aslaninejad and C. Bontoiu). 
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very preliminary matching section between the cooling section and the linac. The 

results of these simulations are shown in Figure 6B. 

At the end of the linac the beam has an energy of 0.9 GeV. Use of a recirculating 

linear accelerator is now possible and the phase slip, caused by the variation in time-of-

flight with energy, is tolerable. The beam is accelerated in two dogbone RLAs, making 

3.5 passes in each, gaining energy to 3.6 GeV in the first, and 12.6 GeV in the second. 

Dogbone RLAs give improved cost efficiency over normal linacs and racetrack RLAs, 

but features such as the non-zero energy spread in the beam, the transverse beam size 

and the space required for magnet coils restrict the number of separate return arcs into 

which the beam can be directed and so limit the number of passes through the 

accelerating structures. 

A non-scaling FFAG (NS-FFAG) accelerator has been proposed for the final muon 

acceleration from 12.6 GeV to 25 GeV as a quasi-isochronous design allows for up to 8-

12 turns. The lattice is filled with 201 MHz RF cavities, increasing the muon 

acceleration efficiency and lowering the overall cost of the facility. As confirmed in 

numerous beam dynamics simulations, a linear strong-focusing NS-FFAG lattice can 

transport large emittance muon beams using relatively compact magnets since orbit 

excursion is very small. The linear design of the NS-FFAG lattice candidates was 

recently optimised with respect to cost and performance. One remaining difficulty is 

that the variation in time-of-flight for particles with large transverse amplitude causes 

phase slip at the RF cavities, which can lead to longitudinal phase space distortion and 

increased final energy spread. Although this increase of the energy spread is much 

higher than the effect of beam loading, the resulting beam can still be accepted by the 

decay ring. However, it has been shown chromaticity correction, by introducing non-

linear magnetic field components (see Figure 7, right panel), can reduce the longitudinal 

distortion and the final energy spread. The disadvantage of this solution is the reduction 

in the dynamic acceptance. The degree of chromaticity correction finally adopted may 

be a compromise between these two effects and still needs to be defined. Other 

important issues addressed in recent studies are the beam injection and extraction [20]. 

Several lattice candidates were carefully considered and current results favour the triplet 

solution with 3 m long straight sections. This solution allows the field requirements on 

the kicker and septum magnets to be reduced. In the proposed injection/extraction 

geometries, several kicker units are distributed in several lattice cells, assuming mirror 

Figure 6: A: Longitudinal phase space distribution of the acceptable part of the muon 

beam at the end of the cooling section (courtesy C. Rogers). B: Result of a multi-particle 

tracking using the code GPT with field maps from the end of the cooling section to the 

linac (courtesy C. Bontoiu). 
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symmetry in order to reuse the same kickers for both signs of muons. In this way, as 

shown in Figure 7 (left), sufficient orbit separation can be created. This allows the use 

of septum magnets whose strength requires the use of superconducting technology. 

Another approach to facilitate injection/extraction has been studied using a lattice with a 

special 7 m long drift-insertion cell. Whether the dynamic acceptance is sufficiently 

large in such a lattice remains to be demonstrated.  Since non-scaling FFAGs are very 

much in their infancy, the results from EMMA, the electron model under construction at 

the Daresbury Laboratory (q.v.), will be of great interest and relevance to the Neutrino 

Factory study. 

3.7.2.5 Muon Storage Rings 

Intense bursts of neutrinos and anti-neutrinos are generated by the decays of the 
+
 

and 
-
 bunches in long straight sections in dedicated storage rings according to  

 

The neutrinos are directed through the Earth to detectors at distances of about 3000 km 

and 7500 km at angles to the surface of 18 and 36 respectively.  Three ring geometries 

have been studied, of which the most flexible are based on racetrack lattices 

(Figure 8A), which can be built to point towards any fixed detectors. The shown is 

designed for either µ+ or µ- with a single production straight pointing into the ground. 

The return straight is used for collimation, RF and tune control. However a 

development of this ring is in progress to double the neutrino rate by storing counter-

rotating muons of both signs. An alternative is a triangular lattice (Figure 8B) with two 

production straights that can be pointed in different directions and so send neutrinos to 

combinations of detectors (dictated by the apex angle) [21]. Two triangular rings would 

be built side by side in the same tunnel, one serving μ
+
 and the other μ

-
. A third option, 

a bow-tie ring (Figure 8C), could similarly point at two separate detectors but will 

preserve the muon polarisation, which may interfere with the accuracy of the beam 

instrumentation. The choice of the decay ring depends on the efficiency (the ratio of the 

total length of the neutrino production straights to the circumference), and the depth of 

the tunnels, which has geological and cost implications. The production straights for the 

  e e    e e 

Figure 7: Left: Geometry of injection into the NS-FFAG triplet lattice. The superimposed 

rectangles indicate the kicker positions; the dashed rectangle shows the position of the 

septum (courtesy D. Kelliher). Right: Cell tunes with and without chromaticity correction 

using sextupoles (courtesy S. Machida). 
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racetrack design are 600.2 m long, giving an efficiency of 37.5% for single sign muons, 

and higher (perhaps 60%) for counter-rotating bunches of 
+

 and 
-
. The corresponding 

figures for the racetrack and bow-tie lattices are 398.5 m (2×24.8%) and 469 m 

(2×29.2%) respectively. The tunnel depths for rings of this size are 444 m for the 

racetrack, 493 m for the triangle and 312 m for the bow-tie. To keep the neutrino beams 

reasonably well focused, the muon beam‘s rms divergence angle should not add more 

than about 10% to the natural 1/angle of the decay cone. This means that the -

functions, which should be small (~14 m) in the arcs, have to be matched to much larger 

values (100-150 m) at the start of the long production straights. 

Simulations of the racetrack decay ring have been carried out using the code 

Zgoubi [22]. These predict the neutrino angular distribution shown in Figure 9. Studies 

of the beam instrumentation in the decay ring (beam current and beam divergence), 

Figure 8: Different designs of muon storage ring. A: Racetrack structure that can send 

simultaneously neutrinos from both sign muons to one detector; this is the baseline design.  

B: A design based on triangular geometry, able to send neutrinos to detectors in two 

different directions (but only for one muon sign). C: A bow-tie design, similar to B but 

requiring less tunnel depth. 

 

Figure 9: Neutrino angular distribution from horizontal and vertical muon decay angles. 
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essential for the correct prediction of the expected neutrino flux at the far detector, have 

been started and an efficient collimation systems needs to be developed to cope with the 

megawatts of muon beam power the rings have to sustain. 

3.7.2.6  Detector Sites 

Provided there are detectors at the right distances from the Neutrino Factory site, the 

racetrack lattice has the greatest flexibility in that it can be pointed in any direction. 

Two separate tunnels would be needed with a total of four transfer lines, in order to 

handle both 
+
 and 

-
 in each of two rings. Depending on the NF site, the triangle or 

bow-tie may prove more suitable geometries because of their enhanced neutrino 

production efficiency, the use of only one tunnel and a reduced number of transfer lines. 

For these configurations, several suitable Neutrino Factory (CERN, RAL, Fermilab) 

and detector (Gran Sasso, Norsaq, INO) sites have been identified. Another option that 

the IDS-NF is currently investigating is a Neutrino Factory with a much lower muon 

energy (~4 GeV) and a smaller storage ring with reduced tunnel depth. In all scenarios, 

a geological survey of the sub-terrain of any proposed Neutrino Factory site is essential.  
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3.8 The Muon Ionisation Cooling Experiment MICE 

Chris Rogers 

STFC Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, UK 

Mail to:  chris.rogers@stfc.ac.uk 

3.8.1 Introduction 

The Muon Ionisation Cooling Experiment (MICE) is currently under construction at 

the Rutherford Appleton Laboratory. MICE will prove the technology necessary for 

muon ionisation cooling. In ionisation cooling, particle beam emittance is reduced by 

passage through an energy absorbing medium and RF cavities. 

In its final configuration, MICE will consist of a 5.5 metre cell of an ionisation 

cooling channel, containing two 4-cavity linacs and 8 coils producing an overlapping 

solenoid field in an SFoFo arrangement. Detector systems at each end of the cooling 

channel will measure the 6-dimensional phase space vector of individual muons 

enabling the reconstruction of the full 6D beam distribution. A schematic of the cooling 

channel in its final configuration is shown in Figure 1.  

MICE seeks to demonstrate: that the physics of ionisation cooling works as 

expected; that it is possible to contain very high emittance beams typical of the Neutrino 

Factory muon front end; and that the construction and operation of the cooling channel 

is feasible. 

Figure 1:  Schematic of the Muon Ionisation Cooling Experiment in its final configuration 

http://mylab.institution.org/~mypage
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3.8.1.1 Transverse Cooling Theory 

In its most basic form, ionisation cooling reduces the transverse emittance of a 

particle beam. On passing through an absorber the momentum of the particle is reduced 

non-symplectically resulting in a reduction in normalised emittance. Subsequently 

muons pass through RF cavities where the momentum is restored in the longitudinal 

direction only and the geometric emittance of the beam is reduced.  

The cooling effect is ruined by stochastic effects, principally multiple Coulomb 

scattering transversely and energy straggling longitudinally. Additionally the curvature 

of the Bethe Bloch curve can provide additional longitudinal cooling or heating. 

For a cylindrically symmetric beam, the change in transverse RMS emittance n and 

longitudinal RMS emittance // on passage through a thin absorber of thickness dz are 

given by [1] 
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Here and are the optical Twiss functions of the beam, rel is the relativistic 

velocity, E is the energy and m is the mass of the particle, while LR is the radiation 

length, gL is the partition function and <dE/dz> is the mean energy loss in the medium. 

When the change in emittance is zero, the beam is at the equilibrium transverse 

emittance that represents the minimum emittance the cooling channel can provide, 
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For most cases of interest, rel is near 1 so the equilibrium emittance is determined 

by material parameters and the amount of focussing that can be provided. Typically, 

materials with low atomic number create the least scattering per energy loss, with liquid 

Hydrogen providing an especially beneficial parameter set. In MICE, liquid Hydrogen, 

Lithium Hydride and Polyethylene absorber materials will be studied; other materials 

are under consideration. 

For these transverse ionisation cooling schemes, the challenge is to design focussing 

lattices capable of containing large transverse and longitudinal emittances while 

simultaneously providing a tight focus on the absorber such that the equilibrium 

emittance is small. 

3.8.1.2 Transverse Optics and Transverse Cooling 

Muons are produced as tertiary particles, produced from pion decay which are 

produced in turn from protons incident on a target [2]. This results in large emittances, 

typically 10 mm transverse and 50 mm longitudinal (RMS). In order to achieve the 

requirement of containing such a large beam while simultaneously keeping tight 

focussing on the absorbers, an SFoFo solenoid arrangement is chosen in MICE. 

The MICE lattice is a 5.5 m cell based on the lattice presented in the Neutrino 

Factory Feasibility Study II (FS2) [2]. The MICE magnets have been designed to 

operate in a number of modes: 
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 The sign of the magnetic field can be reversed at the absorbers; this prevents the 

build-up of canonical angular momentum, which would result in a mismatch and 

spoil the cooling performance; and 

 The strength of the focus can be increased or decreased, resulting in various 

lattice acceptances and equilibrium emittances. 

The on-axis solenoid field for the baseline MICE case is shown in Figure 2. Cooling 

hardware is in the region between -2.75 metres and +2.75 metres, while detector 

systems sit outside this region. In this case the absorbers sit at a field flip to prevent 

angular momentum build-up. RF cavities sit in a rather strong magnetic field and this 

may have some impact on their function. 

The lattice -function is shown in Figure 2.  is 0.42 m at the absorbers giving an 

equilibrium transverse emittance of about 2 mm when only the Hydrogen absorbers are 

considered. Additional material for Hydrogen windows and RF cavity irises increases 

the equilibrium emittance. The transverse emittance change as a function of input 

emittance between upstream and downstream detectors is shown in Figure 3 together 

with the RMS emittance reduction predicted by the analytical expression above. The 

emittance reduction is broadly in line with the theoretical expectation, although some 

non-linear effects reduce the performance. 

Figure 3: (Left) Transverse emittance reduction as a function of input emittance and (Right) 

transmission as a function of particle amplitude and fractional change in transmission. 

Figure 2: (Left) -function and kinetic angular momentum, (Right) On-axis field for a 

particular MICE configuration. 
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The other ingredient of a good ionisation cooling channel is aperture. The 

transmission of MICE as a function of particle amplitude is also shown in Figure 3, 

where transverse four dimensional particle amplitude is calculated using 

A2  nu4D
V

1
u

4D

T
(3)  

where u4D is the transverse phase space vector u4D=(x,px,y,py) and V4D is a matrix with 

elements Vij=covariance(ui,uj). 

The target system of the Neutrino Factory captures muons with transverse 

amplitudes as large as 200 mm. In FS2, a tapering scheme was envisaged where a 

2.75 m, higher acceptance lattice was used initially and then the beam was passed into 

the MICE-like 1.65 m lattice. Nonetheless, it can be seen that particles with amplitudes 

of order 50 mm can be contained in the MICE lattice. Additionally the cooling effect of 

MICE can be observed here; the transmission at small amplitudes is higher after 

passage through MICE, indicating that particles at high amplitude have been moved to 

lower amplitude, i.e. the beam has been cooled. 

3.8.1.3 Suppression of Chromatic Aberrations 

 The harmonic content of the MICE magnetic field has been chosen rather carefully. 

The phase advance and -function are shown in Figure 4 for the nominal configuration 

detailed above.  is very flat with momentum in the region between the 2 and 4 

resonance indicating that chromatic aberrations have been successfully removed. As the 

focussing strength goes with Bz
2
, the periodicity of the focussing function is even for 

the cooling period of 5.5 m so that the 3 resonance is suppressed. 

The harmonic content of the magnetic field can be related to the -function and 

phase advance [3]. As a demonstration of these effects the phase advance and -

function are shown in Figure 4 for the case where only a single focussing coil is present, 

giving a sine-like field with periodicity 5.5 m. The fields are scaled so that the total 

focussing strength of the cell is the same. In this case, the 2 and 4 linear resonances 

are much closer and the -function is highly momentum dependent. This results in a 

poor momentum acceptance and would give poor cooling performance. 

 

Figure 4: Transverse -function and phase advance for (left) the full MICE cooling cell, 

and (right) the case where only the Coupling Coil is present. 
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3.8.2 Longitudinal Dynamics and RF 

MICE has two 4-cavity linacs operated in TM010 mode at 201.25 MHz. In long 

cooling channels it is necessary to replace energy lost in the absorbers while retaining a 

bunch structure. As muons are only partially relativistic, maintaining a good bunch 

structure requires that RF be operated somewhere between on-crest and bunching mode. 

Unfortunately, financial constraints mean MICE cannot afford to operate RF cavities at 

peak gradient and so to replace the energy lost in the absorbers, MICE will operate on-

crest. In a long cooling channel this would affect performance, but simulation results 

plotted in Figure 5, show the emittance reduction is not seriously reduced.  

Some empirical evidence has revealed that siting RF cavities in strong magnetic 

fields may induce RF breakdown at somewhat lower peak fields than expected [4,5]. 

The peak field on the MICE cavities in the baseline configuration is around 8 MV/m, 

well below the Kilpatrick limit of 17 MV/m, so it is hoped that the MICE cavities will 

be able to operate at their nominal gradient. However, further studies are underway to 

understand the full impact of this issue. 

3.8.3 Emittance Exchange and Longitudinal Cooling 

It is possible to reduce longitudinal emittance using ionisation cooling by 

transferring emittance from longitudinal to transverse phase space through emittance 

exchange [6]. In emittance exchange, a dispersive beam is passed through a wedge-

shaped absorber. Higher energy particles pass through more material and so lose more 

energy, resulting in a reduction in energy spread. This is a shear in x-energy space, 

resulting in emittance transfer from longitudinal to transverse phase space. 

Simultaneously, transverse emittance is reduced resulting in the appearance of 

longitudinal cooling. 

Such a thing can be demonstrated in MICE, but only with some difficulty. The large 

emittances typical of MICE and the significant non-linear effects in solenoidal channels 

mean that without care the cooling signal would be drowned by optical heating. By 

using bespoke, fully six-dimensional statistical weighting algorithms to select a beam 

that transports symmetrically about the centre of MICE, these non-linear effects can be 

reduced [7]. 

Figure 5: Emittance along the MICE beam axis for different RF arrangements. 
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In Figure 6 two beams are tracked through MICE; a natural beam from the MICE 

beamline; and an ideal beam generated to be well-matched to the MICE lattice and with 

a dispersion suitable for emittance exchange. Tracking is performed using the lattice for 

MICE step IV, an early configuration of MICE before the installation of RF cavities 

where only one absorber is present. The emittance change for the natural beamline 

beam is also plotted with statistical weights applied so that experimental data can be 

made to resemble the ideal beam. For the ideal beam and the weighted beam, a clear 

longitudinal cooling signal can be observed indicating that the emittance exchange was 

successful.  

3.8.4 Detector Systems 

MICE has a set of fine resolution detector systems. Production of a high intensity 

muon beam with the desired properties is impractical and measurement of the full six 

dimensional correlations required to demonstrate 6D emittance reduction is difficult. 

Instead, MICE will measure the 6D phase space vector of individual particles. Separate 

measurement devices enable independent measurement of particles upstream and 

downstream of the cooling channel. 

Transverse position and momentum will be measured using a scintillating fibre 

tracker placed in a 4 T field. By measuring the helical path of muons at five planes, the 

position and momentum can be reconstructed with precision of a few hundred microns 

and about 1-2 % dp/p [8,9]. The time-of-flight of individual muons and their phase 

relative to the RF cavities is measured using 50 ps resolution plastic scintillators [10]. 

Discrimination between muons, undecayed pions and electrons is provided by:  

 Time of flight detectors that enable the comparison of measured momentum 

with time-of-flight, enabling the calculation of mass and hence particle type.  

 Cerenkov transition detectors (CKOV) emit Cerenkov radiation with different 

momentum thresholds for different particle species. 

 The Kloe Light (KL) and Electron-Muon Ranger (EMR) discriminate between 

muon and electron energy loss properties in matter. 

Figure 6: (Left) Transverse emittance and (Right) longitudinal emittance for a wedge-shaped 

absorber. The emittance change for a natural beam from the MICE beamline, an ideal beam 

and with the beamline beam statistically weighted to mimic the ideal beam are shown. 
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3.8.5 Modelling Codes 

Several modelling codes have been used to simulated ionisation cooling channels, 

such as ICOOL [11] and G4Beamline [12]. Due to the unprecedented combination of 

high resolution single-particle detector equipment and accelerator hardware, the MICE 

collaboration has designed a custom modelling and reconstruction code, G4MICE [13], 

that enables detailed modelling of accelerator hardware, beam optics, multiple Coulomb 

scattering and ionisation energy loss, together with effects important to the detector 

systems such as Cerenkov radiation, scintillation and detector electronics effects. 

G4MICE also contains libraries for pattern recognition and detector reconstruction. 

enabling the modelling of both the accelerator and detector performance. G4MICE has 

also been used for general accelerator lattice development, simulating a variety of 

solenoid and multipole lattices in both ring and linac arrangements [14,15]. 

 A visualisation of the simulation of MICE, as implemented in G4MICE, is shown 

in Figure 7. Note that details such as the curved shape of the absorbers and RF windows 

and subtleties of the quadrupole aperture are modelled with good precision. Muon 

tracks together with electron and photon secondaries are shown. 

3.8.6 Status, Schedule and Plans 

MICE is under construction at Rutherford Appleton Laboratory. The MICE beam 

line, TOF detectors, CKOV, KL and EMR detectors are in place and commissioned. 

The scintillating fibre trackers have been constructed. The spectrometer solenoids, 

within which the trackers sit, are expected to arrive in 2010, followed by Absorber 

Focus Coil modules that will enable the first measurement of muon ionisation cooling. 
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Figure 7: Visualisation of the MICE simulation in G4MICE. 
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3.9 HIE-Linac Development at the Cockcroft Institute 

A. D‘Elia, M. Fraser, R. Jones and P. McIntosh 
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Mail to: peter.mcintosh@stfc.ac.uk 

3.9.1 Introduction 

Radioactive ion beam production at the ISOLDE facility, CERN, illustrated in 

Figure 1, is based on the ISOL (Isotope Separation On-Line) method where a proton 

beam with an intensity of about 2 µA is extracted from the Proton-Synchrotron Booster 

(PSB) and impinges upon a thick, high-temperature target. The radioactive nuclei can 

be produced in two different target stations (GPS and HRS) via spallation, fission or 

fragmentation reactions. ISOLDE has been continuously developing targets and ion 

sources for four decades, introducing several new technologies (e.g. the resonance 

ionization laser ion source) so that there are now available 700+ radioisotopes from 65 

elements. These beams are accelerated to 60 keV and steered to different experimental 

stations. In the present REX-ISOLDE facility, the RIBs are prepared in a low-energy 

preparatory stage before injection into the normal conducting linear accelerator. This 

stage consists of a Penning trap (REXTRAP), a charge breeder (REXEBIS) and an 

achromatic A/q separator of the Nier spectrometer type (see Figure 2). The 

mailto:peter.mcintosh@stfc.ac.uk
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chargebreeding efficiency depends critically on the quality of the injected beam, i.e., its 

longitudinal and transverse emittance in particular. The purpose of the trap is to collect 

and to cool the radioactive ions delivered by ISOLDE before they are sent in bunches 

into the EBIS. In the EBIS the ions are charge-bred into charge states so that the mass to 

charge ratio is always 3≤A/q≤4.5. The normal conducting linear accelerator then 

provides an accelerating voltage for a corresponding A/q maximum of 4.5. 

 


Figure 1: Schematic of the ISOLDE facility at CERN, showing the existing hall extension 

that is allocated to the new accelerator HIE-LINAC. 
 

Presently, the REX-ISOLDE linac delivers beams with a mass to charge ratio of 3 < 

A/q < 4.5 at a final energy of 2.8 MeV/u using a combination of several normal 

conducting structures. After charge breeding, the first acceleration stage is provided by 

a 101.28 MHz 4-rod radio-frequency quadrupole (RFQ) which takes the beam from an 

energy of 5 keV/u up to 300 keV/u. The beam is then re-bunched into the first 101.28 

MHz interdigital drift tube (IH) structure which increases the energy to 1.2 MeV/u. 

Three split-ring cavities are used to give further acceleration to 2.2 MeV/u, and finally a 

202.58 MHz 9-gap IH-type cavity is used to boost and to vary the energy between 2 < E 

< 2.8 MeV/u. Figure 2 illustrates the scheme of the present REX-ISOLDE linac. 

 

 
 

Figure 2: Schematic of the present REX-ISOLDE accelerator. 

 

This acceleration method was developed in order to deliver beams at specific 

energies whilst taking advantage of the high accelerating gradient that pulsed Normal-
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Conducting (NC) IH-structures could achieve. This concept is nevertheless not without 

some limitations: 

 Very limited energy flexibility. 

 The operation is restricted to pulsed mode. 

 Longitudinal beam parameters, such as energy spread and bunch length, are 

nonvariable. 

 Extension to higher energies is difficult due to the low reliability of the present 

machine (if  an RF system fails there is no compensation scheme and the beam 

is lost) 

 

Moreover, during this staged acceleration process, the transverse emittance grows 

by almost a factor of 2. This uncontrolled emittance growth is also confirmed from 

experiments which indicate that halo particles result in an increased background noise. 

The requirement for beam energies of up to 10 MeV/u whilst retaining, at the same 

time, the flexibility to deliver the beam at all intermediate energies starting at 1.2 

MeV/u drives the choice for a superconducting (SC) linear accelerator. Examples of SC 

linear accelerators that provide energetic heavy ions include ATLAS (Argonne National 

Laboratory) [1], ALPI (INFN Legnaro) [2] and ISAC2 (TRIUMF) [3]. 

3.9.2 The HIE-ISOLDE Linear Accelerator: HIE-LINAC 

The HIE (high intensity and energy)-ISOLDE [4] project embraces new 

developments in radioisotope selection, improvements in charge-breeding and target-

ion source development, as well as construction of the new injector for the PS Booster, 

LINAC4. For extending the physics reach of the facility, the most significant 

component is the SC linear accelerator with a maximum energy of 10 MeV/u (HIE-

LINAC) which will replace most of the existing REX structure. It will be based on 

independently phased quarter wave resonators (QWRs). The alternative to a SC QWR is 

a normal conducting IH-structure. The SC option has the following features [5]: 

 The final beam velocity can be tailored to the ion so that particles of lower A/q 

can be accelerated to higher final velocities; 

 SC quarter-wave cavity apertures are only limited by transit time factor and peak 

surface field concerns and in general can be bigger than apertures in normal 

conducting IH structures; 

 The RF frequency can be kept lower than in room temperature machines 

yielding a larger longitudinal acceptance; 

 The accelerating gradients are significantly larger than those that can be realized 

in a room temperature CW machine. 

 

Figure 3 shows the schematic layout of HIE-LINAC. The replacement of part of the 

normalconducting structures will enable the final transverse emittance to be improved 

with stable acceleration and well defined accelerating structures. The low-sections 

contain 6 cavities, and two solenoids within each cryostat, with one diagnostic station. 

The high-sections contain 5 cavities, 1 solenoid and a diagnostic station. The aim of 

this project is to realise all six sections together with the necessary power supplies, RF 

amplifiers and control systems. 
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Figure 3: schematic layout of HIE-LINAC. The existing REX structure is shown with a light 

blue background. 
 

Table 1 compares the fundamental beam characteristics of the new SC linac facility 

with that of the existing facility (REX-ISOLDE). In addition to these, a benefit of SC 

technology is that the machine has built-in redundancy, i.e. the beam can be transmitted 

with small losses if one cavity fails by compensating elsewhere. 

 
Table 1: SC Linac Capability Comparison with Existing REX-ISOLDE Facility 

 

 Existing facility  

REX-ISOLDE 

HIE-LINAC  Physics Reach/impact 

on techniques 

Maximum energy  2.8 MeV/u 10 MeV/u  

(higher for A/q < 4.5) 

Multiple Coulex, 

transfer reactions, soft 

dipole modes 

Range of beams; 

intensity 

8Li . 188Hg (50 

isotopes so far 

accelerated) 

Beams continuously 

developed; increased 

intensity from multi-

q acceptance
a
 

Increased scope and 

sensitivity for 

experiments 

Energy variation Fixed per experiment Variable, extend to 

low  

Study of resonances, 

energies excitation 

functions, 

astrophysics 

Emittance & beam 

spot 

0.5 ð.mm.mrad at 3 

MeV/u; large halo 

0.3 ð.mm.mrad; 1mm 

beam spot at 10 

MeV/u 

Precision 

Spectroscopy - better 

angular definition 

Time structure  Pulsed with no 

bunching 

 

CW
a
 or bunched 

beam 

 

Reduced random 

background or beam 

timing possible 

Longitudinal 

parameters 

Fixed  Variable  Required for 

lifetime & g-factor 

meas‘mts 

Beam identification  Z identification 

limited 

to Z~40 

Switching to 10 

MeV/u increases Z 

range 

Improved Z 

identification of 

beam contaminants 
a
  in superconducting part of linac 
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The necessary research and development, prototyping, construction, installation and 

commissioning will be carried out by the Cockcroft Institute. The Institute (Both 

STFC/ASTeC and university staff) has a wealth of skills, recently applied within the 

ERLP/ALICE and EMMA projects, which are well matched to the requirements of the 

HIE-LINAC project: cryogenics, RF, beam dynamics, cavity fabrication, control 

systems and UHV technology. 

3.9.3 Superconducting Cavities 

For the quarter-wave cavities there are two competing technologies that can be used 

for the production of the cavity itself. The first is based on sheets of high grade 

niobium, 3mm in thickness. The shape can be obtained by deep-drawing, rolling, or 

hydro-forming. All the parts are subsequently electron beam welded. An external vessel 

is also made in order to contain the liquid helium. This technology is in general referred 

to as bulk niobium technology. 

An alternative technology is based on a copper cavity in which a layer of a few 

microns of niobium is deposited via a sputtering technique. In this case only the internal 

conductor is cooled directly by liquid helium since the excellent thermal conductivity of 

copper assures a homogeneous temperature distribution in the cavity. This technology is 

in general referred to as sputtered niobium. Figure 4 shows an example of the two 

technologies available for superconducting quarter-wave cavities. 
 

 
 

Figure 4: Photographs of cavities made with two technologies. Bulk niobium is shown left 

and sputtered niobium to the right. 
 

The nominal parameters for the SC cavities are quite demanding. Nowadays bulk 

niobium technology has demonstrated that values of Q0 ~ 5·108
 can be reached for 

accelerating gradients larger than 6MV/m [6] (with associated peak electric fields larger 

than 30 MV/m). This corresponds to a dissipated power of roughly 7W at the 

temperature of liquid helium. Sputtering technology has reached similar values on test 

cryostats and, to date there are no fundamental scientific impediments to achieve similar 

gradients in an operational machine. In Figure 5, the measurements of the quality factor 

versus the accelerating gradient of 4 cavities installed into a cryomodule at the Legnaro 

National Laboratory (LNL-INFN) are displayed [7]. The curves represent the functions 

of the quality factor with a constant dissipated power. A distinct advantage of sputtering 

technology is that because of the dominant copper base with a higher thermal 

conductivity, the cavities can be made with thicker walls and hence are mechanically 
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more stable than their bulk niobium counterpart. The consequence of this is that the 

resonant frequency of the accelerating mode is hardly affected at all by external noise 

sources (vibrations, liquid helium pressure variations) and this allows substantial 

simplification in the tuning system. This leads to a more robust overall accelerator with 

no appreciable sensitivity to microphonics. Moreover, the cryogenic system is not as 

demanding as for the bulk niobium cavities since there is also an absence of .Q-disease. 
which will allow a slower cool down. Finally, there are substantial cost savings as 

sputtering onto copper is expected to be at least a factor of two less expensive than 

fabricating bulk niobium cavities. The disadvantage of sputtered niobium cavities is a 

drop off of ohmic Q with gradient. However as the HIE-ISOLDE has a requirement for 

a relatively low Q at a moderate gradient this is not a problem in this case. Integration 

of tuners in the design of the cryomodules housing the cavities in order to minimise 

microphonics will be an essential feature of the R&D efforts in their design. 

Two cavity geometries, low and high β, will be used to cover the whole energy 

range. As the first part of the upgrade will consist in the realization of the high energy 

section, the R&D effort have been focused on the study and production of a prototype 

of the high β cavity. The electromagnetic study and realization of the cavity prototype 

has been carried out in different steps. The definition of the cavity main parameters 

derives directly from beam dynamics studies (beam aperture, gap to gap distance, RF 

field asimmetry) [8] from the upstream linac (RF frequency) and from manufacturing 

technique (Nb sputtering). Given the above constraints, the electromagnetic study has 

been performed in order to minimize the surface peak electric and magnetic field, 

maximizing the Rsh/Q and the g factor. In addition a particular attention has been payed 

to the study of the frequency sensitivity of the different geometric parameters, in order 

to evaluate a suitable tuning range. During the fabrication of the cavity prototype, after 

each significant step (machining, welding, deep pressing) an RF measurement has been 

performed and results are reported after in the paper. Given the limited frequency range 

of the tuner, the final dimension of the external conductor has been set only after the 

final frequency measurement. Figure 5 shows the prototype built at CERN and, 

presently, under sputtering tests. In the following we will show the main 

electromagnetic parameters for the optimized geometry of the cavity and we will 

compare them to the ones of similar structures as in TRIUMF and SPIRAL2.  
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a)  b)  
 

Figure 5: The prototype of the high β cavity produced at CERN, (a) the cavity during the 

cleaning process (b) internal view of the cavity. 

3.9.4 Electromagnetic Simulations 

The electromagnetic design of the cavity aims to minimize the surface peak fields, 

both electric and magnetic. As mentioned above the geometry has also been optimized 

for the sputtering process [9]. In particular beam ports on the external conductor have 

been shaped in order to avoid any hidden edges on surface to the Nb cathode. Similarly, 

the region of the maximum magnetic field has been rounded in order to have a better 

homogeneity of the Nb film and this shape gives also a regular surface current paths 

minimizing the magnetic fields on these positions. The electric peak field, located at the 

bottom part of the resonator antenna, can be varied by changing the distance of the 

bottom part of the antenna from the bottom plate of the cavity (tipgap). The tipgap has 

been chosen of 70mm but the cavity, at the beginning, has been manufactured with a 

tipgap of 90mm. This gives the opportunity of tune up the frequency at the end of the 

machining procedures if needed. The simulations presented in the following have been 

carried out with the nominal value of 70mm. Figure 6 shows a cut-view of the CAD 

model and the positions of the maximum electric and magnetic field. 
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Figure 6: Cut-view of the cavity showing the internal geometry and also coupler and pick-up 

seats; in the middle, the regions of the maximum electric and magnetic fields are shown. 
 

Because of the cavity geometry is not azimuthal symmetric, 3D electromagnetic 

codes need to be used to evaluate its RF properties. In order to pin down reliable results, 

a calibration of the simulation tools have been performed. A simpler geometry without 

beam ports has been designed in order to get a comparison between Ansoft HFSS [10], 

CST Microwave [11] and POISSON SUPERFISH (see Figure 7). For this kind of 

structures, we consider the data from SUPERFISH as the reference one. 
 

 
 

Figure 7: Models used for simulations: a) MWS, b) SUPERFISH, c) HFSS. 

 
Considering the azimuthal symmetry of this simpler structure, only one quarter has 

been simulated in CST and the mesh refinement has been used. The higher step in the 

refinement corresponds to about 1.000.000 of meshcells. In HFSS, only a slice of one 

sixteenth has been simulated. The results have been obtained by considering a surface 

refinement of the meshes of 2μm, the total number of tetrahedral is about 110.000. The 

mesh stepsize for SUPERFISH is of 2.5mm (finer meshing does not change the results). 
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The comparison terms have been the maximum electric and magnetic field and the Q0. 

The results for peak fields are shown in Figure 8. 

 

 
Figure 8: Peak surface fields. 

 
The fields are normalized to give 1J stored energy in the cavity (CST 

normalization). The plots show consistent results between the three codes. A summary 

of the results, included Q0 values are listed in Table 1. When the beam ports are added 

to the structure, the results are expected to stay consistent with the ones found 

previously. For this structure, Superfish is no longer possible to use and then the results 

are extracted only from HFSS and CST. Actually Epeak and Hpeak are consistent 

between HFSS and CST and also with the previous plots, but the value of Q0 found by 

CST is overestimated, about 14000, and not consistent with the HFSS simulations, 

about 11700. Probably this is due to some geometry problem in the CST model around 

the noses. In fact, when the racetrack shape of the noses is changed to a simpler circular 

geometry, the value becomes compatible with other simulations. 
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Table 2: Simulation Comparison 

 

 
 

Finally, the electromagnetic cavity parameters are shown in Table 2 in comparison 

with TRIUMF and SPIRAL2. 

 
Table 3: Cavity parameters in comparison with TRIUMF and SPIRAL2. 

 

 
a 
Measurements on a cavity prototype showed results exceeding the design parameters: 

Q0=7·10
8
 for Eacc=8.5MV/m with Pcav=7W [12]. 

b 
Measurements on a cavity prototype showed: Q0=10

9
 for Eacc=6.5MV/m with Pcav=10W 

[13] 

3.9.5 The Tuner Plate 

For the tuning system it has been decided to follow the concept that has been 

developed at TRIUMF [14]. An oilcan shaped diaphragm of CuBe has been 

hydroformedwith a pressure up to 120 bar. All radial slots necessary for the elongation 

and contraction of the diaphragm are performed with a laser beam. The same plate can 

be mounted directly on the low β cavity or welded to a flange in the case of the high β 

cavity. The actuator is designed to have no backlash. A pictorial view of the tuner is 

presented in Figure 9. The useful stroke of the tuner plate is of 20 mm. From the 

manufacturing position the plate can be pushed up towards the central resonator of 

5mm (position +5) and down, in the other direction, of 15mm (position -15). In Table 4 

the results of the simulations are listed for the nominal value of the tipgap of 70mm and 

for a tipgap of 90 mm. The coarse range of the tuner plate for tipgap = 70 mm is 

foreseen to be of 245 kHz for a moveable range of 20mm giving an average Δtunerplate  

≈  12.25 kHz/mm. The value for tipgap = 90 mm is of 5.2 kHz/mm and the correction is 
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less efficient as expected (coarse range of only 140 kHz). However, both coarse ranges 

largely cope with frequency detuning coming from machining errors, listed in Table 5, 

considering that mechanical tolerances are in the order of the tenth of mm. 

 

 
 

Figure 9: Tuner plate with its actuator. 
 

Table 4: Simulated frequency values of the tuning plate when all up (Position +5) or all down 

(Position -15); in yellow the values for the nominal tipgap value. 

 

 
 

Table 5: Simulations results of the frequency detuning due to the main possible machining 

errors. 
 

 
 

Another important aspect to take into account is the radiation pressure acting on the 

tuner plate. Because of the high number of cuts and the reduced thickness of the 

diaphragm, a strong force could irreversibly modify the tuner shape leading to an 

unrecoverable frequency shift. The radiation pressure can be calculated by evaluating 

both electric and magnetic field on the plate surface by the following equation: 
 

 
The result is shown in Figure 10 in the case of a flat plate: the total force is quite 

low, equal to -1.77 N. 
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Figure 10: Radiation pressure on a flat plate. 

3.9.6 Frequenct Measurements 

The working frequency of the cold cavity has to be 101.28 MHz. Taking into 

account the scaling factors due to the superconducting mode of operation (shortening of 

the length of the central resonator, skin depth variation, etc...) and due to the vacuum-air 

environment change, the hot frequency at room temperature in air should be ≈ 100.900 

MHz. As described before we have left the value of the tipgap as a free parameter in 

order to compensate possible errors coming from the machining process. During the 

welding of the top part of the cavity, a problem occurred and the result has been a 

change of the length of the internal conductor, which is now shorter of 0.4 mm, with a 

foreseen increase of the frequency of about 65 kHz. The measured variation is of 77 

kHz. Table 6 shows the measured values before and after welding the inner conductor 

to the outer. It is also shown the value of Q0 which is significantly improved after 

welding as expected. Furthermore the measured value is consistent with simulations 

giving a value of about 11700. 
 

Table 6: Measurements before and after welding the inner conductor to the outer with tipgap = 

90 mm. 

 

 
 

The last step is to finally define the length of the outer conductor. An intermediate 

cut of 75 mm has been performed and the subsequent frequency measurement 

confirmed the final cut position as from design value. The results are shown in Table 7 

the values both of the simulations and of the measurements have been properly scaled 

(values in bold) to get a comparison. The effect of the shorter central conductor can be 

accepted and the cut has been done at the nominal tipgap length of 70 mm. 
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Table 7: Set of measurements for different cut of the tipgap and different coupler insertion; 

bold values are scaled to get a comparison. 

 

 
 

Finally the measurement with the tuning plate has been done. The value is shown in 

Table 8 in comparison with simulation results opportunely scaled and goal frequency 

and all the values are fully compatible. 

 
Table 8: Frequency measurement at room temperature with tuner plate in rest position. 

 

 

3.9.7 Conclusion 

The use of superconducting cavities will tremendously facilitate the provision of 

variable-energy beams of exotic ions at considerably improved beam quality. In order to 

meet the specification of the linac (energy tuning, resolution, duty cycle, emittance, 

etc.), R&D is being carried out in several areas. One research area is to explore state-of-

the-art cavity preparation techniques using niobium sputtered onto copper quarter-wave 

accelerating cavities rather than bulk niobium in order to substantially bring down the 
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overall cost of the machine and serve to provide an ideal technological base for the 

construction of future accelerators. RF cavity and beam dynamics studies is being 

conducted to both design the overall system and simulate the progress of the beam in a 

‘cradle to grave’ simulation. In particular the influence of transverse kicks to the beam 

has been carefully investigated by designing the geometry of the quarter wave cavities 

with precise RF computer codes. A sensitivity study is to be conducted in order to 

anticipate any possible dilution in beam emittance and beam instability. The high β 

cavity for ISOLDE upgrade has been fully designed and built. The cavity parameters 

have been derived showing values comparable to other similar structures (TRIUMF and 

SPIRAL2). The foreseen Q0 should be 6.6 × 10
8
 with a surface resistance Rs = 46 nΩ 

giving a power dissipation on the cavity wall of 7 W. A prototype tuner plate has been 

built. The total coarse range in simulation is of 245 kHz for a stroke of 20 mm giving 

12.25 kHz/mm. The frequency measurements at room temperature show a perfect 

agreement with the designed frequency: the measured frequency is 100.885 MHz, the 

design frequency at room temperature should be ≈ 100.900 MHz (the simulations give 

100.861 MHz). 
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3.10.1 Introduction 

Diamond Light Source started user operation in January 2007 with an initial 

complement of seven Phase I beamlines [1]. Today Diamond is well into the Phase II of 

the project. Seventeen beamlines are operational, ten of which are based on radiation 

from in-vacuum insertion devices operated at 5 mm minimum gap, and a further two are 

in commissioning. The installation of the new beamlines is progressing towards twenty-

two beamlines at the end of Phase II in 2012. Phase III with a further ten beamlines is 

currently at the final stage of approval.  

Since January 2007 Diamond has already undergone two important development 

programmes: Top-Up operation and short bunch generation in low-alpha lattices for 

time resolved X-ray studies and the generation of coherent THz radiation. Ongoing 

developments include the design and implementation of customised optics for dedicated 

straight sections for high coherence applications and for fast polarisation switching. 

Also, a better understanding of the machine performance has been achieved in various 

areas including beam optics, beam stability and collective effects. 

3.10.2 Beam Optics 

A careful implementation of both the linear and the nonlinear optics of the machine 

is essential to guarantee the best performance of the synchrotron light source at its 

design parameters. 

3.10.2.1 Linear Optics 

The linear optics of the machine was analysed and corrected with the LOCO 

programme [2] which uses the closed orbit response matrix to detect any deviation of 

the linear optics from the nominal model. The nominal optics was implemented with 

very high precision as shown in Figure 1, with a residual -beating of less than 1% peak 

to peak. The quadrupole gradients shifts required by the LOCO programme to correct 

the optics were below 2%, as reported in Figure 2. Emittance and energy spread 

measurements based on two X-ray pinhole camera systems, confirmed the nominal 

values of 2.7 nm emittance and 10
–3

 relative energy spread.  

The linear coupling was easily corrected to 1% which is the value used for normal 

users‘ operation. This corresponds to a vertical emittance of 27 pm. Despite the fact that 

users do not at present require better correction of the linear coupling, a number of 

machine physics studies have been devoted to understanding the minimum vertical 

emittance achievable in the storage ring and to devise experimental procedures to 
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accurately measure such small vertical emittances [3]. It was possible to show that 

coupling correction strategies based on the analysis of the off-diagonal terms of the 

orbit response matrix were capable of reducing the linear coupling to below 0.1% with a 

measured vertical emittance of 2.2 pm. This value constitutes one of the best ever 

achieved at synchrotron light sources and corresponds the target requirement for low 

emittance damping rings for future colliders [4].  

 

Figure 1: Comparison of measured (circle) and model (cross) beta functions at the BPMs. Top 

is the horizontal plane, bottom is the vertical plane. 

 

Figure 2: Quadrupole variation for LOCO correction of the linear optics. The quadrupole 

variations in blue are from LOCO with unconstrained algorithm to fit the quadrupoles. In red is  

LOCO‘s output with constraints on the quadrupole variations as described in [5]. 

The beam sizes measured at the X-ray pinhole camera before and after the best 

coupling correction are reported in Figure 3. In the coupling corrected case, the vertical 

beam size is 6 m at the source point in the dipole. 
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Figure 3: Beam size at the X-ray pinhole camera before (left) and after (right) coupling 

correction with LOCO. 

3.10.2.2 Nonlinear Optics 

Extensive campaigns of measurements were devoted to understanding and 

correcting the nonlinear motion of the electron beam with the aim of implementing 

correctly the nonlinear machine model. The dynamics quantities used in this 

comparison were detuning with amplitudes, dynamic aperture (DA) and momentum 

apertures (MA) measured through injection efficiency, beam lifetime and loss 

distribution. A combination of relatively new techniques such as the Frequency Map 

Analysis (FMA) and the nonlinear resonant driving terms was used to establish the 

correct nonlinear model of the storage ring. To this aim the Diamond storage ring has 

been equipped with a pair of pinger magnets which can excite betatron oscillations in 

the horizontal and vertical planes independently. Furthermore all beam position 

monitors (BPMs) have turn-by-turn capabilities. 

In Figures 4 and 5 we report the comparison of the Frequency Map measured in the 

machine with the one obtained from tracking particles in the computer model of the 

storage ring. Data refer to the operation of the machine without Insertion Devices (IDs). 

The remarkable agreement is the result of a very careful description of the machine 

model which takes into account all the measured multipolar errors in the dipoles, 

quadrupoles, sextupoles and includes the fringe fields in the dipole and quadrupoles. 

The only parameters adjusted in this comparison were the calibration of the magnetic 

field vs applied current for the eight sextupole families and the magnitude of the 

assumed normal octupolar term in the dipole magnets.   

An alternative technique for the analysis of the betatron motion based on the 

measurement of the nonlinear resonant driving terms was also developed at Diamond. 

This is based on the measurements of the amplitude and phase of the spectral lines 

excited in the spectrum of the betatron oscillations by the nonlinear resonance driving 

terms. These measurements can be compared with the same information obtained from 

tracking data in the computer model of the storage ring and thus provide a method to 

compare the nonlinear beam dynamics on the real accelerator with the model. The 

discrepancies can be corrected by fitting algorithms which use the sextupole gradients 

as fit parameters. In this way the nonlinear machine model can be correctly 

implemented in the real accelerator. The results of the application of this technique to 

the Diamond storage ring are reported in [6]. 
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Figure 4: Measured DA (right) and measured FM (left): the magenta dots in the left graph 

correspond to initial beam conditions which are on a 6
th
 order resonance, the red points are the 

initial beam conditions which correspond to the 3Qx + Qy resonance. 

 

Figure 5: same as Figure 4 but data obtained form tracking particle in the accelerator model 

3.10.2.3 Beam Dynamics with IDs 

A good understanding of the beam dynamics in the bare machine (without IDs) is a 

prerequisite to the understanding of the beam dynamics in the machine when all IDs are 

operational. The analysis of the effect of the IDs is an active area of investigation, in 

particular since the user‘s demand that the minimum gap of the in-vacuum IDs was 

reduced from 7 mm to 5 mm.  

In terms of linear optics the only IDs which produce significant perturbations are 

the two Superconducting (SC) wigglers I15 and I12 operating at 3.5 T and 4.2 T 

maximum field respectively. While perturbation of the orbit is corrected locally by 

means of trim coils, the -beating introduced by the SC wigglers is corrected by feed-

forward tables which adjust the quadrupoles located in the corresponding straight 

sections. Theses table follow the ramp of the magnetic field of the two SC wigglers and 

restore the optics to below 5 %. 

In terms of nonlinear dynamics we have found that most of the IDs do not produce 

any significant change in the DA except the in-vacuum ID I04, which has a significant 

impact on the DA as shown in Figure 6. The reduction of the dynamic aperture was 

identified to be due to the crossing of the 3Qx + Qy resonance. A simple shift of the 
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betatron tune to a working point below this resonance was sufficient to restore the 

injection efficiency. 

 

Figure 6: Dynamic aperture with individual in-vacuum IDs closed to 5 mm gap as a function of 

the pinger voltage. The reduction of the DA with I04 closed is sufficient to impact the injection 

efficiency. 

3.10.3 Collective Effects 

Diamond operates usually in multibunch mode with a gap for ion clearing which 

can be made wider to accommodate a hybrid bunch for dedicated time resolved 

experiments. The nominal operation requires a chromaticity of 2 units in both planes to 

damp the multibunch instabilities. The main source of instability was identified to be 

Resistive Wall although evidence of fast-ion instability has been reported [7]. A 

transverse multibunch feedback is installed and allows operation of the ring in full fill at 

300 mA with zero chromaticity [8].  

Several campaigns of measurements were performed at Diamond to understand the 

machine impedance. Single bunch measurements allowed extracting the longitudinal 

and transverse broadband impedances. At the same time the results were compared with 

multiparticle tracking codes, e.g. sbtrack [9], to reproduce numerically the instability 

threshold and define an effective model of the impedance of the ring based on 

measurements with the beam. 

Bunch lengthening and energy widening curves and their comparison with 

numerical simulations are reported in Figure 7. The impedance required to reproduce 

the measurement consists of a broadband resonator (BBR) with Rs=20 k, fres=48 GHz 

and Q=1 and purely inductive impedance Z()=iL with L = 149 nH. Through the 

measurement and fit of the vertical TMCI (Transverse Mode Coupling Instability) at 

zero chromaticity in Diamond, a BBR impedance with RT=1 M/m, fres=6 GHz and 

Q=1 was obtained [7]. These parameters were used in the sbtrack tracking code to 

investigate the dependence of the TMCI current threshold with the chromaticity 

including the effect of the bunch lengthening induced by the longitudinal wake and a 

first simplified modelisation of the Landau damping effect induced by the tune spread in 

the transverse planes due to the sextupoles magnets. The inclusion of these effects 

significantly improves the agreement with the experimental data as shown in Figure 8. 
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Figure 7: Bunch lengthening (left) and energy spread widening (right) calculated with sbtrack 

(circles), in comparison with measurement (squares) in Diamond. See text for details. 

 

Figure 8: Measured (black squares) and calculated vertical thresholds versus chromaticity in 

Diamond. Left graph includes longitudinal wakefields, right graphs includes transverse tune 

spread due to sextupoles [9]. 

The analysis of single bunch instabilities was also performed by using ultra fast 

mm-wave detectors using Schottky Barrier Diodes in collaboration with Royal 

Holloway University London [10]. It was possible to clearly detect bursting above a 

current threshold of 1.9 mA per bunch in nominal operating condition for the storage 

ring. This bursting was also clearly correlated to quadrupole oscillations in the bunch 

length as measured simultaneously by a streak camera as shown in Figure 9. The 

analysis of the coherent emission bursting is now concentrating on the low-alpha mode 

(see later section). 

The vertical multibunch thresholds were measured and computed from the mbtrack 

code [9] including the resistive-wall and the BBR wake fields described above. A 

comparison of the results obtained is shown in Figure 10. Unlike with sbtrack where the 

beam current was explicitly ramped up until the threshold is reached, here the growth 

rate evaluated at a given current was used to deduce the threshold via equilibrium with 

the radiation damping. The experimental data show that increasing the chromaticity 

allows operation at 250 mA already with 1.5 units of vertical chromaticity (0.12 

normalised chromaticity) in a two third fill. The comparison with the simulated data is 

still in its preliminary stages: the discrepancies with the measured data is likely to be 

due to the fact that only BBR impedance obtained via the TMCI estimates was used in 
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the description of the impedance and no resistive wall contribution was considered so 

far. 

 

Figure 9: Oscilloscope traces of THz bursting of single bunch detected from a Schottky diode 

(left) and corresponding streak camera image (right). 

 

Figure 10: Calculated vertical multibunch threshold versus chromaticity in comparison with 

measurements 

3.10.4 Top-Up Operation 

Top-Up operation consists in the continuous injection of electrons in the storage 

ring to restore the operating current and make up for the lifetime losses. Injection occurs 

with the beamline shutter open, so that the experiments can continue their data 

acquisition during injection. In this way the experiments benefit from a constant photon 

flux with higher average values with respect to the previous ―beam decay‖ mode. At the 

same time, the constant heat load on the vacuum chamber of the storage ring and 

beamline optics allows a much improved long term stability of the electron and photon 

beams. Top-Up operation was introduced for the first time in October 2008 and Figure 

11 reports the current stability achieved over more than 4 days of continuous Top-Up 

operation. 

Before Top-Up could be implemented at Diamond, the risk of radiation doses being 

produced which could exceed the adopted dose limit of 1 mSv/year for staff, users and 

visitors, needed to be carefully assessed [11]. This included an extensive campaign of 
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numerical simulations to exclude the possibility for the electron beam to be channelled 

accidentally through the beamline apertures into the beamline hutches [12]. Numerous 

fault scenarios were investigated where the simultaneous occurrence of several errors in 

the setting of the magnetic elements and energy errors in the beam could conspire to 

create unacceptably high radiation doses. These studies showed the need for an 

additional beam interlock on the dipole currents in the booster-to-storage ring transfer 

line and storage ring to ensure that the injection energy in the storage ring is correct.  

A significant effort was made in the equalisation of the four injector kicker pulses to 

minimise the residual oscillation of the stored beam during injection. Residual 

oscillation were reduced to less than 250 m peak-to-peak and no users have yet 

reported problems in their data acquisition with such a level of beam perturbation 

during injection. Likewise the injection efficiency is continuously monitored and 

corrective actions are taken when the injection efficiency falls below 70%. 

 

Figure 11: Continuous Top-Up operation at 250 mA for more than 4 days. 

3.10.5 Low Alpha Operation 

Diamond users have shown interest in the generation of short radiation pulses for 

pump-probe experiments. The natural bunch length provided by the Diamond storage 

ring is 10 ps rms. Since time-resolved experiments would benefit from shorter radiation 

pulses, a research programme was put in place to investigate the options for generating 

ultra-short pulses (1 ps rms) at the Diamond storage ring [13]. The simplest way to 

reduce the X-ray pulse length is to shorten the electron bunches in the so called low-

alpha optics. Such optics also allow the generation of coherent THz radiation.  

Extensive optics studies have led to the definition of a low-alpha lattice which 

allows reaching 1 ps rms bunch length while maintaining a very small emittance (4 nm) 

and good dynamic aperture for injection [14]. Streak camera measurements have 

confirmed that the low-alpha lattice produces shorter electron bunches as low as 1 ps 

rms at very low beam current. In practice 2-5 ps rms bunches can be served to users 

with an average current of 10-100 A per bunch as shown in Figure 12. 

The low alpha lattice is now served to the users in dedicated users‘ time for about a 

week per year. The analysis of THz radiation with this lattice is ongoing and the first 

indication show that Coherent THz radiation, with the correct quadratic dependence 

with the beam current, can be achieved and will be delivered to interested users in the 

near future. 
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Figure 12: left: streak camera image of the electron bunch in normal operating mode (top) 

and low alpha mode (bottom); right: corresponding longitudinal profile. 

3.10.6 Beam Stability 

The stability requirements for third generation light sources are commonly defined 

in terms of beam dimensions, requiring that the position and angle stability of the beam 

orbit at the source point be less than 10% of the beam size and divergence respectively. 

These requirements have to be satisfied over widely different time scales, ranging from 

milliseconds to days.  

Due to the excellent foundation stability, the target of 10% beam size and 

divergence has been achieved without the need of any orbit feedback in the range 1-100 

Hz. Nevertheless a fast orbit feedback (FOFB) [15] was developed in order to control 

the orbit stability to well below 10% as well as to remove any effect due to ID gap 

changes At the same time a thorough analysis of the ground vibrations highlighted that 

most of the residual ground motion occurs in the frequency band 16-25 Hz. The causes 

of these vibrations were identified to be related to the operation of the water pumps of 

the cooling system, in conjunction with several structural resonances of the girder 

structure which occurred in the same frequency range [16]. Passive corrective actions 

were put in place to damp these vibrations by stiffening the supports of the pumps. The 

beneficial effect of these two measures are summarised in Figure 13 which show the 

integrated power spectral density (PSD) for the orbit motion with and without FOFB, 

before and after the passive measure describe earlier were put in place. It is clear that 

sub-m stability is comfortably achieved both in horizontal and vertical planes of 

motion. 

Concerning longer time scales, the introduction of Top-Up operation has 

substantially improved the long term stability as illustrated in Figure 14 which shows 

the angular stability of the beam as measured by an X-ray beam position monitor 

(XPBM) in a beamline for the case with (green) and without (blue) Top-Up operation. 

The red lines indicate the limits posed by the requirement of 10% beam size angular 

stability. The top graph refers to the horizontal plane, the middle graph to the vertical 

plane and the bottom graph shows the current variation with time. 
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Figure 13: Integrated PSD with and without FOFB on, before and after passive damping 

measures described in text. Right is the horizontal motion left is the vertical motion 

 

Figure 14: Improvement in beam stability in Top-Up mode (green lines) compared to the 

previous decay mode (blue lines), see text for details. 

3.10.7 Customised Optics 

A number of new requirements have arisen in connection with the later Phase II 

beamlines that have significant impact on the Diamond storage ring. For one beamline 

(I13) it is required to locate two in-vacuum undulators in one straight and in addition 

produce a horizontal focus of the photon beam at a given location. To achieve this the 

optics had to be redesigned to provide two minima of the β-functions in the vertical 

plane to accommodate two canted narrow gap IDs for each beamline branch. At the 

same time, the requirements for the control of the virtual horizontal focus in the two 

beamlines were satisfied by providing the horizontal β-functions with negative slope in 

both halves of the straight sections. This solution, shown in Figure 15, requires a new 

quadrupole doublet in the middle of the long straights as well as two additional 

quadrupoles at either end of the straight section. The effect on the nonlinear beam 

dynamics of these significant modifications of the linear optics were analysed with 

thorough tracking data and only minor detrimental effects on the lifetime and injection 

efficiency were found [17]. A similar arrangement will be employed for beamline I09, 
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studies having confirmed that two such optics modifications are acceptable from the 

beam dynamics point of view. 

 

 

 Figure 15: Optics functions in the long straight section 13, with (left) and without (right) the 

modification of the straight section. Straight 9 has a very similar design. 

The layout of straight section 10 will be modified to satisfy the requirement for a 

rapid switching of the radiation polarization. In this case no modification of the optics is 

required, but the layout will be modified to include five kicker magnets which are 

capable of generating independent closed orbit bumps at each of the two APPLE-II 

undulators, as shown in Figure 16. The fast switch of the polarisation is achieved by 

rapidly selecting which photon beam is sent down the beamline. A sinusoidal variation 

of the orbit bump at 10 Hz will be used initially. 

 

Figure 16: Schematics of the straight section 10 showing kicker magnets and the bump 

structure in state 1 (top part) and state 2 (bottom part) for fast polarisation switching [18]. 
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3.11.1 Introduction 

UK scientists have been active in the development of novel accelerators for several 

decades. In this newsletter article we will present the recent developments of laser-

driven plasma wakefield accelerators in the UK and focus on the results of a Research 

Councils UK Basic Technology Programme supported project led by the University of 

Strathclyde, the Advanced Laser Plasma High-energy Accelerators towards X-rays 

(ALPHA-X) project that started in 2002. This project, which initially involved several 

UK Universities (Oxford, Strathclyde, Imperial College,  St Andrews,  Abertay Dundee 

http://ler2010.web.cern.ch/LER2010/
http://mylab.institution.org/~mypage
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and Dundee) and two STFC laboratories (Daresbury and Rutherford Appleton 

Laboratories), and now also includes Lancaster University and support from the 

Cockcroft Institute and several international groups. Some aspects of ALPHA-X have 

also been supported by EU funds. By combining expertise in accelerator and plasma 

physics in the UK with the latest high power laser technology, rapid progress has been 

made in developing a reliable (dependent on the laser reliability)  ultra-compact laser 

plasma wakefield accelerator with remarkable properties, notably a high peak current, 

femtosecond duration electron bunches, low energy spread, low emittance,  and good 

shot to shot stability. Furthermore, excellent progress has also been made towards 

develop radiation sources based on wakefield accelerators. Apart from the pioneering 

achievements by the ALPHA-X teams in demonstrating controlled acceleration and 

applying the beams produced as a radiation source, one of the outcomes of the project 

has been the development of a state-of-the-art accelerator laboratory, as shown in Fig. 1.  

 

 

Figure 1: The ALPHA-X beam-line and plasma wakefield accelerator. 

The pioneering results from ALPHA-X are now the basis of a new centre of 

excellence, the Scottish Centre for the Application of Plasma-based Accelerators 

(SCAPA). This newsletter will present results from ALPHA-X project and briefly 

outline the objectives of SCAPA and the facilities that will be available. 

3.11.2 Laser-Driven Plasma Wakefield Accelerators  

Electron beam driven incoherent and coherent radiation sources have become 

indispensible tools for science and technology. The free-electron laser (FEL) requires a 

high brightness relativistic electron beam to produce brilliant coherent radiation over a 

wide spectral range from terahertz frequencies to X-rays [4-6]. They can be tuned over a 

large spectral range by varying the beam energy or the undulator parameters. They are 

used by an extensive user community probing the structure of matter and studying its 

evolution when subject to stimuli on ultra-fast time scales [5]. X-ray FELs are driven by 

large conventional accelerators based on microwave cavities limited to acceleration 

gradients of less than 100 MV/m. These limitations can be overcome using the huge 

electric fields available from charge separation in plasma, which provide the 

accelerating forces. The challenge is to create a travelling wave field matched to the 

particle velocities. Tajima and Dawson solved this by proposing using the 

ponderomotive force of intense laser pulses to drive plasma wakes, which in turn can 

rapidly accelerate particles to high energies [1], shown schematically in Figure 2.  
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Figure 2: Schematic of the plasma wakefield accelerator showing the scale length of the 

accelerating structure z ≈ p = c/p, where p is the plasma frequency. 

A relativistic electron, positron or proton beam can be substituted for the laser pulse 

because the Coulomb field expels plasma in a similar way to the ponderomotive force. 

Initial experiments exploring wakefield acceleration produced electron beams with very 

broad energy spreads (≈ 100%). However, over the last decade dramatic progress has 

been made in developing the laser wakefield accelerator (LWFA): millimetre-long 100 

MeV [7-9] and centimetre-long GeV [10] accelerators have been demonstrated and an 

understanding of the properties and injection mechanisms of the LWFA is being built 

up. The main investigations are being directed towards understanding, characterising, 

controlling and scaling up the LWFA [2,3]. Serious efforts to develop the wakefield 

accelerator by many groups are being made because of its potential as a compact driver 

of FEL and synchrotron sources. Recent proof-of-principle demonstrations of undulator 

synchrotron radiation sources driven by LWFA have been carried out initially in the 

visible [11,13] and more recently extended to the VUV [12].  Measurement of the 

synchrotron spectrum in these experiments [13] indicates an electron beam relative 

energy spread of the order of 1%. VUV radiation from an undulator at Strathclyde 

(shown in Figure 3) has recently been measured. 

 

 

Figure 3: The ALPHA-X undulator 

 To utilise the LWFA as a FEL driver it is necessary to produce a high brightness 

electron beam with a very low energy spread. FELs require beam r.m.s. energy spreads 
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less than the gain parameter [14], which is of the order of 10
-3

 for the X-ray FEL.  

Energy spreads of 5 – 10% (1-10% when instrument resolution is accounted for) have 

been measured in LWFA experiments [14]. Recent results from the ALPHA-X beam 

line show that relative energy spreads of less than 0.5% can be obtained at ≈100 MeV 

[30,31]. It is generally accepted that a two-stage or a composite injector-accelerator 

LWFA will be needed to reach the several GeV energies with narrow energy spread 

required for an X-ray FEL[3].  Apart from requiring peak currents in excess of 1 kA for 

high gain, both   and the normalised r.m.s. transverse emittance, n, in a slice equal 

to the FEL cooperation length  must be low.  X-ray FELs require GeV accelerators with 

beam emittances and energy spreads of the order of 1  mm mrad and 10
-3

, respectively 

[5,6,15,20]. LWFAs have promising characteristics because of the size of their 

accelerating structures, which is of the order of the plasma wavelength. Recent 

measurements on the ALPHA-X beam line, (right hand side of Figure 3, which also 

shows a detail of the undulator) show that the normalised transverse emittance is of the 

order of 1  mm mrad [32]. The electron bunch is constrained to a small fraction of p, 

which restricts the duration to <<10 fs for plasma densities in the range of 10
18

 – 10
19

 

cm
-3

 [17,90,20]. Ways of controlling the energy spread have been studied and beams 

with a measured r.m.s. energy spread of 3.1% have been produced using colliding laser 

pulses [18].   

3.11.3 Pioneering Results  

Further developments of wakefield accelerators were made possible by the rapid 

advances in high power lasers. The first experimental demonstration was carried out in 

1995 by a group led by Imperial College using  high power lasers at RAL, to 

demonstrated the existence of the plasma wake and inferred an accelerating gradient of 

more than 100 GV/m, and succeeded in producing electron beams with 100% energy 

spread characterised by a Maxwellian momentum spread.   For nearly a decade little 

progress was made to improve on this and the scientific community was sceptical about 

the viability of the plasma wakefield accelerator as a workable device. In the mean time, 

progress in the development of high power lasers resulted in the development of a new 

generation of table top terawatt lasers based on Ti:sapphire CPA amplifiers, which were 

capable of producing laser beams with intensities in excess of 10
18

 Wcm
-3

 and pulses as 

short as several 10s of femtosecond.  This advance in laser technology was crucial for 

the next development of wakefield accelerators and several landmark experiments 

followed. These included the first demonstration of controlled acceleration in gas jets 

and the work was published in a trio of letters to Nature in 2004 by UK, US and French 

teams [7,8,9]. The pioneering UK experiments at RAL involving Imperial College, 

RAL and Strathclyde and were part of ALPHA-X [7]. These results completely 

transformed the landscape of laser-driven plasma wakefield accelerators. Initially, 

controlled acceleration to around 100 MeV was demonstrated but this was followed up 

in 2006 with extensions of the accelerator length using preformed plasma waveguides, 

which resulted in demonstration of   GeV beams in a collaboration between Berkeley 

and Oxford [10] (also part of the ALPHA-X project [20]). Around the same time, a 

group at UCLA used the SLAC accelerator to demonstrate the so called ―afterburner‖ 

electron beam driven plasma wakefield accelerator, where a 42 GeV electron beam was 

used to accelerate trailing electrons to 85 GeV.  
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Figure 4: The ALPHA-X plasma waveguide capillary, after one year use in laboratory. 

A very important part of the wakefield accelerator is the plasma media which 

support the plasma density waves and bubble structures. Depending on the application, 

plasma in the range of 10
17

 – 10
19

 cm
-3

 are required (i.e. for 0.3 GV/cm – 3 GV/cm). To 

achieve significant acceleration the laser pulse must be guided beyond its usual 

Rayleigh diffraction length. Two methods are used. The fist relies on relativistic self-

focussing of the laser beam in the plasma. For sufficiently high laser intensities plasma 

electrons become relativistic which increases the permittivity and produces self-

focussing which exactly compensates diffraction for matched laser beams. This has the 

advantage that no preformed plasma is required. The laser pulse ionises gas in a gas jet 

or cell and subsequently forms a relativistically self-guided channel while creating the 

plasma density wake and accelerating self injected particles. An alternative method is to 

use a preformed plasma channel waveguide or a gas filled hollow waveguide as a 

guiding structure. The preformed plasma channels provides an elegant method 

(developed by Oxford) to guide intense laser pulses over several centimetres without 

loss [33]. Furthermore, complex shapes of capillaries supporting the plasma waveguide 

can be manufactured using laser-micromachining methods (originally developed by 

Strathclyde) [20], which allows integration of injectors, modifying laser and/or plasma 

properties, curving plasma channel waveguides etc.. An example of a plasma 

waveguide is shown in Figure 4. This type of preformed plasma waveguide was used in 

the 1 GeV wakefield acceleration demonstration experiments at Berkeley in 2006 [10]. 
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Figure 5: 135 MeV beam measured on the ALPHA-X beamline 

The ALPHA-X beam line, shown in Figure 5, has been used to completely 

characterize the electron beam from a wakefield accelerator in the range of 50 – 200 

MeV using 2 mm gas jet. Very low energy spread beams are obtained when the 

Coulomb field of bunch partially flattens out the acceleration potential. This beam 

loading effect has an optimum at low charge. Energy spreads <1% have been measured 

[8] when the electron beam is focused by a triplet set of quadrupoles, as shown in 

Figure 6.  Focusing also improves the pointing stability of the accelerator [29].  

 

 

Figure 6: focussing of a 100 MeV beam  using a PM triplet quadrupole magnets on the 

ALPHA-X beamline [26]  

Direct energy spread measurements shown in Figure 7 have been confirmed by 

measurements of undulator spectrum, shown in Figure 8 [13]. Recent results from the 

ALPHA-X project are: quad focusing, emittance, beam stability, energy spread. 

no 
quads 

quads 
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Figure 7: 90 MeV Electron beam spectrum measured on the ALPHA-X beamline [30,31]. 

 

Figure 8: 1% energy spreads from a wakefield accelerator measured using an undulator as a 

spectrometer. Dots are measurements and line is the calculated optical spectrum using the 

measured electron beam energy spectrum [11.13]. 

Measurement of the energy spread, emittance, charge are consistent with a few 

femtosecond duration high brightness electron bunch with a peak current of the order of 

1 kA. For a FEL using a LWFA beam to be useful for applications experiments it is also 

necessary to have a stable beam. The beams from the ALPHA-X beam line now 

regularly produce beams with an electron beam on every laser shot and with a beam 

energy that fluctuates in energy by about 5% at 100 MeV [31] and less than 2.5%  (as 

shown in Figure 9) when the laser stability is optimized.  
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Figure 9: 135 MeV beam shot-to-shot measurement of mean energy: standard deviation 2.6%. 

3.11.4 The Scottish Universities Physics Alliance Centre of Excellence:  SCAPA 

Scotland‘s new pooling efforts, which includes the Scottish Universities Physics 

Alliance (SUPA), are providing new opportunities to make coherence out of the 
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diversity of the 8 Scottish universities forming the alliance. With investment in SUPA 

from the Scottish Funding Council and major support from the Universities, there is 

now a realistic opportunity to create a very competitive research environment to harness 

some of Scotland leading intellectual effort on a scale sufficient to make a difference, 

where individual effort would otherwise not be competitive. One of the flag-ship 

projects is to set up a new centre for developing laser-plasma accelerators and applying 

them to a wide range of problems. This initiative, led by the University of Strathclyde, 

will provide unique and powerful tools in a state-of-the-art laboratory for SUPA 

scientists and their collaborators.  The new centre, the Scottish Centre for the 

Application of Plasma-based Accelerators (SCAPA), will bring together a 

multidisciplinary team from the Universities of Strathclyde, Glasgow, West of Scotland, 

Herriot Watt, Edinburgh and Dundee, to harness the electrostatic forces of fully ionised 

gas, or plasma, using high power lasers, and accelerate charged particles to high 

energies. These high energy particles will then be used to produce electromagnetic 

radiation over a wide spectral region from terahertz frequencies to gamma rays, and 

particles such as electrons, ions, neutrons, etc., which can be used as powerful tools for 

the scientists. The feasibility of a LWFA driven free-electron laser, to generate 

femtosecond duration pulses of coherent X-ray radiation, will be investigated. 

Furthermore, the huge forces of the plasma will also allow very short pulses of gamma 

rays to be produced and high energy protons and heavier ions to be accelerated to high 

energy. These ―tools for scientists‖ will be used to probe the structure of matter in many 

important areas of science and technology. Examples of these applications include the 

development of detectors for nuclear and particle physics and medical imaging, 

oncology, investigating medical radioisotope production, probing dense matter for 

nuclear fusion, probing nuclear reactions etc. 

 

 

Figure 10: Layout of SCAPA showing ground floor plan. Lasers and ion labs on second floor 

(not shown).  

To achieve this ambitious programme several new appointments will be made 

across SUPA and a new temperature controlled and shielded laboratory of about 900 

m
2
, layout shown in Figure 10, will be constructed at Strathclyde on an ultra-stable 

platform. This will include radiation shielded areas with three beam lines, a control 

room, areas for target preparation and several laser rooms and will coincide with 

refurbishment of the Department of Physics at Strathclyde. 

Properties of the SCAPA synchronised electron, ion and photon sources: 

 High quality, high current density electron bunches  

 Incoherent X-rays  
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 Coherent IR to X-ray radiation  

 High energy ions 

 High power laser beams: 

o Wavelength: 800 nm 

o Duration: 20-30 fs 

o Peak power: 200 – 300 TW (possible extension to 1 PW in future) 

o 10 Hz repetition rate 

o 2 beams with adjustable power and polarisation 

o Contrast >10
9
 

 

Underlying all this is the compactness of the laser-plasma accelerator. Plasma can 

sustain much higher forces than any other medium and a large variety of particle and 

radiation sources can be developed with a much reduced infrastructure need (―under one 

roof‖). The activities will include investigations of intense radiation field-matter 

interactions, probing hot dense matter, radiation and particle transport in matter, nuclear 

physics and development and characterization of particle detectors, health sciences and 

materials.  

SCAPA will provide the infrastructure for challenging experiments and be well set 

up for long term projects.  
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3.12 The New Light Source Project 

Richard P. Walker, on behalf of the NLS Source Design Team 

Diamond Light Source, Harwell Science & Innovation Campus, Oxfordshire,   

OX11 0DE, UK 

Mail to:  r.p.walker@diamond.ac.uk 

3.12.1 Introduction and Current Status 

The New Light Source (NLS) project [1] was launched in April 2008 by the UK 

Science and Technology Facilities Council (STFC) to consider the scientific case and 

develop a conceptual design for a possible next generation light source based on a 

combination of advanced conventional laser and free-electron laser sources. The design 

of the NLS facility has drawn on expertise from STFC Daresbury and Rutherford 

Laboratories - which includes the Accelerator Science and Technology Centre (ASTeC) 

and Photon Science Department (PSD) – as well as Diamond Light Source, the 

Cockcroft and John Adams Institutes, and other Universities. 

The NLS project has been from its inception ―science driven‖ i.e. the first step was 

to define the long-term key science drivers, the second step was to define the technical 

solution. A series of workshops and meetings were held in 2008 to define the main 

scientific themes that required a new light source capability in the UK and led to the 

publication of a Science Case in September 2008 which was subsequently approved by 

the relevant STFC Committees, giving the go-ahead to proceed to a conceptual design 

of the facility. 

Further scientific consultation and design work then led to an updated Science Case 

and Outline Facility Design which was published in July 2009 [2]. The NLS project was 

then reviewed in detail as part of STFC‘s overall science prioritization exercise, 

involving extensive external peer review and international panel experts. The review 

concluded that ―The NLS project would have very high impact. It would have a major 

lead in both a national and international context. It would be a unique, world leading 

facility in the area of biological imaging and would open up exciting new research areas 

and develop new communities.‖ It also noted that ―NLS could develop significant 

synergies with other national and international facilities.‖ Unfortunately however, 

despite the extremely positive scientific outcome of the review, given the budget 

available, STFC decided that no further funding should be given for NLS development 

at this time. The review did however recommend that ―STFC re-assess the NLS project 

in 3-5 years time in order to ensure that STFC considers future user needs.‖  

Before drawing this initial phase to a close, work on the NLS project will continue 

over the next few months in order to complete the Conceptual Design Report (CDR) as 

originally planned, both as a starting point for any future design work as well as for the 

benefit of the wider accelerator community.  

In this report we present an overview of the NLS design, referring the reader to 

various published reports and the forthcoming CDR for more details. 

  

http://mylab.institution.org/~mypage
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3.12.2 Facility Overview 

3.12.2.1 Required Source Properties and Main Parameters 

The NLS Science Case demands high repetition rate, ultrashort, high brightness, 

spatially and temporally coherent soft X-rays and a suite of light sources tightly 

synchronised to these spanning the THz to vacuum UV range. To realise this goal a 

unique facility has been designed which combines the following sources: 

 Free-electron Lasers (FELs) will cover the range from 50 eV to 1 keV in the 

fundamental. Initially this will be covered by three FELs with overlapping 

tuning ranges as follows: 

          FEL-1: 50-300 eV,      FEL-2: 250-850 eV,      FEL-3: 430-1000 eV. 

Harmonics will extend the range up to 5 keV. 

 Conventional laser sources, tightly synchronized to the FEL sources, will cover 

the range from 60 meV (20 µm) to 50 eV.  

 Coherent THz/IR radiation from 20–500 µm will be generated by the electron 

beams after passing through each FEL, for optimal synchronization between the 

FEL pulse envelope and THz/IR field for pump-probe experiments.  

 

The required properties of the FEL sources are as follows: 

 High brightness, >10
11

 photons per pulse at 1 keV 

 High degree of both temporal and transverse coherence 

 High repetition rate of regularly spaced pulses, 1 kHz initially, increasing in 

future phases to 10 kHz, 100 kHz and eventually to 1 MHz 

 Ultra-short pulses of 20 fs FWHM or less initially, with the possibility to reduce 

to the fs/sub-fs range at a later stage 

 Variable polarization 

 

 

Figure 1: Schematic layout of the NLS. 

Figure 1 shows a schematic layout of the proposed facility. The required high 

repetition rate of regularly spaced pulses demands a superconducting linac operating in 

continuous wave (CW). An energy of 2.25 GeV is required to obtain the required 

photon energies, with the selected undulator parameters. A common electron energy for 

all three FELs, together with variable gap undulators, assures the required independent 

operation and easy tunability of the three FELs. An alternative accelerator design based 

on a recirculating linac has also been studied with encouraging results [3], however the 

degree of optimisation is not yet at the level of the single-pass linac scheme. 

The requirement for FEL pulses that are temporally coherent, close to Transform 

Limited, with smooth profiles reproducible from shot-to-shot demands that the FELs 
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operate in the seeded mode, rather than the more usual SASE mode. This also 

guarantees the best synchronization between the FEL pulses and conventional laser 

sources for pump-probe experiments.  

A further requirement of the FEL sources is that they provide fully variable 

polarization. The current undulator design is based on the well developed APPLE-II 

scheme. An initial assessment of alternative schemes (APPLE-III, Delta and crossed-

undulators) has been made [4], but further work would be required before definitely 

selecting one of these as part of the baseline design. 

3.12.2.2 Injector 

 

Figure 2: Schematic layout of the baseline injector. 

Figure 2 shows a layout of the injector region, comprising the photocathode gun, 

diagnostics and 1
st
 accelerating module. The baseline electron gun is a modified version 

of the successful DESY FLASH/XFEL gun, optimised for 1 kHz operation [5]. A 

detailed FEA study has been carried out to verify operation at 1 kHz using ANSYS [6]. 

The injector has been optimised using SUPERFISH [7] to calculate the gun cavity field, 

POISSON for the solenoid field, and ASTRA [8] for the beam dynamics simulation 

including space-charge. The parameters of the optimisation were the laser spot size, the 

length of the flat top pulse profile, the location and strength of the solenoids, and the 

location of the first accelerating module. The resulting performance after the first 

accelerating module (at ~110 MeV) is given in Table 1 for various operating modes and 

bunch charges. 

Table 1: Optimised injector performance for various operating conditions. 

 
 

A second-stage higher repetition rate gun is also under study. Both VHF normal 

conducting [9] and L-band superconducting options have been considered and appear 

suitable; the final choice will requiring further detailed study as well as R&D work. 

seeded FELSASE FELShort SASE FEL

112.6110.2106.2106.2mean E (MeV)

6.2E-63.4E-61.1E-61.0E-6central slice E/E

14.512.543.5length fwhm (ps)

0.3050.1430.0970.058central slice  (mm mrad)

0.3080.1540.1160.065projected  (mm mrad)

0.2 nC50 pC5 pC2 pCParameters
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0.3080.1540.1160.065projected  (mm mrad)

0.2 nC50 pC5 pC2 pCParameters
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3.12.2.3 Linac 

Table 2: Linac accelerating module parameters. 

 
A high repetition rate of equally spaced pulses, initially 1 kHz and increasing in 

subsequent phases up to 1 MHz, demands superconducting technology for the linear 

accelerator driver, operating in CW. The accelerating modules will be based on the well 

developed TESLA/XFEL design with appropriate modifications to accommodate the 

higher dynamic head load, higher power couplers and higher order mode absorbers 

demanded by CW operation. A detailed analysis has been carried out to optimise the 

accelerating gradient taking cost and other factors into account. A total capital + 10-year 

operating cost shows a broad minimum (within 5%) in the range 14.9-19.2 MV/m, 

however with electricity costs doubled this would move downwards to 13.3-17.5 

MV/m. A nominal gradient of 15 MV/m has been selected which is towards the bottom 

of the range, not only to take into account likely future electricity cost increases, but 

also to increase cavity production yield, reduce risk of field-emission and poor cavity 

performance, and increase reliability and redundancy. This results in a requirement for 

18 cryomodules to reach the required 2.25 GeV. 

3.12.2.4 Accelerator Optimisation 

The linac must not only accelerate the beam to the required energy but also create a 

beam that is suitable for driving a FEL by compressing it longitudinally in order to 

produce a high peak current (~ kA), while still preserving the high transverse beam 

quality (normalized emittance) produced by the injector. The operation of the FEL in a 

seeded scheme adds further constraints to the target beam quality. Not only do the 

electron beam slice beam parameters have to be constant along the length of the seed 

laser pulse in order to preserve temporal coherence, but this is required over a length 

that includes the relative timing jitter between the electron bunch and seed laser pulses. 
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The final linac configuration that was arrived at following extensive optimisation 

studies [10] is illustrated in Figure 1. Three bunch compressors (BC1-3) are located at 

optimised locations to compress the electron bunches while maintaining high beam 

quality. A 3rd harmonic cavity is included to optimise the beam dynamics by linearising 

the longitudinal phase space. A laser heater serves to introduce a controlled amount of 

energy spread in order to overcome the microbunching instability. 

The code elegant [11] was used to optimise the linac parameters taking into account 

the non-linear terms in the RF and the bunch compressors, the effects of collective 

effects induced by Coherent Synchrotron Radiation (CSR), longitudinal space charge 

and cavity wakefields. An optimisation strategy for the linac working point 

(accelerating module gradient and phases, and bunch compressor strengths) was 

devised, which uses a fast evaluation of the FEL gain length and saturation power for 

each longitudinal slice of the electron beam using the Xie parameterization [12]. A 

multi-objective multi-parameter optimiser based on a genetic algorithm with a parallel 

search [13] was then used to produce an electron bunch with small gain length and high 

saturation power over as much of the electron bunch as possible. Many thousands of 

linac configurations were explored and the best solutions were used for further final 

optimisation. The electron beam properties for the final solution are shown in Figure 3.  

It can be seen that the bunch has a region of roughly constant FEL gain length of 

approx. 1.5 m (at 1 keV photon energy) covering more than 100 fs, with 1.2 kA peak 

current, normalized emittance of approx. 0.35 mm mrad and  < 2 × 10
-4

 relative energy 

spread.  

 

 
 

 
 

Figure 3: Optimised electron beam properties at the entrance of the FELs. 
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The final linac configuration was verified using full ―start-to-end‖ simulations, 

tracking the electron bunch produced in the injector (calculated with ASTRA) through 

the linac and post-linac collimator and spreader (using elegant) and then importing this 

distribution into the FEL simulations (using Genesis[14]) to calculate the output 

radiation (see below). Furthermore, this process has been repeated for ―jittered bunches‖ 

i.e. complete start-to-end simulations with randomly applied voltage, phase and bunch 

compressor errors in the injector and linac, to verify the stability of the FEL radiation 

pulses. The results of these ongoing simulations will be presented in the conceptual 

design report. 

3.12.2.5 Post-Linac Beam Transport and Collimation  

The linac is followed by a collimation section which is necessary to deal with the 

beam halo which may be generated by dark current in the injector and in the 

accelerating modules, scattering from residual gas particles, as well as off-energy beam 

tails caused by CSR in the bunch compressors [15]. If not collimated, this beam halo 

can demagnetize the undulator magnets and can activate the components of the facility. 

The collimation scheme devised for the BESSY FEL design [16] has been adopted for 

NLS. Transverse collimation is achieved using two betatron collimators separated by 

/2 phase advance in each transverse plane. A dog-leg located after the betatron 

collimation section contains energy collimators at either or both high dispersion points. 

Following the collimation section the beam enters the spreader which consists of a 

long FODO section with a series of extraction points to direct the individual electron 

bunches into the different FEL lines, or the diagnostics section. Each extraction section 

consists of two Triple Bend Achromat (TBA) arcs, in which a kicker and septum 

replace the first dipole of the first TBA arc. The spreader optics is similar to that of the 

LBNL design [17] with the addition of sextupoles for a better control of non-linear 

effects. Such a scheme was chosen for its flexibility to adjust repetition rates for the 

individual FEL beam lines as well as its adaptability for increasing the number of FEL 

beam lines in the future. One of the lines parallel to the FELs is a diagnostic section 

which incorporates a transverse deflection cavity for full slice analysis of the electron 

beam. With this arrangement sophisticated beam diagnostics can be carried out on-line, 

by occasionally deflecting bunches into the diagnostics line.  
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3.12.2.6 Free-Electron Lasers 

 

Figure 4: Schematic of the harmonic cascade FEL scheme. Red and blue blocks indicate 

individual undulator sections, each 2.5 m long. 

To provide the required temporal coherence of the FEL radiation each FEL will be 

seeded with laser pulses, 20 fs long, obtained from High Harmonic Generation (HHG) 

in gases. Since HHG sources of the required intensity are not currently available above 

100 eV, a one- or two-stage harmonic generation scheme is used to provide FEL 

radiation at up to 1 keV [18, 19], as shown schematically in Figure 4. Figure 5 shows 

the calculated FEL output from FEL-3 at 1 keV. It can be seen that the pulse is quite 

smooth, with a width of ~4.7 m (16 fs) FWHM, a peak power of 2 GW and a 

linewidth of ~2.3 10
-4

 FWHM. The time-bandwidth product is therefore tf ~ 0.9, 

approaching the Fourier Transform limit (0.44). It is believed that this result can be 

improved with further optimisation of the scheme. 

 

 

Figure 5: Calculated FEL output at 1 keV. 

3.12.2.7 Experimental Stations 

Eight initial experimental stations are currently planned. Each FEL will have one 

experimental station with directly focussed beam and one with a grating 

monochromator to improve spectral resolution and/or filter out unwanted spectral 

components [20]. In addition a time-preserving grating monochromator is foreseen on 

FEL-1, and a crystal monochromator on FEL-3 for accessing the harmonics in the range 

2-5 keV. The photon beam transport region has been designed to avoid the optical 

components being damaged by the high peak power of the FEL radiation. 
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3.12.2.8 Buildings & Services 

Figure 6 shows the overall layout of the facility. It can be seen that with this 

particular arrangement the ―straight-ahead‖ direction is unobstructed, which allows the 

possibility of extending or building additional FEL and Experimental Halls at a later 

date, with the option also of extending the linac to higher energy. 

 

Figure 6: Layout of the NLS facility. 

The favoured construction method is illustrated in Figure 7. The linac tunnel is built 

by shallow ―cut & cover‖ with an earth mound on top. An earlier version saw the RF 

services building located on top of the earth mound directly above the linac tunnel, 

however for stability as well as cost reasons this has now been moved to the side, as 

shown in the figure. 

 

 
Figure 7: Cross-section of the linac tunnel and RF services building. 
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3.13.1 Introduction 

The following describes some ideas for new types of FEL sources which have been 

studied by UK researchers over the past few years. The aims of many of the ideas are to 

improve the temporal coherence and shorten the duration of the light pulses generated. 

While some of the work was directed towards specific FEL projects (the now defunct 

4GLS and NLS projects) other work is more general. 

3.13.2 Regenerative Amplifier, Low-Q Cavity FELs 

An interesting type of FEL that has yet to be demonstrated at photon energies in the 

VUV and beyond is the Regenerative Amplifier FEL (RAFEL). These sources have the 

potential to generate trains of pulses with high peak and average powers of very good 

temporal coherence with near Fourier transform limited pulses.  

In essence the RAFEL is a high gain FEL amplifier, which is shorter than the high 

gain SASE saturation length, placed inside a low-Q cavity. The cavity provides 

sufficient feedback to dominate shot-noise at the beginning of the undulator and to 

allow the amplifier to saturate. For laboratory scale cavity lengths such a set-up requires 

electron bunches entering the cavity at frequencies in the MHz range such as those that 

can be provided by a super-conducting Energy Recovery Linac (ERL). Like cavity-

based FELs in the IR, the design allows cavity length tuning of the radiation pulse 

length.  

Such a RAFEL design was incorporated into the 4GLS project in the UK. This 

RAFEL was designed to generate radiation pulses in the 3-10eV photon energy range 

[1]. Because little was available in the literature on RAFEL design at shorter 

wavelengths, significant effort went into ensuring that, at least using full 3D FEL and 

cavity optics simulations [2], such a system would indeed work. The RAFEL design at 

these photon energies and with a cavity feedback factor of the output power to the 

http://pbpl.physics.ucla.edu/~reiche/
http://mylab.institution.org/~mypage
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undulator entrance of only a few percent proved to be very robust with respect to cavity 

tolerances.  

In order to investigate how small the cavity feedback factor could be reduced while 

retaining good temporal coherence, a generic RAFEL design, shown in Fig. 1, using 

scaled units was considered [3].  

 

 

Figure 2: Schematic showing a generic high gain RAFEL system. 

 

The feedback fraction F , required to optimise the temporal coherence and the 

output power 
2

1A , was found to occur when the feedback power 
2

1F A  is 

approximately double the shot noise power 
2

0A .  This may be achieved with cavity 

feedback factors as surprisingly low as F  5×10
-6

. 

Using the optimum feedback fraction, the average time bandwidth product is only 

double that of a Fourier transform limited Gaussian pulse. This is more than five times 

better than the equivalent SASE result. These results indicate that there is significant 

scope in extending the low feedback RAFEL concept to photon energies in the XUV 

and possibly further. The possibility of combining harmonic generation methods and 

RAFELs also exists and these exciting possibilities will be the subject of future 

research. 

3.13.3 Near Fourier Transform Limited FEL at 1 keV Photon Energy 

One of the main problems of an FEL high-gain amplifier that starts from the 

intrinsic spontaneous noise signal (Self Amplified Spontaneous Emission) is that the 

output consists of a series of chaotic spikes with poor temporal coherence [4]. (An 

exception occurs if the electron pulse is sufficiently short that it generates only one such 

spike, however the peak radiation power and pulse energy is lower.)   

A method of improving the temporal coherence is to seed the FEL interaction with a 

coherent laser signal at the FEL resonant wavelength that dominates that of the 

spontaneous noise signal. The amplified seed retains its, assumed good, initial temporal 

coherence properties. This was the approach taken in the UK‘s 4GLS project which had 

an FEL amplifier designed to operate in the 10-100eV photon energy range and seeded 

by a ‗conventional‘ High Harmonic Generation laser source [1, 5]. However, this 

approach does not work if no such seed exists at the fundamental FEL resonant 

wavelength!  

This was the case for the design specification of the UK‘s New Light Source project 

[6] which aims to generate temporally coherent pulses of up to 1keV photon energy in 

pulse durations of ~20fs. Other FEL designs which attempt to generate such output e.g. 
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[7, 8] use the method of High Gain Harmonic Generation (HGHG) [9] to attain these 

temporally coherent photon energies.  

A schematic of the scheme is shown at the top of Fig. 2. The high power seed laser 

(λ~250nm) interacts with the electron beam within a short modulator undulator resonant 

with the laser seed. The interaction generates an energy modulation in the electron 

bunch of period equal to the seed laser wavelength. The electron bunch is then passed 

through a magnetic chicane to convert the energy modulation into a periodic density 

modulation, or bunching at the laser wavelength. There are also Fourier components of 

the bunching at higher harmonics of the seed laser wavelength. On passing into a 

radiator undulator tuned to one of these higher harmonics, the bunch radiates strongly 

and coherently at the harmonic wavelength.  In principle, the process can now be 

repeated using this harmonic radiation to act as the new modulating seed. However, the 

process needs to be shifted to a ‗fresh‘ part of the electron bunch, which has not 

undergone any previous energy modulation, to alleviate the effects of a deteriorating 

electron beam energy spread.  This shifting is achieved by the ‗Fresh Bunch Chicane‘. 

If the 3
rd

 or 5
th

 harmonic is generated at each stage then 4 stages would be required to 

reach the target 1keV photon energy (1.24nm).  

 

 Figure 3: Schematic comparing the layout of two FEL schemes—the Laser Seeded HGHG 

Cascade FEL (top) and the HHG Seeded Cascade FEL (bottom). 

 

In the scheme proposed for NLS [10] is shown in the bottom schematic of Fig. 2. 

(This scheme has similarities with the University of Wisconsin-Madison‘s WiFEL 

proposal for a XUV/soft x-ray FEL facility [11].) The first two stages of the HGHG 

scheme are effectively replaced by using an High Harmonic Generation laser system to 

generate radiation at ~12nm. Only two 3
rd

 harmonic stages are then required to obtain 

the target ~1keV photon energy. For the first stage the power available from the 12.4 

nm HHG seed is significantly lower than that available from the 250nm seed of the 

HGHG scheme. The first modulator undulator must therefore be longer to achieve the 

required energy modulation – the high-gain FEL interaction is used to amplify the seed 

and electron bunch energy modulation amplitude. Furthermore, the FEL interaction 

itself develops the required density modulation so that the chicane before the first 

harmonic radiator is used to simply enhance and/or optimize the bunching. As with the 

HGHG scheme this density modulation, or bunching, contains higher harmonic 

components, and after the first chicane the electron bunch enters an undulator tuned so 

that it‘s fundamental is resonant at one of these harmonics. Unlike HGHG this 
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undulator acts primarily as another modulator, not a radiator. The second chicane is 

then used to optimize the harmonic bunching of this interaction before the electron 

bunch enters the final radiator undulator tuned so that its fundamental is resonant at one 

of the harmonics of the second modulator. An initial strong coherent emission is 

generated in the final radiator and then amplified exponentially to saturation. Because 

the radiation power never approachs saturation value within the first and second 

modulators, the energy spread within the seeded part of the bunch is sufficiently small 

to allow exponential growth in the final radiator. Hence, the electrons are sufficiently 

‗fresh‘ to negate the need for the ‗fresh bunch‘ bunch chicanes. 

Results of a full 3D simulation [10] using a realistic electron bunch generated from 

a start-to-end simulation that has undergone laser heating [12] of the NLS design 

scheme operating at 1 keV photon energy are shown in Fig. 3.  Both the temporal 

duration of ~11fs and the time-bandwidth product of Δν Δt  1 demonstrate that good 

quality FEL output can be generated up to the ~1 keV photon energy level. 

 

        

Figure 4: Genesis 1.3 simulation results of the NLS FEL-3 operating at 1 keV, using a realistic 

electron bunch with a laser heater. Left shows the output pulse temporal profile. Right shows 

the pulse spectrum. 

3.13.4 Axial Mode Generation and Locking in a FEL Amplifier 

With the advent of coherent x-rays at 1.5Ǻ from LCLS [13, 14] and with several 

similar sources under construction or proposed, the ability to achieve bright spatial 

imaging of atomic processes is now possible. The next major milestone in light source 

development will be to achieve temporal resolution on the attosecond timescale which 

will then give science the ability to resolve atomic and molecular processes on the 

spatiotemporal scales at which they naturally occur.  

It is no surprise, then, that there is significant effort pursuing this goal in FEL 

designs (see [15] and refs. therein.)  Here, we focus on the ideas on the generation and 

locking of axial modes in an FEL amplifier presented in [16] and extended in [17, 18]. 

The concept of mode-locking in a FEL amplifier uses similar concepts borrowed 

from conventional cavity lasers where mode locking [19] is able to reduce pulse lengths 

down to a few femtoseconds. In these conventional lasers, the axial modes of the laser 

cavity have a frequency separation of 2 /c s   , are usually uncoupled and have 

little or no relative phase relationship between them. This results in a c.w. output with a 

varying power envelope from the laser. By introducing a modulation in the lasing 

interaction at the cavity mode separation, each mode develops sidebands that overlay 

neighbouring modes and allow a coupled mode interaction. This can lock in a phase 

relationship between each mode.  When this locking occurs, the wavefronts of each 
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mode constructively interfere only at certain periodic output times, spaced by the round 

trip-time of the cavity, / 2 /s c    , to generate a train of short pulses.  

In a FEL amplifier, the fact that the electrons and light are co-propagating at nearly 

the same velocity can be used to synthesis such a cavity-like interaction. This is 

achieved by introducing a periodic enhanced slippage of the light ahead of the electrons 

by means of magnetic chicanes that slow down the electrons. Fig. 4 shows a schematic 

of such an undulator/chicane lattice. 

 

 

Figure 5: Schematic showing the undulator/chicane lattice for a mode-locking FEL scheme. 

The detailed inset shows the electron bunch slippage with respect to the light: l  occurring in 

each undulator section and   in each chicane. 

 Only those light frequencies that interfere constructively after successive chicane 

slippages with respect to the electron bunch will survive, giving rise to a set of modes 

with frequency separation of 2 /c s   . These modes are analogous to those of a 

conventional cavity laser. Indeed a simple analysis in [16] demonstrates that the modal 

structure generated is formally identical with those of cavity.  

Mode coupling may be achieved by simply modulating the electron beam energy at 

the mode spacing  . When this is done then 3D simulations predict that such a mode-

locked FEL amplifier operating in the x-ray can generate a train of 23as pulses.  
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Figure 6: Simulation of a mode-locked FEL amplifier output at 0.15 nm showing a train of 

23as pulses (left) and the corresponding power spectral density (right). 

When realistic electron pulses generated from start-to-end simulations are used in 

3D simulations, the mode-locking in the FEL appears to be robust with clean modes and 

well-formed attosecond pulse trains generated [18].  

There is now significant interest in seeding FEL amplifiers with HHG seeds in the 

XUV and soft x-ray. Under normal FEL amplification the interesting attosecond pulse 

train structure of the HHG seed is ‗washed out‘ by the FEL amplifier [5]. Simulations 

show, however, that by matching the HHG seed pulse train structure with a mode-

locked FEL amplifier, the attosecond pulse train structure of the HHG seed may be 

retained during amplification [17, 18].     

3.13.5 The Quantum Free Electron Laser (QFEL) 

Several large international teams are constructing free electron lasers (FELs) to 

produce X-ray radiation via self amplified spontaneous emission (SASE) [13, 21, 22]. 

While the brightness of SASE-FELs far exceeds that of conventional synchrotron 

sources, the radiation produced by SASE-FELs is not ideal for many applications 

requiring a high degree of temporal coherence as the pulses produced contain many 

random superradiant spikes with a broad noisy spectrum [4].  

A possible alternative to classical SASE-FEL emission for coherent short-

wavelength generation arises from the fact that in quantum theory the radiation 

emission process is fundamentally discrete. When an electron emits a photon, the 

momentum recoil is ħk, where k is the photon wavenumber. Hence, the electron 

momentum recoil is naturally quantized and can change in only discrete amounts. 

Including the effects of recoil in a quantum FEL (QFEL) theory, the number of photons 

emitted depends on the QFEL parameter,    [23] which is the ratio of the maximum 

classical momentum spread (~ mcr) to the photon recoil momentum (ħk) i.e. 

k

mcr




  , where  is the classical FEL gain parameter [24] and r is the Lorentz 

factor of a resonant electron. When 1  many momentum levels are involved in the 

interaction, the discreteness of the momentum exchange becomes irrelevant and one 

recovers the classical behaviour characterised by a random series of superradiant spikes 

and a broad, chaotic spectrum. Conversely, when 1  an electron emits a single 

photon and makes a single transition between momentum states, resulting in a single 
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narrow line.  Hence, the QFEL appears promising as a quasi-monochromatic X-ray 

source (although at lower powers than in a classical SASE-FEL).  

For an experimental realization of a QFEL it is necessary to use a laser wiggler in a 

Compton backscattered configuration instead of the magnetic wiggler usually used in 

classical SASE-FEL experiments [13, 21, 22]. In a laser wiggler configuration, a low-

energy electron beam back-scatters a counter-propagating high power laser into photons 

frequency up-shifted by a factor 24 r . Such a choice sets some stringent conditions on 

the electron and laser beam parameters [25]. One possibility being investigated involves 

the new generation of laser-driven wakefield accelerators [26]. Appealing features of 

this configuration are that both the electron beam and the laser wiggler are contained in 

a guiding structure and that the all-optical character of the configuration should allow it 

to be relatively compact.  

3.13.6 The Light Well – A Step towards Nano-FELs? 

The prospect of a nanoscale, continuously tunable light source is an enticing one for 

many applications requiring wavelength tunability with a high degree of spatial 

resolution. Such a source would allow mapping of various excitations in nanostructures 

over a range of energies and could be incorporated in nanophotonic circuits, displays or 

memories. Progress towards such a source, and perhaps a first step towards a nanoscale 

continuously tunable, coherent laser source, has been made through the generation of 

tunable light by a beam of electrons passing through a hole drilled in a nanostructure – a 

device termed a ―light well‖[27]. 

Free electrons generate light when passed through or close to a periodic structure. In 

free electron lasers, an electron beam is passed through a periodic, magnetostatic 

wiggler, whereas in Smith-Purcell radiation sources the electron beam passes close to a 

metal grating. In the light well [27] the periodic structure is a stack of alternating metal 

(Au) and dielectric (SiO2) layers, each with a thickness of approximately 200nm. In this 

stack, a narrow (700nm diameter) hole was drilled and a narrow electron beam with a 

diameter of 30 nm from a scanning electron microscope was guided through it causing 

light to be emitted from the hole.  Increasing the electron beam energy from around 20 

keV to 40 keV, the wavelength of the light produced by the well was tuned from 

approximately 900nm down to 800nm. The emission mechanism appears related to 

Smith Purcell radiation from the periodic metal layers, but it is possible that other free 

electron emission mechanisms associated with the dielectric layers may also be present 

e.g. Cerenkov radiation and transition radiation
 
[28].  

In addition to wavelength tunability, it was demonstrated in [1] that emission from 

the light well was incoherent with power levels of around 0.1nW, so it is clear that the 

electrons passing through the light well are emitting spontaneously and the device is not 

yet operating as a laser. In order to move to a regime of coherent, stimulated emission 

and lasing it will be necessary to increase the length of the interaction region by the 

addition of more layers (11 layers were used in the experiments reported in [27]), 

control losses in the system e.g. surface plasmon generation, and increase the electron 

beam current while maintaining high beam quality. Whether the technical challenges 

associated with the higher beam currents and much higher radiation powers involved 

with a regime of coherent lasing (e.g. electron beam focussing and power dissipation) 

can be overcome remains to be seen.   
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3.13.7 Simulation Code Development 

Finally, much of the work presented here relies upon the predictions of 

computational simulation codes. These codes are essential development tools that allow 

FEL scientists to explore new designs and ideas without the need for costly 

experiments. As FEL science develops, relying on more complex schemes and clever 

ideas, so the physics that is modelled and flexibility of these codes must develop. To 

this end, a parallel code has been under slow development over several years that can 

now model effects previously absent from simulations. In particular, modelling of 

electron/radiation interaction in 3D without constraints on the energy exchanged 

between electrons and light is now possible and is described in [20]. Furthermore, this 

code is able to model sub-wavelength effects that previous averaged codes cannot. It 

can also model FELs with variable polarisation undulators and include the effects of 

chicanes such as are required for HGHG [9], EEHG [15] and mode-locking [16-18] 

schemes. It is hoped that the code can be made available to the community in the not-to-

distant future. 
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3.14 ISIS – The World’s Leading Spallation Neutron Source 
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3.14.1 Introduction 

Under its director Andrew Taylor, ISIS has become the world‘s leading spallation 

neutron source in terms of science output. Other spallation neutron facilities may run at 

higher beam powers, but ISIS remains in leading place in terms of science output. 

This section on ISIS is split into two parts: ISIS operations, and accelerator 

developments at ISIS. The accelerator development section is split two subsections:  

Front End Test Stand (FETS), and ISIS upgrades. 

3.14.2 ISIS operations   

ISIS is the world‘s leading spallation neutron source, and each year on average ~750 

experiments on investigating the structure and dynamics of molecular matter are carried 

out involving ~1500 visitors who make a total of ~4500 visits (these numbers include 

roughly ~100 experiments and ~300 visits for muons). An 800 MeV proton synchrotron 

fed by a 70 MeV H
–
 injector linac (itself fed by a 665 keV RFQ) delivers beam powers 

of ~200 kW which can be split between two target stations. Typically ISIS runs for 

users for ~180 days a year (on a 24-hours-a-day basis);  in addition some ~40–50 days a 

year are scheduled for running up equipment and for machine physics. 

The original ISIS target station, now called TS-1, produced its first neutrons in 

December 1984, and is based on a fast-neutron-producing target configured as a series 

of water-cooled tantalum-clad tungsten plates. The second target station, TS-2, 

http://tesla.desy.de/
mailto:david.findlay@stfc.ac.uk
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produced its first neutrons in August 2008 and is optimised for the production of cold 

neutrons; it is based on a solid water-cooled cylinder of tantalum-clad tungsten (the 

target has been made as compact as possible to allow the moderators to intercept as 

much fast neutron flux as possible). Normally the synchrotron runs at 50 Hz, with 

40 Hz and 10 Hz beams being delivered to TS-1 and TS-2 respectively. A muon-

production target is incorporated in the proton transport beam line to TS-1.  More 

information may be found at [1]. 

When TS-2 came into use, the repetition rate of the proton beam pulses to TS-1 was 

reduced from 50 to 40 Hz, but in order to maintain beam current to TS-1 the current 

delivered by the synchrotron has been increased by the addition of a second harmonic 

component to the synchrotron RF drivers [2]. Four second harmonic (2RF) ferrite-

loaded cavities were added to the existing six fundamental RF (1RF) ferrite-loaded 

cavities. As well as enabling a ~30% increase in beam current from the synchrotron, the 

2RF systems have also reduced beam losses around injection. 

In order to offset the effect of ageing equipment (some of the equipment was 

already second-hand when ISIS was built), ISIS has been running a capital 

refurbishment programme for some years. Currently this programme is running at a 

level of ~5–10% of the operating costs. 

3.14.3 Accelerator Developments at ISIS 

3.14.3.1 Front End Test Stand 

The Front End Test Stand (FETS) under construction at ISIS is the first stage of 

R&D towards a future H
–
 linac for ISIS upgrades. However, the design is completely 

generic, and so it addresses the requirements of a whole range of proposed future 

projects which will need a high-power injector linac including a neutrino factory, muon 

collider, accelerator driven sub-critical system, etc. The stated aim of FETS is to 

demonstrate the production of a high-current chopped H
–
 beam at 3 MeV of sufficient 

quality to meet the requirements of the next generation of high power linacs. 

The work on FETS has been carried out through a series of fruitful collaborations 

between ISIS, STFC‘s Accelerator Science and Technology Centre (ASTeC), Imperial 

College in London, Warwick University, Royal Holloway University of London, and 

the University of the Basque Country and their commercial partners. These 

collaborations have been vital for making good progress on FETS, and have resulted in 

the training of young people new to the field as well as the exchange and sharing of 

ideas and hardware. 

FETS will consist of an H
–
 ion source, magnetic low energy beam transport (LEBT), 

3 MeV radio frequency quadrupole (RFQ), and medium energy beam transport (MEBT) 

containing a high speed beam chopper. In addition to conventional beam diagnostic 

devices, non-destructive laser diagnostics techniques are also being pursued. 

The FETS ion source is a development of the highly successful ISIS H
–
 Penning-

type surface plasma source. The generic beam performance specification for FETS calls 

for 60 mA of H
–
 ions at 65 keV in pulses of up to 2 ms at 50 pps with a normalised 

RMS emittance of 0.25- mm-mrad, a considerable improvement over the standard ISIS 

operating parameters. An extensive programme of experimental and theoretical work 

has led to a far better understanding of the ISIS ion source and its performance 

limitations. This investigation has informed re-designs of the extraction electrode 

geometry, the 90º analysing magnet and the post-acceleration gap to remove beam 
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aberrations and reduce the beam size and emittance. The ion source has been routinely 

running on FETS producing >50 mA under optimum conditions.  Pulses of 1.5 ms have 

been extracted, but power supply upgrades are necessary before the full 2 ms can be 

achieved at the maximum repetition rate. Other than the power supply limitation, no 

barriers to achieving the full duty factor are foreseen.  As well as increasing the pulse 

length, a new extraction power supply being designed will allow the extraction voltage 

to be increased from 18 kV to 25 kV, further increasing beam current and improving 

beam quality. Since first operating the source on FETS a full parametric 

characterisation of the beam parameters has been carried out using a combination of 

scintillator profile measurements, slit-slit emittance measurements and full 4-D phase 

space measurements using a state-of-the-art pepper-pot scanner. This helps in 

understanding the source behaviour and provides realistic starting data for computer 

simulations of the subsequent stages of FETS. 

A small-angle version of the FETS ion source, without the 90º magnet, has been 

given to our Spanish colleagues to investigate on the ESS Bilbao ITUR test stand. It is 

expected that data from these experiments will prove useful in further understanding the 

source performance as well as promoting progress on the Spanish accelerator R&D 

programme. 

The beam from the ion source is transported and matched into the RFQ by a 

magnetic LEBT using solenoids.  Based on the successful design of a similar LEBT for 

the ISIS RFQ upgrade, three solenoids have been chosen. Although in principle two 

solenoids may be sufficient, particularly for highly axi-symmetric beams, it is felt that 

three solenoids gives greater flexibility in the case of the non-symmetric beam from the 

slit extraction geometry of the Penning source, although a possible disadvantage is 

slightly greater stripping losses in the residual gas of the rather long LEBT. The LEBT 

is 1.7 m long and contains a pumping and diagnostic vessel between the second and 

third solenoids. This vessel houses two beam current transformers and a combined fast 

Faraday cup and beam stop. The solenoids are 30 cm long with a beam-pipe bore of 

80 mm and were supplied by Tekniker through our collaboration with ESS Bilbao at the 

University of the Basque Country.  Magnetic field measurements made at the Daresbury 

Laboratory were in very good agreement with computer models of the magnets 

produced during their design. The 27 V, 250 A solenoid power supplies were also 

supplied as part of our collaboration with ESS Bilbao and were manufactured by Jema. 

The LEBT is fully installed on FETS and is undergoing commissioning at this time.  

The first, very preliminary, beam measurements indicate an RMS emittance of ~0.3- 

mm-mrad for a current of ~50 mA. Further optimisation of this is expected. 

FETS will employ a 3 MeV, 4-vane RFQ operating at 324 MHz. The frequency 

choice was dictated by the ready availability of a suitable klystron developed by 

Toshiba for the J-PARC linac. Although designed for short-pulse high-peak-power 

operation it is capable of being operated in a low-power long-pulse mode as required by 

FETS.  The beam dynamics design of the RFQ gives a structure 4.2 m long with beam 

transmission >95% and minimal emittance growth. Further slight optimisation of this 

design is expected before manufacturing commences. The current focus is on the 

mechanical design which it is hoped will overcome some shortcoming in previous RFQ 

designs of this type. The intention is to have three or four resonantly coupled sections to 

the RFQ, each section constructed from two major and two minor segments. The 

method to be used to join the segments together is still under investigation and is 

unlikely to involve vacuum brazing as is traditional.  Electron beam and laser welding 
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are being looked into with assistance from The Welding Institute. A joining method 

which would allow disassembly at a future date is also being pursued, as repair of a 

fully welded or brazed structure is either very difficult or impossible, and some RFQs in 

operation have developed problems after commissioning. Various machining and 

joining test pieces will be manufactured soon to validate these ideas. Thermal modelling 

is progressing, aiming to achieve a cooling strategy which results in minimal resonant 

frequency drift under expansion. The structure will then be tuned by fixed and 

moveable slug tuners. A short cold model has been manufactured at Imperial College to 

test some machining and joining methods and to verify the integrity of the 

electromagnetic simulations; agreement between simulations and measurement were 

very good. An auto-tuner and digital I-Q RF control system has been developed at the 

University of the Basque Country and will be tested at low-power levels using the cold 

model. Because the cold model contains many of the features of a complete RFQ 

including vacuum pumping ports, it is hoped to mount it on the FETS beam line and 

transport a low energy beam through it at medium RF power levels as a first test of 

beam matching using the LEBT. Development of the FETS RFQ has used an integrated 

design method whereby the same model is used for mechanical, thermal, 

electromagnetic and beam dynamics simulations. Although this has required significant 

development effort it offers the advantage of not having to transfer designs and data 

between many different formats and codes, and allows for changes to be quickly 

propagated through the various design stages. 

The 3 MeV beam from the RFQ will be transported through the MEBT which, in 

any complete linac, will match the beam into the following accelerating structure — 

most likely a drift tube linac (DTL). The MEBT also contains the very high speed beam 

chopper which will be essential for any linac that has to inject into a circular 

accelerator. Trapping the injected beam into the RF bucket in, for example, a 

synchrotron is a significant source of beam loss. As future high-power accelerators will 

be beam-loss-limited if hands-on maintenance is to be possible, controlling this loss is 

imperative. Very significant reductions in the trapping loss can be achieved by 

chopping the linac beam at the ring revolution frequency so as to inject a beam already 

bunched at the ring RF frequency rather than having to form the bunches after injection 

and incur inevitable beam loss. For a variety of technical and physical reasons the best 

place to achieve this linac beam chopping is at an energy of a few MeV just after the 

RFQ. Because the beam after the RFQ will be bunched at 324 MHz with a bunch-to-

bunch spacing of ~3 ns, the chopper deflector must switch on and off in less than 2 ns if 

the chopping process is not to result in some partially chopped bunches.  To achieve the 

required deflection of the chopped part of the beam so that it can be collected on beam 

dumps, a deflecting voltage of 1–2 kV is required. Achieving such high voltages with 

such short rise and fall times is a major challenge. The FETS chopper design utilises a 

two-stage chopping scheme whereby a very fast chopper creates short gaps in the bunch 

train which allows space for a slower, though still fast, chopper to turn on and chop the 

majority of the bunches to be removed. This novel approach overcomes the requirement 

for both very high bandwidth and relatively long flat tops to the chopper pulses. The 

electronic pulsers developed at ISIS have already achieved the specification in terms of 

voltage and rise and fall times. Several options for the chopper deflectors are under 

investigation and are being prototyped at the moment. Due to the requirement for 

preservation of the sharp pulse shape throughout the whole length of the chopper slow 

wave deflector, control of the bandwidth and pulse reflections is paramount. Utilising 
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the very high precision manufacturing facility used for millimetre wave technology at 

RAL, prototypes of the chopper components and currently being evaluated. 

The design of the beam optics lattice into which the chopper deflectors and beam 

dumps have to be incorporated is very challenging. Due to the length of the chopper 

components the natural periodicity of the lattice is broken which has consequences for 

beam quality. To keep emittance growth low under such conditions a short MEBT is 

needed which conflicts with various engineering requirements.  An alternative approach 

where the chopping is distributed along a longer but strictly periodic MEBT is also 

being investigated for FETS. Although inevitably much more expensive than the short 

MEBT designs, this offers the possibility of clean chopping and also minimal emittance 

growth together with more space for beam diagnostics. The computer modelling of the 

quadrupoles and re-bunching cavities for the MEBT has started, and the first cold 

models of the cavities will be produced through our Spanish collaboration later this 

year. 

On any test stand, diagnostics are vitally important. FETS will use all the traditional 

beam measurement devices such as beam current transformers and intercepting profile 

and emittance measurement devices.  However, due to the very high beam powers to be 

achieved, non-destructive methods are of great interest. In particular laser photo-

detachment techniques are being pursued.  Because the extra electron on the H
–
 ion is 

weakly bound it can be easily detached by a laser of a suitable wavelength. The 

resulting electrons or H
0
 ions can then be collected for analysis. On FETS, laser photo-

detachment will be used for both fully 2-D profile measurements and also emittance 

measurements. The first experiments used a small laser system to measure the beam 

profile immediately after the ion source and before the LEBT. Due to the relatively high 

pressure in this region so close to the source which leads to significant beam 

interactions with the residual gas and also a rather poor coupling of the available laser 

power into the particle beam, a very low signal-to-noise ratio was achieved with the 

photo-detached electron signal being swamped by electrons and ions reaching the 

detector from background gas ionisation. A recently initiated collaboration with the 

Laser Diagnostics Group at Royal Holloway University of London is leading to a better 

understanding of the laser optics to help couple more laser power into the beam as well 

as to greatly improved detector electronics to discriminate between the required signal 

and noise. FETS has also recently borrowed a higher power laser from colleagues at 

J W Goethe University in Frankfurt which will further improve the number of photo-

detached electrons available for detection. With the combination of the more powerful 

laser, better optics and better electronics, it is hoped to demonstrate laser profile 

measurement within the next few months. For the later stages of an H
–
 linac where the 

vacuum is considerably better than in the ion source region, discrimination of photo-

detachment and residual gas interaction signals should be much easier, so proof of 

principle at the source will prove viability at higher energies. 

3.14.3.2 ISIS Upgrades 

A detailed comparison of reasonable upgrade routes for ISIS that will provide a 

major boost in beam power has been carried out in order to identify optimal upgrades. 

Designs are to be developed primarily for an optimised neutron facility, and will include 

the provision of an appropriate proton beam to the existing TS-2 target station. 

The recommended first stage of the upgrade path is to replace parts or all of the 70 

MeV H
–
 injector.  Replacement with a new or partly new linac of the same energy could 
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address obsolescence issues with the present linac, and ensure reliable operation for the 

foreseeable future. The more exciting but more challenging option is to install a higher 

energy linac (up to ~180 MeV), with a new optimised injection system into the present 

ring.  This could give a substantial increase in beam power (factor ≤2), but there are 

numerous issues to be considered, and these are currently being worked on. 

The next stage is a new ~3.2 GeV rapid cycling synchrotron (RCS) that can be 

employed to increase the energy of the existing ISIS beam to provide powers of 

~1 MW. This new RCS would require a new building, along with a new ~1 MW target 

station. The new RCS could be built with minimal interruptions to ISIS operations, 

would give predictable increases in power at reasonable estimated costs, and would 

have well-defined upgrade routes. RCS designs will include features required for fast 

injection directly from ISIS, together with the option for optimised multi-turn injection 

from a new 800 MeV linac. 

 The final upgrade stage is to accumulate and accelerate beam in the ~3.2 GeV RCS 

from a new 800 MeV linac for 2–5 MW beams. It should be noted that a significant 

collimation section or ―achromat‖ would be required after the linac to provide a suitably 

stable beam for injection into the RCS. The new RCS and 800 MeV linac would need to 

be located some distance from the present accelerators and also from the site for the 

new ~180 MeV linac. More details may be found in [3]. 

Studies and simulations will assess the key loss mechanisms that will impose 

intensity limitations. Important factors include injection, RF systems, instabilities and 

longitudinal and transverse space charge. 

3.14.3.2.1 Linac and beam line studies 

The 180 and 800 MeV linacs have a common initial 74.8 MeV design which is 

based around the 324 MHz frequency of available 2.5 MW Toshiba klystrons.  The 

design includes an ion source, low energy beam transport (LEBT), 3 MeV RFQ, 

medium energy beam transport (MEBT), and a 74.8 MeV drift tube linac (DTL). In the 

case of the 800 MeV linac, an IEBT (intermediate energy beam transport) collimation 

section follows the DTL. 

Three options have been considered for acceleration from 74.8 to 180 MeV and on 

to ~200 MeV.  These include a room temperature coupled cavity linac (CCL) at 

648 MHz, and superconducting cavity linacs at 648 MHz (ScL1) or 324 MHz (ScLa), 

both with geometric g values of 0.45. The first two options require a high power 

klystron development at 648 MHz but are preferred to the 324 MHz ScLa option for 

reasons of practicality and beam dynamics. 

In the 800 MeV linac, after ~200 MeV is reached, new superconducting structures 

are used, with a g value of 0.62 at energies up to ~400 MeV and a g value of 0.76 for 

~400 to 800 MeV. The two preferred options continue to use 648 MHz cavities, first in 

a ScL2 stage to ~400 MeV and then in a ScL3 to 800 MeV. The third option uses a 

972 MHz third harmonic frequency for both an ScLb and ScLc stage (as a suitable 

Toshiba klystron is available). 

Equipartition between longitudinal and transverse beam energies is established early 

in the first of four stages of the DTL and is maintained in the linacs up to their output 

energies. Longitudinal and transverse beam emittances are similar to those assumed in 

other high power linacs.  Important features of the linacs are the MEBT and chopper 

designs and the matching between the various stages. Both the MEBT and the IEBT 

incorporate regions for beam collimation. 
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Beam transport lines between the linacs and rings need achromatic bending sections 

and also added cavities to ramp the output energy of the beam and to control the beam 

momentum spread. The new 800 MeV – ~3.2 GeV proton synchrotron requires long 

straight sections for the acceleration, extraction and beam collimation systems. The 

scheme for H
–
 charge exchange injection into the synchrotron needs a linac beam 

current of 43 mA for 500 turns chopped at a 70% on-duty cycle over a pulse duration of 

~0.75 ms. 

Designs have followed those of the SNS and ESS linacs apart from the choices of 

the structure energies and frequencies and use of superconducting elliptic cavities at 

lower energies in two of the options considered. The use of spoke resonators down to 

10 MeV, as proposed at FNAL, has not been adopted due to risk of a cavity failure at 

low energy.  Initial stages employ the 324 MHz 2.5 MW peak power Toshiba klystron 

used in the J-PARC linac. A choice of 324 MHz instead of the 402 MHz used at SNS 

eases the design of the MEBT choppers. 

Normalised RMS emittances assumed for the transverse and longitudinal planes at 

the MEBT input are 0.25 and 0.39 (π) mm-mrad respectively, values close to those 

achieved at SNS and J-PARC.  Emittances obtained at RAL‘s Front End Test Stand 

need to be reduced to these values to allow use of current beam chopper designs, as 

plate separations and voltages have to scale with maximum transverse emittance values 

to avoid loss of un-chopped beam. 

Two MEBTs have been studied — based on the chopper systems under design at 

RAL.  Both exhibit halo and emittance growth; after matching into the first of four DTL 

tanks RMS emittances have increased to 0.30 (π) mm-mrad transversely and to 0.42 (π) 

mm-mrad longitudinally.  The design preferred uses solenoids and triplets to provide 

long drifts and to allow 25% lower chopper voltages without any loss of the un-chopped 

beam and with less longitudinal halo. 

Longitudinal inter-tank matching in the DTL is improved by the use of phase offsets 

in three of the four DTL tanks. An end cell is used together with a cell four or five 

periods upstream.  Smooth transverse matching is obtained by adjusting six quadrupoles 

near the tank transitions. Apart from these adjustable elements, the DTL design assumes 

the use of permanent magnet quadrupoles. Equipartition between the longitudinal and 

transverse beam energies is obtained after matching into the first tank, and is maintained 

up to 800 MeV by appropriate quadrupole settings. 

After the DTL, a three-doublet-cell collimator section (IEBT) is introduced into the 

800 MeV linac. Its purpose is to remove halo, H
0
, H

+
 and far off-momentum beams and 

so prevent the type of low beam losses seen in the superconducting part of the SNS 

linac. In the first and the third cell there is a 648 MHz buncher cavity, and in the second 

a symmetrical dipole orbit bump (θ, –2θ, θ) which may be adjusted relative to 

collimator units by varying the common dipole currents over a range of values. 

The 324 to 648 MHz frequency jump for two of the options requires the 

development of a high-power 648 MHz klystron. The third option of a 324 MHz ScLa 

after the IEBT followed by a 972 MHz ScLb and ScLc was prompted by availability of 

3 MW 972 MHz Toshiba klystrons. However, a satisfactory design for the third option 

has not been found; the larger frequency jump leads to excessive emittance growth. 

In the superconducting stages focusing is by doublet quadrupoles located in room-

temperature regions for ease of alignment, although some designs economise with 

quadrupoles in the cryostats. Doublet quadrupoles are also used in the CCL for ease of 

the input and output matching, although 2.5 βλ coupling cell lengths are needed and the 
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cell lengths for the ten-cell cavities proposed become 7.5 βλ (βc is the beam velocity 

and λ is the free space wavelength at 648 MHz). 

Six-parameter matching between high-energy stages is found by varying six 

quadrupole fields together with a ramp of cavity phases at the output of one stage and 

the input of the next. Large energy gains per cell lead to different matched parameters 

for adjacent cells, and so matching is not as exact as for a ring or high energy beam line.  

A range of matched parameters may be found, some better than others, and rapid 

change of focusing and beam size are best avoided.  Beam tracking studies are used to 

check the results of the lattice-parameter-matching routines. 

Superconducting linac design involves choosing βg values, accelerating field 

gradients, peak fields, synchronous phase angles (φs), cavity geometry, numbers of 

cavities and cells per cavity, numbers of cavities per cryostat and per focusing period, 

and gradients for the doublet quadrupoles. The main aim is to minimise the numbers of 

cavities and cryostats without prejudicing issues of practicality and beam dynamics. 

Factors affecting beam halo and RMS emittance growth include evolution of a non-

stationary input distribution, the form of the distribution, the rates of change of beam 

amplitudes and aspect ratios, inter-stage matching, and resonance-induced effects due to 

space-charge tune spreads. Different distributions may have different growth rates and 

need modified matching. Cell tunes are chosen for energy equipartition and for limiting 

effects of machine errors and space-charge forces on coherent, longitudinal-transverse 

coupled envelope modes. The MEBT uses solenoids and triplets to limit beam aspect 

ratio changes which alter the ratios of linear to non-linear space charge forces. 

As regards transporting the beam from the end of the linac(s) to the synchrotron(s), 

beam de-bunching under space charge forces and related changes of beam momentum 

spread may be approximated by a 1-D linear longitudinal envelope equation. More 

accuracy requires use of both an interactive 3-D linear beam envelope code for input 

matching, focusing and beam line design and a 2½- or 3-D code for tracking studies. 

The focusing used for the 800 MeV beam line is a continuation of the FoDO doublet 

focusing pattern of the linacs. For the new 180 MeV beam line to ISIS, however, a 

back-to-back doublet is first used, to allow a change to the DoFO pattern used in the 

ISIS ring superperiods. 

Two beam lines are considered for ISIS, one for ―inside‖ and one for ―outside‖ ring 

injection. The latter is simpler but may lead to more complex injection. The outer line 

has two achromatic sections, one to orient the linac relative to ISIS, and one for bending 

the beam into the injection region. The solutions are linked to energy ramping, 

momentum spread control and the injection painting, and both are described in [3]. The 

800 MeV line has only a final injection achromat. 

3.14.3.3 Ring Studies 

Present studies are concentrating on establishing the extent to which operation at 

higher beam powers may be possible by upgrading the ISIS linac and injecting a 

chopped beam into the existing ISIS RCS at higher energy.  Injection at higher energies 

reduces the effects of space charge, and beam chopping improves trapping efficiencies.  

At present, effort is being concentrated in the following areas:  design of a higher 

energy injection straight, control of beam losses and the increased activation at higher 

energies, beam dynamics and beam losses derived from increased space charge, and 

instabilities. Initial ―study‖ parameters assume an injection energy of 180 MeV and 

beam powers of ~0.5 MW, but the practicality of these values is yet to be fully 
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established.  The beam power resulting from the upgrade will be limited by beam losses 

together with the increased activation per proton because of the higher energy. 

This study forms part of the on-going research programme into high intensity proton 

beams at ISIS [4], based on understanding, optimising and upgrading both the existing 

ISIS synchrotron and putative new upgrade synchrotrons at ISIS. Development and 

experimental testing of simulation codes is under way using the SNS code ORBIT [5] 

and also with the in-house code SET [6]. The latter is presently being expanded to cover 

3-D particle motion, exploiting the parallel computing facilities available at RAL. The 

aim is to adapt models being verified on the present ISIS synchrotron to proposed new 

running régimes. 

Beam dynamics studies for higher energy injection at higher power are covering a 

number of effects. Longitudinal dynamics are requiring careful simulation work to 

ensure appropriate evolution of bunch distributions to maintain stability and allow loss-

less extraction with practical dual harmonic RF systems. Likewise, in the transverse 

planes, simulations are helping to assess the limits imposed by space charge, indicating 

how well transverse emittance and halo may be controlled, including effects like 

images. Optimising the 3-D injection painting is challenging; beam losses have to be 

minimised during injection, and particle distributions have to be produced that give rise 

to very small beam losses throughout the acceleration cycle. 

Injecting at ~180 MeV into the existing long straight of ISIS is challenging, but 

magnet modelling and tracking studies (still under way) suggest it is probably 

practicable. Variations on the present injection scheme may need to be evaluated, 

depending on requirements dictated by beam dynamics and beam losses. Beam losses 

associated with the H
–
 stripping foil are another major concern, and foil parameters, 

expected efficiencies and distributions of losses associated with out-scattered protons 

and excited stripping states are all under study. Collimation and activation are also 

being looked at using the MARS code [7], again with experimental comparisons 

planned. Requirements for beam diagnostics at higher powers are also being evaluated.  

In particular, strip-line monitors are being developed that could form part of an active 

damping system (based on SNS ideas) to control transverse instabilities. 

Until the study is complete, it will not be possible to confirm the viability of such an 

upgrade. However, the calculations, simulation models and experimental comparisons 

with the existing machine required in the course of the work will form an essential base-

line for any further ISIS upgrades. 

There are a number of possible candidates for the ~3.2 GeV, 50 Hz RCS, but studies 

are presently focused on a 3.2 GeV doublet-triplet design with five superperiods (5SP) 

outlined in [8] and a 3.2 GeV triplet design with four superperiods (4SP) outlined in [9]. 

The lattice for the 5SP design has been modified slightly to give the correct 

circumference for fast injection from the ISIS 800 MeV synchrotron which has a mean 

radius (R0) of 26.0 m. 

The 5SP ring has a mean radius (R) of 58.5 m (R/R0 = 9/4) and RF cavities running 

at harmonic number h = 9, i.e. at nine times the ring revolution frequency (6.1–

7.1 MHz). This ring is optimised to give small dipole apertures and therefore to 

minimise the magnet power supply requirements, but has RF buckets which are smaller 

than those for the ISIS synchrotron. Meanwhile, the 4SP ring has a mean radius of 

65.0 m (R/R0 = 5/2) and RF cavities running at harmonic number h = 5, i.e. at five times 

the ring revolution frequency (3.1–3.6 MHz). This ring gives RF buckets the same size 

as those for ISIS, making fast injection easier, but has larger apertures. Both of these 
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ring designs (and appropriate variations) will be studied in detail in order to assess their 

suitability for the recommended upgrades. Initial work, however, has concentrated 

mostly on the 5SP design. 

Work is now under way to study the key issues for the ~3.2 GeV ring designs, 

underpinned by extensive development of the relevant codes and benchmarking during 

machine physics studies on ISIS. The main topics include space charge, injection, 

provision for RF, beam stability and the requirement to keep beam losses below about 

0.01%. 
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Test Facilities and Accelerator Systems R&D 

3.15 Recent Developments on ALICE (Accelerators and Lasers In 

Combined Experiments) at Daresbury Laboratory  

Susan L Smith, on behalf of the ALICE Team, 

ASTeC, STFC Daresbury Laboratory and Cockcroft Institute, 

Daresbury Science and Innovation Campus, Warrington, WA5 2EE, UK  

Mail to: susan.smith@stfc.ac.uk 

3.15.1 Introduction 

ALICE, formerly known as ERLP [1], is a new R&D facility currently being 

commissioned at Daresbury Laboratory. The accelerator is an energy recovery 

superconducting (SC) linac operating at the nominal beam energy of 35 MeV, see 

Figure 1. The high voltage DC photoelectron gun operates at nominal voltage of 350 kV 

and bunch charge of 80 pC. The bunch trains can be of variable length from a single 

http://neutrons.ornl.gov/APGroup/Codes/orbit.htm
mailto:susan.smith@stfc.ac.uk
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bunch regime to 100 s with a bunch repetition frequency of 81.25 MHz within the 

train. The train repetition frequency can also be varied within the 1-20 Hz range.  

 

 

Figure 1: ALICE layout 

In addition to the accelerator, several light sources are or will be available for 

conducting a variety of R&D projects, including pump-probe experiments. These are (i) 

an IR FEL with wavelength of ~4 m; (ii) a THz source with coherent enhancement of 

the radiation intensity due to sub-picosecond bunch lengths generated by ALICE; (iii) a 

Compton Backscattering (CBS) X-ray source with photon energy of 15 or 30 keV 

depending on the collision angle between the photons and electrons. The CBS source is 

powered by a terawatt IR femtosecond laser that can also be used as a stand-alone light 

source for a variety of experiments.  

3.15.2 Present Status  

Full energy recovery and demonstration of the coherently enhanced THz radiation 

were successfully achieved on ALICE by the beginning of 2009. The injector can now 

reliably deliver beams with bunch charges well in excess of 80 pC and with the design 

bunch structure, i.e. 81.25 MHz bunches in trains up to 100 s, repeating at 1-20 Hz. 

However, due to a number of mostly technical problems, some of the other ALICE 

design parameters have not been achieved at present.  

The gun operating voltage of 350 kV was initially used for gun commissioning [2] 

but, after several failures of the high voltage insulating ceramics [3], it was necessary to 

install a more robust but smaller inner diameter ceramic that reduced the maximum gun 

operating voltage to ~250 kV. Furthermore, a field emitter on the GaAs cathode wafer 

located close to its centre necessitated a reduction of the gun voltage down to 230 kV. 

This field emitter is likely to be responsible for a hole in the quantum efficiency map of 

the cathode. This hole becomes more pronounced towards the end of the cathode 
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activation cycle but virtually disappears after the cathode re-caesiation (Fig.2). An 

improved 500 kV ceramic insulator is currently being developed and manufactured in 

collaboration with Jefferson Laboratory and Cornell University that will restore the 

ALICE gun nominal voltage to 350 kV.  

 

 

Figure 2: Typical QE maps at the end of the activation cycle before the re-caesiation (left) and 

after a full cathode activation including a heat cleaning treatment of the wafer (right).  

The photocathode can now be routinely activated and re-Caesiated to quantum 

efficiencies of 2.5-3.0% with the dark 1/e lifetime of the cathode exceeding 1000 hours. 

The operational cathode lifetime is however limited to several hundreds of hours due to 

excessive outgassing in the gun beamline when the machine is operated at long train 

lengths of 50-100 s and bunch charges above ~40 pC. The cathode quantum efficiency 

is regularly restored by a quick and simple re-caesiation procedure.  

We presently run the machine at the bunch charge of 40 pC. This is dictated mostly 

by the inability of the analogue LLRF system to cope efficiently with beam loading 

effects in the injector SC booster. We plan to replace the existing LLRF system with the 

digital version. The prototype has been developed and first tests appear to be promising 

for increasing the operational bunch charge above 40 pC.  

Due to excessive field emission from the main linac module, designed to bring the 

beam energy to 35 MeV [3], the beam energy was reduced to 21 MeV for the initial 

machine commissioning. The corresponding beam energy after the injector was 4.8 

MeV to allow injection and extraction chicanes to operate correctly. From September 

2009, after extensive work on SC linac cavities conditioning, improvements in the 

cryogenic system and optimisation of the linacs operating parameters allowed ALICE to 

operate at higher beam energy of ~30 MeV.  

3.15.3 Energy Recovery and Beam Characterisation 

The gun was commissioned and the 350 keV electron beam was fully characterised 

at a range of different bunch charges of up to 80 pC. The results are reported in [2,4]. 

Initially, full energy recovery was established at 21 MeV beam energy and several 

bunch charges up to 20 pC.  This is illustrated by the RF power demand signals from 

the two superconductive cavities of the main linac (Fig.3). At the time, higher bunch 

charges were not possible to achieve because of the beam loading effects in the injector 

SC booster cavities.  
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Figure 3: Main linac RF power demand signals: without (left) and with (right) energy recovery. 

Beam loading in the booster cavities was clearly visible on the LLRF signals at train 

lengths of a few tens of microseconds and bunch charges above 10 pC. The major 

impact of this on the beam was that the beam energy towards the end of the macropulse 

was lower than at the beginning by a few percent. The effect of beam loading was also 

observed on the Faraday cup located in a dispersive section of the injector beam line. In 

the presence of the beam loading, the current measured by the Faraday cup is not 

constant because the beam sweeps across the cup aperture due to change in the beam 

mean energy during the train length. Extensive work on optimisation of the LLRF 

system and the external quality factors of the booster cavities allowed to extend 

operation of the machine to ~40 pC bunch charge and up to 100s train lengths in an 

energy recovery regime.  

The field emitter on the cathode wafer remains a serious problem especially at levels 

of quantum efficiency above 3% when the flow of field emission electrons becomes too 

intense after acceleration in the booster. Replacing the wafer in the current gun design is 

a complicated and time consuming procedure and, based on   experience, may lead to 

vacuum, HV and cathode problems. Increase of the field of the first solenoid, next to the 

gun, disperses the field emission electrons within the gun beamline and only a smaller 

fraction is picked up by the booster cavities and accelerated further. At lower bunch 

charges, this increased solenoid field is too high, leading to a transverse cross-over and 

correspondingly larger beam emittance. It is close to the optimal setting for higher 

bunch charges of ~80 pC.  

Beam characterisation and optimisation was not a priority during latest 

commissioning periods. Only a limited number of emittance measurements were made 

in the injector beamline using quadrupole and slit scans. Provisional results show that 

the normalized emittance is at or below ~10 mm-mrad. It has to be noted that no 

attempts were made to minimise the emittance for each bunch charge. This and the 

existence of the field emission current probably accounts for the somewhat larger 

emittance values compared to that expected from the ASTRA model (~3 m at 80 pC).  

A systematic optimisation of the injector settings is planned and a significant 

improvement in overall beam quality including the transverse emittance is expected.  

3.15.4 THz Generation Studies 

Coherent enhancement in the synchrotron radiation from short electron bunches 

produces high power THz radiation at high repetition rates. This radiation provides a 

useful diagnostics tool for the accelerator, but will also allow new photon science 

developments. 
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The final dipole in the compression chicane is the source of THz radiation. A plane 

mirror within this vessel deflects radiation through a 38 mm aperture CVD wedged 

diamond window. The overall acceptance of the beamline is 70 × 70 mrad. The window 

separates the accelerator vacuum from the THz beamline which transports the radiation 

to a diagnostics laboratory. The beamline was optimised by extensive modeling with the 

wavefront propagation code SRW [5]. There are two intermediate foci in the 17 m 

optical path to the diagnostics laboratory. The beam can then be directed into a nitrogen 

purged diagnostics enclosure which includes a custom high-aperture step-scan Martin-

Puplett interferometer, or further transported on to a suite of THz exploitation 

laboratories including a tissue culture facility (TCF), see Fig. 4. Here the beam is 

condensed by a Winston cone through a TPX exit window where live human tissue cells 

can be irradiated.  

 

 

Figure 4: Tissue culture laboratory where THz radiation can be condensed into living human 

tissue cells 

Monitoring the intensity of the radiation at the diagnostics enclosure allowed the 

accelerator RF system to be tuned to put the optimum energy chirp onto the electron 

bunch to give maximum compression in the chicane. 

Under these conditions a linear dependence on THz detector signal on the bunch 

train length was observed at constant bunch charge, and a clear quadratic dependence 

on bunch charge was observed at constant train length, as shown by the fitted line in 

Fig. 5. This is indicative of coherent emission. 
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Figure 5: Dependence of the THz signal amplitude on the bunch charge 

The latest observations of the THz intensity at the bunch charge of up to 40 pC 

indicate that the THz pulse energy can reach several tens of J with some preliminary 

measurements suggesting around 150 J may be achievable. These measurements were 

made however in the vicinity of the compression chicane and showed a very large 

divergence of the THz radiation in the horizontal plane. Experimental evidence suggests 

that not only the last dipole of the chicane contributes to the overall output. A 

significant fraction may come from the upstream dipole as well. The radiation transport 

along the THz beamline was found to be very poor as a result of, most likely, non-

optimal electron bunch compression. We have planned a set of specific experiments that 

will allow efficient THz generation and transport through the THz beamline over tens of 

meters to the diagnostic room and to the tissue culture laboratory.  

3.15.5 Compton Backscattering Experiment  

The Compton backscattering experiment in a 180 degrees (head-on) configuration 

was successfully demonstrated in November 2009, see Fig. 6. The multi-TW 

Ti:sapphire laser (800 nm, 70 fs, 500 mJ per pulse, 10 Hz) and 40 pC, 29.6 MeV 

electron beam were used for the demonstration. The electron beam could be focused to 

~35 m RMS but, in these CBS experiments, both laser and electron beams were 

focused to ~100 m FWHM. Due to a necessity to start installation of the IR FEL on 

ALICE, virtually no time was allowed for x-ray characterisation and optimisation. The 

next phase of the CBS experiment in the 90 degrees configuration is however planned 

that will make possible operation of both IR FEL and the CBS x-ray source. 
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Figure 6. Scan of the laser pulse arrival time with respect to the electron bunch arrival time 

(left) and the CBS x-ray signal.  

3.15.6 Future Developments 

The ALICE R&D facility faces several exciting developments and challenges in 

2010-11.  

Commissioning of the IR FEL has been started and we expect it to become 

operational in the nearest future. As part of the FEL programme, the electro-optic 

diagnostic for measuring longitudinal profiles of short, ~1 ps, electron bunches will be 

also commissioned.  

In the middle of 2010, the commissioning of the first non-scaling FFAG accelerator 

EMMA will commence [6] and continue throughout 2010 and, hopefully, beyond.  

Three major upgrades are also expected including installation of the load-lock 

system on the photogun, extension of the gun beamline to include diagnostics for full 

beam characterisation before the booster, and installation of the new improved SC linac 

module that is currently being constructed and is a result of a multinational 

collaboration. The present LLRF system will be replaced with the digital version being 

currently developed in-house.  

The helium processing of the main linac cavities will be conducted in the second 

half of March 2010 with the help of JLab personnel. This will potentially alleviate field 

emission problems in the linac and will pave the way for reaching the nominal beam 

energy of 35 MeV on ALICE.  

A programme of THz studies is planned including the first experiments at the TCL 

to determine the safe limits of human exposure to THz radiation. In view of the present 

problems with transporting the THz beam to TCL and for the sake of obtaining first 

preliminary results, initial experiments will be conducted in the accelerator hall in the 

shielded enclosure with the use of miniature cell incubators.   

In conclusion, ALICE commissioning has reached the point when it is now 

becoming a true R&D facility capable of accommodating and testing novel ideas, and 

conducting proof-of-principle experiments.   
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3.16.1 Introduction 

As described previously [1], non-scaling Fixed Field Alternating Gradient (ns-

FFAG) accelerators have a significant potential for future applications, potentially 

replacing the currently used cyclotrons and synchrotrons. However, they, in particular 

linear ns-FFAGs, have a number of unique features and characteristics [2], including: 

 Very large momentum compaction (Livingood definition [3]) 

 Large betatron tune variations and multiple resonance crossings 

 Serpentine (bucketless) acceleration 

 The requirement for purpose-built tracking codes 

 The need for a highly symmetric lattice 

 Due to these features and the need to benchmark the tracking codes employed with 

this type of accelerator, it was concluded that a proof-of-principle ns-FFAG needed to 

be built before this technology could be further developed for real applications. This 

machine is called EMMA (the Electron Model for Many Applications) and is currently 

(March 2010) under construction at the STFC Daresbury Laboratory. EMMA forms one 

of the biggest accelerator R&D projects underway in the UK at this time. 

The following sections will describe the EMMA parameters and the resulting layout 

of the accelerator, the main components of the machine and the plans for 

commissioning and the experimental programme. 

3.16.2 EMMA Specifications 

To prove the principle of ns-FFAGs and investigate the features listed above, it has 

been decided to design and build a linear machine, employing fixed frequency RF 

acceleration. To minimize cost, EMMA will accelerate electrons from 10 to 20 MeV 

and will use a beam provided by the existing ALICE accelerator [4] at Daresbury. The 

parameters of the machine have largely been determined by scaling down those for a 

muon FFAG in the Neutrino Factory [5] and are listed in Table 1. A doublet lattice has 

been chosen, to minimise cost, and there will be 42 cells. 

mailto:rob.edgecock@rl.ac.uk
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To deliver the aims of the project, 8 different lattice configurations have been 

designed [6], which probe the longitudinal and transverse dynamics of the machine and 

different regions of the tune diagram. The specifications for EMMA have been 

determined by these lattices and the resulting machine layout is shown in Figure 1. The 

ring itself is built on 7 girders, with 6 cells per girder. Figure 2 shows a single cell, 

consisting of a magnet doublet and an RF cavity, and 4 of the girders in place next to 

the injection line from ALICE. 

 

Table 1: EMMA Parameters 

Parameter Value 

Kinetic energy range 10 to 20 MeV 

Cell Doublet 

Number of cells 42 

RF 19 cavities; 1.3 GHz 

Cell length 394.481 mm 

Ring circumference 16.57 m 

 

 
Figure 1: Layout of EMMA, showing the last part of the injection line from ALICE (to the 

right), the EMMA ring and the extraction line, holding the destructive diagnostic devices. 

3.16.3 EMMA Hardware 

The design and construction of the hardware for EMMA has been challenging for a 

number of different reasons. As this the first machine of its type, many problems have 

arisen that have required novel solutions. Further, the flexibility needed to provide the 

proof-of-principle for non-scaling optics and meet the requirements of the 8 lattices has 

created significant difficulties. Finally, as shown in figure 1, the lattice is very compact 

and fitting everything into the machine has been a huge problem. The following 

subsections will outline the design of the three main components of the accelerator: the 

magnets, the RF and the diagnostics. All other parts are described elsewhere [7]. 
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3.16.3.1 Magnets 

A number of different magnet types are required for EMMA and these are 

summarised in Table 2. The 84 main ring DC magnets require independently variable 

dipole and quadrupole components. They are implemented as quadrupoles and the 

dipole component is obtained by using them off-axis. This component is adjusted by 

mounting the magnets on precise, computer controlled sliders. As shown in Figure 2, 

each doublet is surrounded by clamp plates. These are to prevent field leakage into the 

iron of the kicker magnets, but are mounted on each doublet to minimise orbit errors 

from asymmetry. Almost all of the magnets will be powered from two power supplies, 

one for the Fs and one for the Ds. Two of each type of magnet will be powered using 

individual supplies, to allow the field strengths to be changed compared to the others to 

introduce artificial errors for resonance studies. 

 

   

Figure 2: An EMMA cell with a royal visitor (left) and 4 EMMA girders in place (right), with 

the end of the injection line at the bottom right of the photograph. 

The pulsed magnets, the kicker magnets and septa, have proved to be the most 

difficult to design. The selected scheme is to use a septum and two kickers in adjacent 

cells for both injection and extraction. To avoid passing through the magnets in the 

neighbouring cell, the entrance and exit angles are 65
o
 and 71

o
, respectively. Further, 

the space available is limited to about 20 cm for each magnet and the fall (rise) time of 

the injection (extraction) kicker must be less than the revolution period of 55 ns. To be 

able to inject and extract and to probe the full acceptance of the ring at all energies, it is 

also necessary to be able to move and rotate both septa. Examples of these magnets are 

shown in Figure 3. 

Vertical steering and combined vertical and horizontal steering magnets are required 

in the injection line, the main ring and the diagnostics beam line. The combined steerers 

are used for orbit correction in the external lines, while the vertical steerers will be used 

to scan the full vertical acceptance of the ring. Horizontal scanning will be performed 

by the kicker magnets. The vertical steerers in the ring will be used for vertical orbit 

correction. 

3.16.3.2 RF System 

Rapid acceleration is obtained by placing accelerating cavities in every other cell 

around the EMMA ring, with two cavities omitted for injection and extraction of the 

electron beams. The RF system consists of 4 major sub-systems: a high power RF 

amplifier system, a RF distribution system, a low level RF (LLRF) control system and 

finally RF cavities that transfer energy to the beam. All 19 RF cavities are driven from 
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the same RF source, with a complex distribution scheme providing equal power to each 

cavity. Synchronisation of the electron bunches to the RF cavity is also required to tight 

tolerances, to ensure that the accelerating field is present as the electron bunches pass 

each RF cavity. The RF operating parameters can be found in Table 3. 

 

    

Figure 3: EMMA kicker (left) and septum (right) magnets. 

The high power RF amplifier system consists of a high voltage power supply, a 1 

kW solid state amplifier and an Inductive Output tube (IOT). This system will provide 

90 kW of pulsed RF power at 1.3 GHz. The pulse length for the RF is 1.6 ms, with a 

pulse repetition frequency of up to 20 Hz required. Due to the R&D requirements for 

EMMA, a 5.5 MHz operational tuning range is specified. This puts additional strain on 

achieving stable operation as the master oscillator clock, which also synchronises the 

RF to the ALICE RF, will be fixed at 1.3 GHz. For this reason, a full 360 degree phase 

shifter is required prior to each cavity to allow local phasing of the RF. 

 

Table 2: EMMA magnets 

Location Type Number 

Injection line Quadrupole 18 

 Dipole 4 

 Vertical steerer 2 

 Combined steerer 4 

Injection system Septum 1 

 Kicker 2 

EMMA ring Quadrupole – F 42 

 Quadrupole – D 42 

 Vertical steerer 16 

Extraction system Septum 1 

 Kicker 2 

Diagnostics line Quadrupole 14 

 Dipole 2 

 Vertical steerers 2 

 Combined steerers 4 
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The EMMA RF system is unique in that the 19 cavities are all fed from the same RF 

source distributed around a compact ring. A bespoke waveguide section that includes 

circulator, load, phase shifter, directional coupler and waveguide to coaxial transformer 

has been designed and built to achieve this.  

 

Table 3: Specifications for the EMMA RF system. 

Machine Parameters Values Units 

Frequency  1.3 GHz 

Frequency range -4.0 to 1.5 MHz 

Number of straights 21  

Number of cavities 19  

Total voltage per turn 2.3 MV 

Upgrade voltage per turn 3.4 MV 

Beam aperture 40 mm 

RF pulse length 1.6 ms 

RF repetition rate 1 to 20 Hz 

Amplitude control 0.3 % 

Phase control 0.3 ° 

        

As it is essential that the RF is synchronised with the beam in order to place the 

beam at the correct place in longitudinal phase space, a LLRF system is required to 

monitor signals from each cavity and provide the necessary phase or voltage adjustment 

to ensure the optimum RF settings are maintained. In order to maintain this stability 

during operation, feedback signals from the cavity fields are monitored in the LLRF 

system. 

     

Figure 4: Design of an EMMA RF cavity (left) and a cavity under test (right). 

The ultimate performance on the accelerator will be the ability of the cavities to 

efficiently transfer energy to the beam. For EMMA, a normal conducting single cell re-

entrant RF cavity design has been optimised for high shunt impedance, working within 

geometrical constraints of ø40 mm beam aperture and 110mm flange to flange length 
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availability. The custom in-house design shown in figure 4 meets the operation 

specification.  

3.16.3.3 Diagnostics 

As EMMA is a purely experimental machine, it is very important that it has 

sufficient diagnostic devices to make detailed measurements of the beam throughout the 

acceleration cycle. These are located in the injection line, to measure beam properties 

on injection into EMMA, and the ring itself. Destructive devices are located in an 

external diagnostics beamline. The extraction system into this is designed to allow 

extraction at all energies, so that measurements can be made at any energy. The devices 

employed are summarised in table 4 and their locations in the machine are shown in 

Figures 5 and 6. 

 

 

Figure 5: EMMA injection line, showing the locations of the diagnostic devices 

3.16.4 Experimental programme and commissioning 

An extensive experimental programme is planned with EMMA. This will include, 

for each lattice: 

 Demonstrating serpentine acceleration (see figure 7) 

 Demonstrating beam acceleration with multiple resonance crossings 

 Measuring the variation of the horizontal and vertical tune with energy 

 Measuring the variation of the time of flight with energy (see figure 7) 

 Scanning longitudinal phase space, including the variation of serpentine 

acceleration and beam emittance with the longitudinal parameters 

 Scanning the transverse phase space, including the variation of the dynamic 

aperture with energy and the time of flight and acceleration with beam 

amplitude. 

 Studying resonance crossings with low acceleration 

 

These measurements will need to be repeated with each lattice and all the 

measurements made compared with the expectations from the tracking codes. 
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Figure 6: EMMA diagnostics beam line, showing the locations of the diagnostic devices. 

 

    

Figure 7: Time of flight curves for the 8 EMMA lattices (left) and serpentine acceleration 

(right) 

The commissioning phase of EMMA is being designed to make these measurements 

possible. It will include making beam measurements in ALICE, commissioning the 

injection line and injection system, placing the beam on the correct orbit, 

commissioning the diagnostic devices with beam, testing the extraction system and 

verifying the proposed methods for making the measurements listed above. The 

accelerator control system has been designed to allow a set of machine parameters to be 

tried out with an online model before and in conjunction with using them on the real 

machine, to enhance debugging and understanding the machine operation. It is expected 

that first results from EMMA will be available during the summer of 2010. 
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Table 4: The diagnostics devices to be used on EMMA. The location of the devices is shown in 

bold in the first column 

Measurement Device Number 

Beam position 

Ring 

4 button BPM 82 

Beam position 

Injection 

4 button BPM 7 

Beam position 

Extraction 

4 button BPM 5 

Beam profile 

Ring 

Screens 4 

Beam profile 

Injection 

Screens 5 

Beam profile 

Extraction 

Screens 6 

Beam charge 

All 

Wall current monitor 3 

Phase wrt RF 

All 

Wall current monitor 3 

Transmission 

All 

Wall current monitor 3 

Transmission 

Extraction 

Faraday cup 1 

Beam loss 

Ring 

Beam loss monitor 4 

Emittance 

Inj/Ext 

Screens 3 

Momentum 

Ring 

BPMs  

Momentum 

Extraction 

Spectrometer 1 

Long. Profile 

Extraction 

Electro-optic monitor 1 
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Abstract: 

Fixed Field Alternating Gradient (FFAG) accelerator has the potential for variety of 

applications from particle physics by means of a muon accelerator for a muon collider 

and a neutrino factory, a proton and ion accelerator for a particle therapy facility and a 

high power proton driver for an accelerator driven subcritical reactor (ADSR). In this 

report, we will describe the research activities in the FFAG accelerator field at STFC 

Rutherford Appleton Laboratory in UK. A related construction project of a nonscaling 

FFAG called EMMA is discussed in a separate article [1]. 

3.17.1 Introduction 

Developments of particle accelerators have been mainly motivated by particle 

physics since they were invented. The primary goal of a particle accelerator is to have 

the highest energy beams on Earth – so called energy frontier research. When it was 

realized that high precision physics and physics with secondary particles can be done if 

the intensity of an accelerated beam is high, another direction of accelerator 

development was initiated. This opens a new field of an accelerator of intense beams. A 

facility which accommodates a high intensity accelerator is called a particle factory. 

For energy frontier research, a synchrotron was the only option until recently 

because of its compact magnets and efficient use of rf acceleration. To realise a high 

intensity accelerator, on the other hand, there have been a variety of options. A meson 

factory was constructed with a cyclotron at TRIUMF and with a linac at LANL. For a 

neutron source, ISIS uses a synchrotron and PSR relies on a full energy linac and 

accumulates protons in a storage ring. More recently, SNS follows a similar scheme to 

PSR while J-PARC has two synchrotrons for neutron as well as neutrino and secondary 

particle users. 

Despite the invention and development of an FFAG in the 1950s, no physics project 

to date has made use of this type of accelerator. It is understandable considering the fact 

that an FFAG was competing with a synchrotron as an energy frontier machine when it 

was first developed. The relatively complicated magnets and large nonlinearity made 

the design of hardware as well as optics difficult. As the demands on high intensity 

beams increased, however, it was realised that an FFAG has some advantages over 

other types of accelerators for these uses. The original paper in the 1950s already 

mentioned the possibility of high repetition operation to increase the average 

current [2]. Another use of an FFAG, which was probably not obvious when it was 

invented, is the acceleration of a beam of particles with short life such as muons and 

unstable nuclei. Lattice magnets with constant field can give the high acceleration rate 

which is only limited by the available rf voltage. 

mailto:shinji.machida@stfc.ac.uk
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In this paper, we will discuss the recent development of optics and beam dynamics 

in an FFAG accelerator carried out at the Rutherford Appleton Laboratory. 

3.17.2 Muon FFAG 

The baseline design of a neutrino factory assumes a muon FFAG as the final 

accelerator from 12.6 GeV to 25 GeV [3]. This is a so-called nonscaling type of FFAG 

with linear magnets and a highly symmetric lattice structure. An FFAG is believed to be 

a cheaper option than a Recirculating Linear Accelerator (RLA). Demonstration of the 

feasibility of a linear nonscaling FFAG was planned and is now a construction project 

EMMA about to deliver the first beam at the Daresbury Laboratory [1]. 

A study during the International Scoping Study (ISS) collaboration period, however, 

revealed some issues that affect the use of an FFAG as a muon accelerator. First, the 

straight sections are too short to accommodate the injection and extraction systems for a 

huge muon beam. The septum and kicker strengths become beyond the engineering 

limit. This is due to the highly symmetric structure and the requirement to reduce the 

dispersion function as small as possible so that the beam orbit shift over the whole 

energy range can be minimised. 

Secondly, we found that the muon beam emittance is so large that the time of flight 

difference between small and large transverse amplitude particles cannot be 

neglected [4]. The natural chromaticity does not help to eliminate the effects. Even 

worse, in the so-called serpentine acceleration scheme, small differences in the time of 

flight end up as a sizable momentum spread at the end of acceleration. This makes it 

hard to design more than one FFAG in a cascade, which we originally planned as a 

future Neutrino Factory upgrade. 

3.17.2.1 Injection and Extraction 

Based on a newly revised main lattice optics [5], the design of injection and 

extraction with hardware feasible from engineering point of view is underway. The 

short straight sections necessitate the use of distributed kickers. A superconducting 

septum may also be required. After studying three different types of lattices, it was 

decided that the triplet lattice with 3m drift is the most feasible from the point of view 

of injection and extraction. Injection in the horizontal plane can be achieved using three 

kickers in consecutive straights, each with a peak field of 0.09 T. The extraction system, 

this time in the vertical plane (due to the relatively high vertical betatron function in the 

straight at 25 GeV), consists of four kickers in consecutive straights with a peak field of 

0.08 T. In each case, a 2T septum is assumed, though this field requirement may rise 

depending on the clearance required. 

The injection and extraction systems are mirror-symmetric so that the same set of 

kickers is used by both muon signs. Special large aperture magnets will be needed to 

accommodate the excitation of the kicked beam. Previous simulations suggest that the 

symmetry breaking effects of these magnets will not be too severe [6]. The design of the 

kicker and septum magnets is ongoing. 
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Figure 1: Injection (left) and extraction (right) in the muon FFAG. The 30π mm acceptance of 

the kicked (blue) and circulating (black) beam is shown. The peak field in the kicker magnets 

and septum is also shown (red dash, scale on right). 

3.17.2.2 Chromaticity Correction 

One of the ways to mitigate the time of flight problem depending on transverse 

amplitude is to correct chromaticity. It is possible to introduce nonlinearity in the main 

magnets and make the tune variation as a function of momentum almost flat. On the 

other hand, reduction of dynamic aperture becomes a main concern. Although a muon 

beam circulates only 10 to 20 turns, a small reduction may conflict with the aperture 

requirement for a muon beam of 30  mm-rad normalized emittance. 

Figure 2 shows the cell tune as a function of momentum before and after 

chromaticity correction using some multipoles. It shows that the fairly flat tune is 

obtained only with sextupole component.  

 

  

Figure 2: Tune as a function of momentum. Horizontal (left) and vertical (right) tune with and 

without multipole. 

Dynamic aperture, on the other hand, deteriorates and the design acceptance is not 

satisfied when the full chromaticity correction is applied as shown in Fig. 3. In the 

figure, sextupole strength is normalized so that 100% correction gives the flat tune of 

Fig. 2. A dip around the sextupole strength of 40% corresponds to a single cell 

resonance where a cell tune is 1/3. A compromise between chromaticity correction and 

dynamic aperture can be found by the chromaticity correction with about 70% sextupole 

strength. 
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Figure 3: Dynamic aperture with sextupole correction. 0% means natural chromaticity and 

100% sextupole strength makes the tune flat as in Fig. 2. 

3.17.2.3 Insertion 

Although the original idea of a nonscaling FFAG is to have high symmetry so that 

resonance crossing will not become an issue [7, 8], it is not clear if breaking symmetry 

really affects dynamic aperture. On the other hand, breaking symmetry of the lattice and 

having insertions with long straight section eases the injection and extraction. 

It is possible to design a long triplet cell and install it every 11 cells, which makes a 

five fold superperiod lattice. Two long cells with 5 m drift space create one 7 m drift 

space and two 5 m drift spaces every 11 cells. The lattice functions are no longer 

identical for the operational momentum range, but the distortion is acceptable as shown 

in Fig. 4. With sextupole components to correct the chromaticity, dynamic aperture with 

and without insertion is almost the same. 

 

  

Figure 4: Horizontal (left) and vertical (right) beta functions of one superperiod. There are two 

long cells at the right end. The legend shows the beam momentum in GeV.  
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3.17.3 FFAG for Proton Therapy 

3.17.3.1 Requirement 

In order to use an accelerator in the fields where physicists are not the end users, 

considerations such as ease of operation, short times for maintenance and reliability 

become more important. This is especially the case when an accelerator is used as a 

charged particle therapy machine. Since it uses DC magnets and relatively simple rf 

systems, an FFAG is considered to be an ideal accelerator for such application with 

advantage over cyclotrons and synchrotrons. The potential of very high repetition rates 

of operation of the order of 1 kHz makes a spot scanning technique possible. One big 

problem is, however, that there is no experience of FFAG operation. Demonstration of 

such a machine is needed and the PAMELA project launched at the John Adams 

Institute of Accelerator Science at Oxford University is described in a separate 

paper [9]. 

3.17.3.2 Optics 

FFAG accelerators were originally designed in order to keep the tune constant 

during acceleration. This can be done by introducing nonlinearity in the magnets. This 

type of FFAG is called a scaling FFAG. A muon FFAG on the other hand uses linear 

magnets and the tune moves during acceleration unless chromaticity correction is 

applied. It is called a linear nonscaling FFAG. For medical applications, both the 

advantage of a scaling FFAG that is free from resonance crossing and the compactness 

of a linear nonscaling FFAG are required. The design we made is a variety of a linear 

nonscaling FFAG based on a scaling FFAG, which becomes a nonlinear nonscaling 

FFAG. 

The magnets of a scaling FFAG have a field profile of r
k
 to make the tune constant 

independent of momentum, where r is the radial coordinate and k is called the field 

index. In our design, we first expand the field into multipoles and take low order terms 

only. Secondly, we take a rectangular magnet instead of a scaling FFAG magnet which 

has a wedged shape. Thirdly, three magnets, which make triplet focusing, are aligned 

along a straight line so that alignment tolerance is improved. We found that a nonlinear 

nonscaling FFAG following this procedures still gives a fairly flat tune over the 

momentum range of a factor three [10]. 

Another novel feature of the design is to use the second stability region of Hill‘s 

equation [11]. Since the alternating gradient focusing was invented, accelerators have 

always relied on the first stability region of Hill‘s equation because the sensitivity to 

errors is large and beam envelope becomes enormous in the second stability region. In 

addition, there was no obvious advantage to operate an accelerator in the second instead 

of in the first region. 

In our design of the nonlinear nonscaling FFAG, we use the second stability region 

to make the orbit shift smaller. For example, in the machine for particle therapy, the 

orbit shift is reduced by a factor of five. The sensitivity and beam size increase as one 

expects. However, it is controllable by choosing lattice parameters carefully. 
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Figure 5: Stability diagram with practical lattice configuration. Upright numbers indicate 

vertical cell tune and vertically aligned numbers indicate horizontal cell tune. Lines are drawn 

in steps of 0.05. 

3.17.3.3 Beam Transport Idea and Gantry 

Although an accelerator and gantry is now ready to deliver a beam with different 

momenta at a rate of 1 kHz, the beam transport line in between are not ready for a beam 

for wide momentum range. It is natural to apply FFAG optics to transport a beam with 

wide momentum range. A straight beam transport line with a scaling FFAG field profile 

has designed. Figure 6 shows the orbit and optics of the design [12]. 

 

 

Figure 6: Different momentum orbits (left) and optics (right) in a unit cell which satisfies the 

periodic boundary condition. The rectangles at the bottom show the position of the FDDF 

magnets. 

3.17.4 FFAG as a High Intensity Proton Driver 

The potential for high repetition rate in FFAG operation makes it easy to deliver 

high average current keeping the bunch charge at a reasonable level. The conventional 

issues related to high intensity accelerators, such as space charge effects and collective 

instabilities, can be avoided. 
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One application of a high average current accelerator is a proton driver for 

accelerator driven subcritical reactor (ADSR). An ADSR must have almost CW beams 

from the proton driver and the beam time structure from an FFAG, of about 1 kHz 

repetition, matches the requirement. It is considered to be easier to increase the proton 

energy to more than 1 GeV than in the case of cyclotron. Based on the same design 

principle developed for a particle therapy accelerator, a design study of a proton driver 

for ADSR is underway. Figure 7 shows one example of the accelerator complex. 

 

 

Figure 7: FFAG accelerator complex to deliver 1.5 GeV high intensity protons for ADSR. 

3.17.5 Summary 

Since the rebirth of an FFAG accelerator in Japan about ten years ago, intensive 

study on its optics, hardware development and construction of novel variations of this 

type of accelerator have been carried out all over the world. The Rutherford Appleton 

Laboratory has been at the centre of these activities and expects to continue to be so in 

future. 
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Abstract: 

STFC Daresbury Laboratory currently operates a 350 kV DC electron gun using 

caesiated GaAs photocathodes to provide bunches up to a nominal 80 pC up to an 

average current of 6.5 mA. This serves as the injector for ALICE (Accelerators and 

Lasers In Combined Experiments) - a 35 MeV energy recovery linac based on 1.3 GHz 

superconducting RF technology. An upgrade to the electron gun is under way to 

incorporate a three-chamber photocathode preparation facility forming a load-lock with 

the gun chamber. This will allow rapid changeover of photocathodes without breaking 

the gun vacuum and improve photocathode activation procedure. Initial results of the 

activation in the commissioned preparation facility have produced quantum efficiencies 

of up to 15 % at 635 nm. The status of the project and ongoing research and 

development is presented here. 

3.18.1 Introduction 

GaAs photocathode based high voltage DC electron guns are operational at 

a number of different laboratories worldwide as injectors for energy recovery linacs and 

free electron lasers due to their potential to deliver beams of high average current (up to 

100 mA in CW mode) with a relatively low normalized emittance of a few mmmrads. 

DC guns with GaAs and other III-V family semiconductor photocathodes have typically 

being used as a source of polarized electrons at energies around 100 keV. Since the 

minimum emittance, εmin, of the produced electron beam is related to the electric field 

strength on the cathode surface, Ec, as [1] 
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there is a drive towards higher voltage. GaAs based DC guns have been employed at 

TJNAF [2], Daresbury Laboratory [3] and JAEA/KEK [4] with power supplies rated to 

500 kV and at Cornell University [5] with a 750 kV power supply. 

3.18.2 ALICE Gun  

The electron gun, shown in Figure 1, at Daresbury Laboratory is a modified version 

of the gun developed for the TJNAF Infra-Red FEL [2]. This operates at a nominal 

350 kV with the standard ceramic insulator. The GaAs photocathodes are currently 

activated in-situ in the gun chamber with Cs and O2 or NF3 in a ―yo-yo‖ procedure. The 

photocathodes are illuminated by a mode-locked Nd:YVO4 laser, frequency doubled to 

532 nm [6]. This provides 7 ps FWHM pulses at a repetition rate of 81.25 MHz. A pulse 

stacker is used to generate either 14 or 28 ps pulses. The pulse train length can be varied 

from a single bunch up to 100 µs with a train repetition rate of up to 20 Hz. The 

nominal bunch charge is 80 pC with a corresponding average train current of 6.5 mA. 

The maximum achieved quantum efficiency (QE) of the photocathodes has been 3.7 % 

and a maximum bunch charge of ~ 150 pC has been measured from the cathode. 

Typical operational photocathode 1/e lifetime is 100-250 hours with a dark lifetime 

measured at over 900 hours. A typical lifetime plot is shown in Figure 2. 

 

Figure 1: The ALICE electron gun before final assembly, showing ceramic and cathode ball. 

The main modification to the TJNAF gun design is the use of a single large ceramic 

with bulk-doped controlled resistivity as the high voltage insulator. Whilst initially 

successful, with routine conditioning to 450 kV (up to a maximum of 485 kV), the long-

term reliability of the brazing joints under load due to thermal cycling during baking has 

been poor. A collaboration between Daresbury Laboratory, TJNAF and Cornell 

University has resulted in design and delivery of an insulator with a modified taper near 

the brazing. In the interim period, ALICE has been operating with a smaller, two-piece 

insulator, limiting the operating voltage to ~250 kV. Field emitters on the current 

photocathode have further reduced operational voltage to 230 kV. A reduced bunch 

charge between 20 and 60 pC has been using whilst commissioning ALICE to minimize 
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downtime due to photocathode re-activation and to minimize beam loading effects in 

the superconducting RF booster. 

Figure 3 shows QE maps of the current ALICE photocathode at the end of an 

operational cycle, and just after heat cleaning and re-activation. At the end of 

operations, the whole photocathode surface is reduced in QE. The large hole in the 

centre of the QE map is due to ion back-bombardment but is fully recovered after the 

heat cleaning and re-activation procedure. The smaller hole in the QE maps is a likely 

field emission point. 

 

Figure 2: Example QE lifetime plot for photocathode during ALICE commissioning showing 

1/e lifetime ~ 250 hours. 

   

Figure 3: Typical QE maps at the end of the operational cycle (left) and after a full cathode re-

activation including heat cleaning (right). 

3.18.3 ALICE Gun Upgrade 

An upgrade to the ALICE gun is currently underway, for installation in 2011, 

involving development of new photocathodes, a ―load-lock‖ photocathode preparation 

facility (shown in Figure 4), and a side loading transport mechanism of the 

photocathode into the gun. These elements are described below. An extended gun 

beamline incorporating a suite of diagnostics useful for ALICE operations as well as 

testing different photocathodes is also being considered and is described in [7]. 
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Figure 4: General view of the ALICE gun equipped with the photocathode preparation facility. 

3.18.3.1 Photocathode Development 

Originally III-V family photocathodes such as GaAs, GaAsP, InGaAsP were mainly 

used in DC guns for production of polarised electrons. As grown, these materials have a 

positive electron affinity (PEA), which for GaAs is 4 eV. In order to make GaAs 

photocathodes able to emit electrons when illuminated by 532 nm light, the electron 

affinity should be reduced to less than 1 eV - or even brought to a negative value.  This 

activation process basically comprises deposition on the atomically-clean photocathode 

surface of a thin layer of Cs and an oxidant, typically O2 or NF3. Before the activation, 

the surface of the photocathode is chemically etched and heat cleaned in order to 

remove As and Ga oxides. 

GaAs photocathodes place extremely high demands to operational vacuum 

conditions as they are very sensitive to the presence of oxidants in the residual 

atmosphere. For example the 1/e lifetime of GaAs does not exceed 210
-8

 mbars of 

oxygen exposition [8]. The pressure in typical GaAs guns is of the level of 10
-11

 mbar. 

Low operational life time is also an issue. The dominant mode of GaAs degradation is 

bombardment of its surface by back streaming ions. 

ALICE currently uses GaAs photocathodes with a diameter of 25 mm. The new 

cathode assembly of the gun, however, has been designed to accommodate 

photocathodes with an emission surface diameter of 10 mm, as shown in Figure 5. This 

is because the laser only illuminates an area ~ 4 mm in diameter and a smaller active 

area could help reduce the beam halo. The preparation facility allows a variety of III-V 

photocathodes to be tested in the ALICE photoinjector, with varying active layer 

composition, thickness, and electron affinity.  
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Figure 5: GaAs photocathodes on molybdenum substrate 

Recent measurements of the QE spectra indicate that GaAs activated to PEA, where 

it is capable of picosecond level response times, has a QE of a few per cent [9]. This is 

enough to deliver bunches with a charge of several dozen pC. Figure 6 shows QE 

spectra for PEA GaAs photocathodes activated with Cs only to different levels of Cs 

coverage. The position of low energy threshold corresponds to the energy gap Eg for 

GaAs, and the position of Ihot corresponds to the vacuum level.  The energy difference 

between these two thresholds is equal to the effective electron affinity. Figure 6 also 

shows measured longitudinal energy distribution of electrons emitted from a PEA GaAs 

photocathode, indicating that the trade-off for a fast response time is that the energy 

spread is relatively large. 

 

Figure 6: QE spectra of p-GaAs(Cs) –photocathode for different Cs coverage  (left),and 

longitudinal energy distribution curves at different photon wavelengths for a PEA GaAs 

photocathode (right). 

3.18.3.2 Photocathode Preparation Facility 

As the photocathodes are currently activated in situ in the ALICE gun chamber, the 

process of photocathode changeover takes weeks due to the need to break and restore 

the vacuum to 10
-11

 mbar whilst replacing the photocathode, including an extensive 

bakeout at 250°C. A load-lock system will allow photocathode replacement to be made 

without breaking the vacuum thus reducing the time taken to a matter of hours. A 

separate preparation facility also removes the activation process of the GaAs 

photocathodes outside of the gun, thus reducing the introduction of contaminants into 
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the gun vacuum system and eliminating the risk of spreading Cs onto other parts of the 

cathode ball - which causes undesired field emission, and on the high voltage insulator - 

which reduces maximum achievable voltage. Such a facility has currently been built 

and commissioned at Daresbury Laboratory with plans for later installation onto the 

ALICE electron gun. 

 

Figure 7: The assembled photocathode preparation facility. 

The preparation facility, shown in Figure 7, consists of three chambers: a loading 

chamber where photocathodes are introduced to the system, a hydrogen-cleaning 

chamber to remove contaminants from the photocathode surface and a preparation 

chamber where photocathodes are activated. A magnetic manipulator is used to 

transport the photocathode between the three chambers. Before assembly, the 

components of facility were vacuum fired at a temperature of 950ºC for five hours to 

deplete the 316LN stainless steel of hydrogen. 

Photocathodes are introduced into the loading chamber, as shown in Figure 8, by a 

z-translation stage containing a magazine holder capable of accommodating four 

photocathodes. To load new photocathodes, the magazine holder is removed from the 

loading chamber and transported under dry nitrogen to a nitrogen-purged glove box 

where new photocathodes are chemically etched. The etched photocathodes are inserted 

into the magazine holder, and the z-stage is closed such that the ‗O‘ ring seals. The 

photocathodes are thus stored in a leak tight nitrogen environment. The z-stage is then 

re-inserted in to the loading chamber, the ‗O‘ ring seal opened and the chamber 

evacuated to ensure the photocathodes are not exposed to any contaminants from the 

atmosphere. The pumping system of the loading chamber includes an ion pump and an 

oil-free preliminary pumping station. After the photocathode is placed into the loading 

chamber, it is pumped down to a pressure of 10
-9 

mbar. 
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Figure 8: Section views of (left) the loading chamber, and (right) the hydrogen cleaning 

chamber. 

The hydrogen cleaning chamber, shown in Figure 8, is used to initially process 

photocathodes before activation, and to process used photocathodes before re-

activation. The photocathode is heated to ~300 ºC via the use of a halogen bulb. The 

bulb is shielded by tantalum screen to avoid any radiative heating of other components 

whilst focusing the heat onto the photocathode, thus minimising the power 

requirements. The hydrogen cleaning process makes use of a thermal gas cracker that 

uses electron bombardment of a tungsten capillary to thermally dissociate the gas 

passing through it. Given the right conditions the thermal cracking efficiency of 

hydrogen is very high and this is important in order to minimise the number of H
+
/H

-
 

ions in the cleaning process. 

 

     

Figure 9: Section view of the activation chamber (left), the photocathode carousel (right). 

Figure 9 shows the activation chamber - which contains a carousel capable of 

holding six photocathodes. A photocathode, transferred from the hydrogen cleaning 

chamber, is first heat cleaned. There are two heating positions in the chamber, each 

using the same halogen bulbs as in the hydrogen cleaning chamber. Finite element 

analysis shows that the temperature of the neighbouring photocathodes should remain 

less than 100C during the heat cleaning process. Once cooled, the heat cleaned 

photocathode is rotated into the single activation position. Cs dispensers are positioned 

within 10 mm of the photocathode surface, as is the charge collector used to measure 

the photocurrent. The O2/NF3 is injected into the system via a piezo-electric fine leak 

valve which is positioned on the conflat flange that sits directly above the photocathode. 

XHV conditions are maintained in the activation chamber by means of ion pumps and 
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six non-evaporable getter strips. The typical pressure is less than 10
-11

 mbar, with partial 

pressures of oxygen, water vapour and CO2 less than 10
-14

 mbar.  

The photocathode preparation facility was successfully commissioned in spring 

2009, with a maximum achieved quantum efficiency of 15% at a wavelength of 635 nm. 

Figure 10 shows the ―yo-yo‖ procedure used. 

Figure 10: Cs-O activation of a GaAs photocathode using the ―yo-yo‖ procedure.  

3.18.3.3 Cathode Ball Design 

It is proposed that the photocathodes are loaded from the preparation chamber into 

the side of the gun, in order to avoid disruption to the existing ALICE infrastructure. 

This involves a re-design of the cathode ball from the present rear-loading mechanism. 

The ball requires a slot in the side for loading of the photocathode. This has been 

positioned on the cylindrical part of the ball surface to keep the field distortion low. The 

photocathode then has to be moved forward into position, requiring a second slot further 

back in the cathode ball for insertion of a magnetic screwdriver to drive the winding 

mechanism. A third slot, perpendicular to the loading slot, is required as a viewport to 

ensure the photocathode is loaded properly. Figure 11 shows the electric fields at 

350 kV on the cathode ball surface, as modelled in CST Studio [10]. The electric field 

has been kept lower than 10 MV/m on the curved surface of the ball and also around the 

edges of the slots. A focussing electrode has been added and optimised by performing 

beam dynamic simulations in ASTRA [11]. Figure 12 shows that the transverse beam 

properties for the new gun design compared to the existing gun which lacks the 

focussing electrode. 

0 

2 

4 

6 

8 

00:00:00 00:28:48 00:57:36 01:26:24 01:55:12 02:24:00 

Time 

P
h

o
to

cu
rr

en
t 

an
d
  

p
re

ss
u

re
, 

a.
u

. 

 Photocurrent 

Pressure 



 169 

 

Figure 11:  The cathode ball with slots and focusing electrode showing electric fields. 

 

Figure 12:  RMS beam size (left) and transverse emittance (right) for the new gun design 

(green) compared to the current gun (red) including a 330 G solenoid at 0.25 m. 

3.18.4 Summary 

The GaAs based 350 kV DC gun for ALICE has been operational since August 

2006 – with a maximum QE of 3.7 % achieved and dark lifetime in excess of 900 hours. 

Following development of III-V photocathodes on different substrates and activated to 

differing levels of electron affinity, a three-chamber photocathode preparation facility 

has been constructed at Daresbury Laboratory. This has successfully been 

commissioned and GaAs photocathodes have been activated with a maximum QE of 

15% measured at 635 nm. This facility will be installed on the ALICE gun in 2011, 

enabling faster photocathode changeover and better vacuum conditions in the gun. The 

design of the photocathode preparation facility means that in future additional chambers 

can be added, allowing testing of multi-alkali photocathode materials, such as K2CsSb, 

in the ALICE electron gun. These should offer high QE (up to 20 %) at the 532 nm 

wavelength of the current ALICE photoinjector laser and have a fast response time. 

They could also offer a longer lifetime than GaAs photocathodes since they have shown 

a much higher robustness under exposition to oxygen [12]. However, their stability to 

ion back-bombardment is unknown and has to be investigated. 
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3.19.1 Introduction 

Preparations for the assembly of a new Superconducting RF (SRF) cryomodule, 

which has been developed for long-term high Qext and CW operation for application on 

http://www.desy.de/~mpyflo
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Energy Recovery Linac (ERL) accelerators, is well underway at Daresbury Laboratory 

[1]. 

Table 1: Cryomodule Design Parameters 

Parameter Value 

Frequency (GHz) 1.3 

Number of Cavities 2 

Number of Cells per Cavity 7 

Cryomodule Length (m) 3.6 

R/Q () 762 

Eacc (MV/m) > 20 

Epk/Eacc 2.23 

Hpk/Eacc (Oe/MV/m) 46.9 

Cryomodule Energy Gain (MeV) > 32 

Qo >1 x 10
10

 

Qext 4 x 10
6
 - 10

8
 

Maximum Beam Current 100 mA 

Max. Cavity Forward Power (kW) 25 SW 

 

To date, the international partners who have participated in this collaborative 

development (Cornell and Stanford Universities, Daresbury Laboratory, DESY, FZD-

Rossendorf, Lawrence Berkeley Laboratory, and more latterly TRIUMF) have 

identified appropriate sub-system solutions to achieve the fundamental requirements for 

this new cryomodule, which have been reported previously elsewhere [2]. Stanford 

University have provided a cryomodule which has an identical layout to that of the 

modules available on the ALICE facility at Daresbury, such that the completed module 

can be incorporated onto ALICE and its associated support services. Cornell University 

will provide the HOM absorber design to be incorporated into the cryomodule and 

DESY will provide 7-cell TESLA/TTF cavities [3] (previously used for the 

superstructure) that will be modified by Cornell and integrated by Daresbury. LBNL, 

FZR Rossendorf and Daresbury are providing engineering resources to facilitate the 

integration process, in particular with regards to the mechanical and RF optimisation. 

This includes opening up the beam pipe diameter to conduct all HOMs out to the ferrite 

beam pipe loads. 

Table 1 highlights the primary cryomodule design parameters, which will be 

installed on the ALICE ERL accelerator at Daresbury Laboratory and validated with 

beam in 2010. 

3.19.2 Cavity Design and Fabrication 

The cavity optimisation process has used as a baseline the TESLA 7-cell 

superstructure geometry developed at DESY and our design utilises the same 5 centre 

cells as the TESLA superstructure cavity, with optimisation of the end cells and 

enlargement of the beam pipes (see Figure 1) to match to beam-pipe HOM absorbers as 

developed by Cornell.  
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To reach the required Qext tuning range (10
7
 – 10

8
), the position of the input coupler 

with respect to the cavity end cell has been analysed. Due to the physical size of the 

coupler employed (see later), its location is restricted to 113.1 - 133.1 mm measured 

from the coupler axis to the equator of the end-cell.  

 

Figure 1:  Plot of the E-Field inside the ERL 7-Cell cavity 

The coupler antenna has a penetration adjustment of up to 15 mm and a full 

parametrisation of coupler distance from the end cell and its penetration has been 

assessed. The required range of Qext as a function of antenna penetration was achieved 

with the coupler located 123.1 mm from the end cell (see Figure 2). At a 123.1mm 

offset, the required Qext range is nearly obtained with a 15 mm variation in antenna 

penetration. The addition of a triple-stub tuner can be used to extend the upper range of 

the operational Qext to beyond 10
8
 if required. 

 

Figure 2:  Variation of Qext with antenna extension and position 

Two seven-cell niobium cavities have been fabricated (Figure 3). The section from 

the first to the last equator was cut from two seven-cell superstructure cavities provided 

by DESY. The outer half-cells and associated beam pipes (end groups) are of a new 

design developed by LBNL, Daresbury and Cornell. Their geometries were optimized 
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to facilitate the propagation of higher order mode power to ferrite-lined beam-pipe 

loads.  

 

 

  Figure 3: 7-cell cavity after final electron-beam welding. 

Figure 4 shows a schematic of the end cell geometries and integrated cavity string 

assembly. After fabrication, the cavities have been tuned for field flatness of the -

mode. As the gradient will be 20 MV/m or less in operation, only BCP treatment is used 

for the final stage of cavity preparation (see Figure 5). So far, one of the two cavities 

was tested twice in a vertical cryostat. The first test was performed after light BCP (10 

to 15 microns of surface material removal) and HPR. A low field Q of the -mode was 

measured to be 2.2  10
9
 at 1.8 K. In this test we were not able to couple to all modes of 

the fundamental pass-band, hence we could not localize the cells responsible for the low 

Q. Also, the coupling was too weak to perform reliable RF field calibration and Q vs E 

measurement. 

 

Figure 4:  ERL cavity string assembly 

After an additional light BCP (about 20 microns) and HPR, the cavity was re-tested. 

Again, a low Q (1.5  10
9
 at 2 K) was measured for the -mode. This time however, we 

were able to measure low field Q‗s of all seven fundamental pass-band modes. These 

measurements indicate that excessive losses in the end cell(s) are responsible for the 

low quality factor of modes with high fields in those regions. The /7 mode, which has 

very low fields in the end cells, has a rather decent Q of 1.1  10
10

.  
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Figure 5: First cavity prepared for BCP processing 

The second cavity is in the final stage of preparation for a vertical test. The results 

of which, along with close examination of the first cavity‘s end groups will guide 

further decisions for repeated tests. All flange designs have been changed to knife-edge 

conflat interconnections, with brazing to Nb beam tubes similar to that used for the 

Cornell Injector cryomodule [3]. The Ti-helium vessel and gas return pipe designs are 

modified to conform to the FZD Rossendorf cryomodule discussed below. The blade 

tuner used for the TTF superstructure test was changed to a modified Saclay II tuner 

design so that it would fit in the chosen cryomodule envelope. The input couplers and 

HOM loads have been chosen to be identical to the ones used in the Cornell Injector 

module [4]. The design of the cavity string is carefully laid out to fit inside the module.   
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3.19.3 Tuner Development 

 
Figure 6: Adaptation of the Saclay II tuner to the 7-cell cavity. 

After examining different tuner alternatives it was decided to adopt a design based 
on the Saclay II tuner which was developed as part of the CARE project by CEA Saclay 
(see Figure 6) [5]. This design was chosen due to its compact size, its adaptability to the 
large beam pipe diameter of the 7-cell cavity and the promising test results observed 
when utilised to compensate for Lorenz force and microphonics detuning on a 9-cell 
cavity on CryHoLab at Saclay [6] and on HoBiCaT at BESSY [7].  
 

 
Figure 7:  Modified Saclay-II tuner assembly. 

The Saclay II tuner design must fit over the larger diameter beam tube (106 mm) of 
the 7-cell cavity (see Figure 7). The piezo cartridge design of the tuner is being 
modified to allow the piezos to be pre-compressed without relying on the forces 
generated through tuning of the cavity string. Furthermore, we are replacing the low 
voltage piezo stack with a high voltage stack to achieve a higher degree of stiffness. 
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3.19.4 INPUT Coupler Preparations 

The chosen solution for a suitable input coupler, capable of delivering 20 kW CW in 

standing wave, whilst also providing adjustability in terms of its Qext setting, is the 

Cornell ERL injector coupler (see Figure 8) [8]. CPI have successfully fabricated a 

number of these couplers and the power handling capability has been proven up to 50 

kW CW in travelling wave.  

 

 

Figure 8: Original and modified Cornell ERL injector coupler. 

To allow for the insertion of the cold part of the coupler and the modified cavity 

string into the cryomodule, its total length has been shortened by removal of the 

secondary 80 K thermal intercept which was fundamentally required for 50 kW 

operation. This enables the cavity string to be inserted into the cryomodule without 

interfering with the cryomodule vessel. The modified coupler heat loads due to these 

modifications are shown in Table 2. 

 

Table 2: Modified Cornell Coupler Heat Loads 

Parameter Original Modified 

Max Power (kW) 50 TW 20 SW 

Antenna Stroke (mm) >15 <15 

Heat Leak to 2K (W) 0.23 0.13 

Heat Leak to 5K (W) 1.7 2.5 

Heat Leak to 80K (W) 43 34 

 

Prior to assembly of the couplers into the cavity string, they must be rigorously 

cleaned and inspected, before being baked and high power RF processed. Both couplers 

have been assembled onto their respective cold and  warm baking stations (see Figure 9 

a) and b)) and baked at 150 C for 24 hours. 
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Figure 9: a) Cold and b) Warm coupler bake assemblies at Daresbury. 

The couplers have now been assembled in a back-to-back configuration, onto a high 

power coupling box to allow for high power conditioning (see Figure 10).  

 

 

Figure 10: Input coupler RF conditioning assembly. 

RF power will be limited to ~10 kW CW during conditioning, as gaseous helium 

(GHe) cooling will not be available. Pulsed conditioning will then be performed up to 

the 30 kW limit of the IOT test stand at Daresbury (see Figure 11). 
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Figure 11:  High power couplers assembled on IOT test stand. 

3.19.5 Cryomodule Assembly Process 

Wherever possible, existing assembly procedures and tooling fixtures have been 

employed from the original ALICE cryomodule, fabricated by ACCEL GmbH (now 

Reaserch Instruments GmbH) under license from FZD Rossendorf [9]. All of the major 

internal cryomodule components have however been modified including; cavities, input 

couplers, tuners, HOM absorbers, magnetic shields and cryogenic cooling circuits.  

 

 

Figure 12: Cavity string assembly into outer cryomodule. 

By utilisation of a cantilevered rail system, the sealed cavity string assembly can be 

rolled into the outer cryomodule vessel (see Figure 12). Once positioned, the cavity 

string is then locked in place by a single titanium locking fixture, which then provides a 

longitudinal constraint on the mechanical component contraction when the cryomodule 
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is cooled to cryogenic temperatures (see Figure 13). In this way, the contraction occurs 

from both ends of the cryomodule towards this central, locked position. This ensures 

that the input couplers (which are positioned very close to the central locked reference 

position) do not get exposed to excessive lateral stresses during cool-down. 

The cryomodule incorporates three layers of magnetic shielding in order to try and 

maximise the achievable Qo and thereby minimise the cavity dynamic heat load; two 

mu-metal magnetic shields are attached to the outer  80 K skeleton and a third cryoperm 

magnetic shield covers each cavity helium vessel. 

 

 

Figure 13:  Central cavity string locking position. 

3.19.6 ALICE Cryoplant Modifications 

Presently on ALICE, the cryomodule 80 K skeleton is cooled using liquid nitrogen 

(LN2), however for this new cryomodule GHe will be used, which will have the 

anticipated benefit of reducing turbulent pressure fluctuations, leading to a lower 

cryomodule microphonics sensitivity. In addition, both the input couplers and all three 

beam-pipe HOM absorbers have 5 K cooling intercepts, which the existing ALICE 

cryogenics system does not currently provide (see Figure 14). 
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Figure 14: ALICE cryoplant modifications. 

A secondary heat exchanger system (designated COOL-IT; COOLing to 

Intermediate Temperatures) [10] has therefore been developed which taps off available 

300 K, high pressure GHe from the main compressor, plus an additional LHe feed from 

the 4 K reservoir dewar. The high pressure GHe circuits at 80 K and 5 K are then 

generated via the heat exchanger box, which will be located close to the ALICE ERL 

cryomodule as shown in Figure 15. 

 

 

Figure 15: COOL-IT system installation on ALICE. 
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The COOL-IT heat exchanger system is currently being fabricated by AS Scientific 

in the UK and first acceptance tests have been completed to ensure vacuum integrity of 

all components (see Figure 16). Final stability checks were performed in preparation for 

delivery at Daresbury in October 2009. COOL-IT is now installed on ALICE, with all 

interfacing and instrumentation testing underway. 

 

 

Figure 16:  COOL-IT heat exchanger at AS Scientific. 

3.19.7 Summary and Outlook 

The vast majority of the cryomodule hardware is now either available or under 

fabrication. We anticipate having both couplers RF conditioned and cavities available at 

Daresbury by mid 2010. All tooling and fixtures required for the cryomodule assembly 

are complete and cleanroom assembly of the cavity string is expected to start later this 

year. The COOL-IT system is now installed on ALICE in readiness for connection to 

the new cryomodule when installed in early 2011. 
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3.20.1 Introduction 

In the area of SCRF, our work is focused on two main areas: optimization of fields 

in 1.3 GHz cavities, with a view to facilitating a ~50 MV/m accelerating electric field 

gradient and, on instrumenting and studying, higher order modes in the 3
rd

 harmonic 

cavities recently installed in the FLASH facility at DESY. The latter entails a close 

collaboration with colleagues at both DESY laboratory and with colleagues at the 

Universität of Rostock. In both areas of work, we capitalize on our past experience in 

both modeling electromagnetic fields in multi-cavity structures [1-2] and in the latter 

area, we profit from our past work on HOM diagnostics made in the main accelerating 

cavities at FLASH [3].  

3.20.2 Third Harmonic SCRF Cavity HOM Diagnostics 

In order to produce SASE-FEL radiation at the FLASH facility and in the future 

XFEL, compressed electron bunches are required. This is achieved by accelerating the 

beam off-crest. This results in an energy spread along the bunches within the beam, 

which increases towards the tail.  The beam is then sent through a magnetic chicane, 

where the tail catches up with the head of the bunch. This results in a compressed bunch 

profile.  The cosine-like energy spread however deteriorates the bunch properties. It is 

desirable to reduce this energy spread by flattening the overall field and this can be 

achieved by including harmonics of the fundamental frequency of the linac. A single 

frequency operating at the nth harmonic can be used flatten out the dependence of the 

energy gain verses phase, by cancelling the second derivative of the fundamental at its 

peak.  

In practice, the first component in a Fourier expansion is used, namely the 3rd 

harmonic. This minimises the effect of transverse wakefields.  It is also important to 

note that flattening the field also reduces the growth of transverse phase space. The 

mailto:roger.jones@manchester.ac.uk
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transverse magnetic fields arise from the rate of change of the longitudinal electric field. 

Thus, flattening the electric field will also result in a reduced magnetic field. Hence the 

use of a cryo-module of third harmonic cavities will reduce the dilution of both 

longitudinal and transverse phase space.  FNAL have designed and fabricated such a 

cryo-module, which has recently been installed in the FLASH facility at DESY.  

 

 
Figure 1: Schematic of a FNAL cryo-module [4] consisting of four 3.9 GHz cavities. 

 

These cavities are expected to improve the longitudinal beam profile considerably.  

However, as the transverse momentum kick of higher order modes (HOMs) scales with 

the third power of the fundamental frequency (3.9 GHz), these cavities are capable of 

giving rise to a significantly larger emittance dilution of the beam than that imparted to 

the beam due to the main accelerating cavities (with a fundamental frequency of 

1.3 GHz).   The focus of our work is to ensure these HOMs are well-characterised and 

their effect on the beam is mitigated for with HOM diagnostics, which will allow the 

alignment of the electron beam and the monitoring of the beam position.   A series of 

transmission measurements, have recently been conducted at DESY, on the properties 

of these HOMs.  We have also conducted an analysis of the band structure of the 

monopole modes [5] and this has entailed a study of the influence of fabrication errors 

on the field flatness in these cavities.  In addition, the dipole HOMs have been 

simulated in detail.   The sensitivity of trapped modes in these cavities to fabrication 

errors has also been investigated.        

The overall goal of our work is to instrument the cavities with diagnostics to ensure 

the effects of the HOMs are mitigated for with beam position diagnostics.  In this 

manner, the beam position will be precisely determined with HOM-based beam position 

monitors.  This work is pursued in close collaboration with DESY laboratory and the 

Universität of Rostock. 

3.20.3 High Gradient SCRF Cavity Design 

The ILC [6] design aims at colliding leptons at an initial center of mass energy of 

500 GeV with a proposed later upgrade to 1 TeV. The superconducting cavities in the 

main accelerating linacs of the ILC are based on the TESLA [7] design. The baseline 

design aims at an average accelerating gradient of 31.5 MV/m. However, other designs 

exist with the potential for higher accelerating gradients. Increasing the accelerating 

gradient is desirable, as it raises the overall efficiency of the machine. Re-entrant (RE) 

[8], Low-loss (LL) [9] and Ichiro (IR) [10] are candidates for higher gradient cavities. 

These designs aim at producing accelerating gradients of ~50 MV/m within 9-cell 

cavities. Single cells have achieved gradients in excess of 50 MV/m. Indeed at Cornell, 
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a RE cell achieved 52 MV/m [11] and Low Loss (LL) cells at KEK have obtained 

between 45 to 51 MV/m [12]. These designs are focussed on minimising the ratio of the 

surface e.m. fields to the accelerating gradient. In particular, the ratio of the surface 

magnetic field to accelerating gradient (Bs/Ea) has been minimised by suitably shaping 

the walls of the cavity. The critical surface magnetic field is in the range 180 -230mT 

[13]. Another recent design incorporates minimising an additional quantity, the ratio of 

the surface electric field to surface accelerating field (Es/Ea) and this is the Low Surface 

Field design (LSF) [14]. However, the bandwidth of accelerating mode in LSF design is 

reduced by ~18% compared to the LL cavity. This reduces the overall stability of the 

cavity as the frequency separation of modes is proportional to the bandwidth [15-16].  

 
Figure 2: NLSF optimized cavity geometry compared to alternative designs. 

  

We have studied means to increase the bandwidth increase the bandwidth of the 

fundamenral mode whilst minimising two additional quantities: of Es/Ea and Bs/Ea.  

This has resulted in a new design, which we refer to as the New Low Surface Field 

(NLSF) [15-16] cavity, based on LL and LSF geometries.  Detailed simulations on the 

e.m. fields for the middle cells of NLSF were reported in [16]. The NLSF shape has 

comparable surface e.m. fields ratio to that in the LSF cavity, but with an enhanced 

fractional bandwidth. The main inner cell is illustrated in Fig. 2, in comparison with 

other current cell shapes. The overall design is almost complete, all cells have been 

designed including ends cell, but the couplers remain to be finalised. This work has 

included an analysis of the dipole modes, which provide a transverse kick to the beam.  

The mode distribution is a little different from those in TESLA, but not substantially 

different and hence appropriate modification of the HOM couplers is anticipated to 

allow all modes to be efficiently damped.      

3.20.4 Summary 

We are making substantial progress on two main tasks: firstly on optimisation of the 

1.3 GHz cavity for the ILC, and secondly on instrumenting diagnostics for the third 

harmonic cavities at FLASH.  In the latter area, initial measurements on the properties 

of the HOMS in the 3.9 GHz cavities at DESY have been completed, prior to 

installation in FLASH.   Over the course of this year, tests of the HOM diagnostics of 

the cavities subsequently installed in FLASH will be completed. This research has 

received funding from the European Commission under the FP7 Research 

Infrastructures grant agreement no.227579. 
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Advanced Accelerator R&D and New Initiatives 
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3.21.1 Introduction 

Plasma-based accelerators are of great interest because they can accelerate particles 

many orders of magnitude faster than conventional accelerators, and because the beams 

http://mylab.institution.org/~mypage
mailto:simon.hooker@physics.ox.ac.uk
http://mylab.institution.org/~mypage
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they generate have unique properties, such as high peak current and femtosecond bunch 

duration. They therefore offer the prospect of a new generation of very compact 

accelerators with several potential near-term applications, such as driving next 

generation light sources or creating ion beams for cancer therapy; in the longer term 

they offer a route to the beam energies required for future particle colliders. 

Rapid progress, partly as a result of advancing laser technology, has been made in 

laser-driven acceleration in recent years. Highlights include: generation of quasi-

monoenergetic electron beams; the generation of high-charge proton and heavy ion 

beams with energies greater than 10 MeV per nucleon; GeV level laser-accelerated 

electron beams; and the use of the compact accelerators in light-source applications.  

The UK has several internationally leading groups, most university-based, working 

on different aspects of plasma accelerators. These groups have played a leading role in 

this field for more than 20 years. Some of their key contributions are summarised in 

Table 1. To date most experimental work by the UK groups has been performed at the 

Central Laser Facility at the Rutherford Appleton Laboratory (RAL), or at facilities 

outside the UK. However, it is expected that new medium-sized laser systems – such as 

those based at Strathclyde and Queen‘s University Belfast (QUB) – will play an 

important role in the future. In this report we summarise briefly recent results obtained 

by groups in the UK working on laser-driven accelerators. 

Table 1: Summary of recent achievements by UK groups in laser-driven accelerators 

Year Result Group Ref. 

2000 Generation of E > 30 MeV protons, and heavy 

ions with E > 10 MeV per nucleon  

IC-RAL [1, 2] 

2003 Use of laser generated heavy ions for isotope 

production 

Strathclyde-IC-

RAL 

[3] 

2004 First generation of quasi-monoenergetic electron 

beams. Beam energy approximately 100 MeV. 

IC-Strathclyde-

RAL 

[4] 

2006 Quasimonoenergetic proton beams from 

microdot targets 

Jena-Strathclyde [5] 

2006 First generation of quasi-monoenergetic electron 

beams with energies of 1 GeV. 

Oxford-LBNL [6] 

2006 Ultrafast switching of laser generated proton 

beams to generate narrow energy spread. 

QUB, LULI, 

Düsseldorf 

[7] 

2008 Generation of visible radiation from laser-

accelerated electron beams. 

Strathclyde-Jena [8] 

2008 Near-GeV electron beams produced by self-

guided laser pulses. 

IC-RAL [9] 

2008 Synchrotron radiation from laser undulated 

electrons in direct laser accelerated regime. 

IC-LOA-LULI-

UM 

[10] 

2008 Synchrotron radiation with brightness > 10
22

 W 

photon s
-1

 mm
-2

 mrad
-2

 0.1%BW
-1

 at 5 keV 

IC-Michigan [11] 

2009 Generation of soft x-ray undulator radiation 

from laser-accelerated beams. 

Oxford-MPQ [12] 

2009 Light-sail acceleration due to radiation-pressure. LIBRA [13] 

2010 Quasi-monoenergetic proton beams from shock 

acceleration 

IC-BNL-

Stonybrook 

[14] 
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3.21.2 Electron Acceleration 

An intense laser or particle beam propagating through a plasma expels plasma 

electrons away from the beam, which return after passage of the driver, thus setting up a 

plasma wave in its wake. The intense electric fields present within the wakefield can 

accelerate charged particles at an unprecedented rate [15]. These fields, which 

propagate at close to the speed of light, can be of the order of the wave-breaking field 

Ewb = mecp/e, where 



p  ne2 /0me  is the plasma frequency, and ne is the plasma 

electron density. For example, for a plasma of ne = 1  10
18

 cm
-3

, p = 5.6 10
13

 rads
-1

 

and Ewb  100 GV m
-1

 – more than three orders of magnitude greater than the 

accelerating field achieved in conventional radio-frequency accelerators (for a recent 

review of laser-driven plasma accelerators, see [16]). 

For the case of a particle beam driver the expulsion of the plasma electrons is due to 

the Coulomb force, whilst for an intense laser pulse it is the ponderomotive force. 

Particle-beam-driven plasma accelerators have accelerated electrons by up to 42 GeV in 

a plasma only 0.85 m long using a 3 km long conventional accelerator to generate the 

driving beam [17]. In the USA, both laser and particle driven wakefield research have 

recently received significant funding, through the FACET programme at SLAC [18] – 

which will extend the capabilities of beam-driven plasma accelerators – and  the 

BELLA programme at LBNL – which aims to demonstrate laser-driven acceleration to 

10 GeV energies. This report will concentrate on laser-driven accelerators. 

Most present-day experiments take advantage of developments in high-power 

femtosecond laser systems and utilise the ―bubble‖ or ―blow-out‖ regime [19] – often 

after the laser pulse has been steepened by optical compression and relativistic self-

focusing as it propagates through the plasma. The bubble regime is reached when the 

peak intensity of the laser pulse is sufficiently high to expel most of the ambient 

electrons, forming a ―bubble‖ or electron density cavity immediately behind it. The 

electric field of this cavity can be large enough to trap and accelerate some of the 

background plasma electrons within the bubble. 

In early work the generated electron beams had a relative energy spread of 

essentially 100%. A milestone in the field, then, was the observation in 2004 of nearly-

monoenergetic electron beams by groups at Imperial College, Lawrence Berkeley 

National Laboratory (LBNL), and Laboratoire d'Optique Appliquée [4, 20, 21]. In those 

three experiments electron beams were generated with energies of 80 – 170 MeV, a 

relative energy spread down to a few percent, and a bunch charge of ≈ 100 pC. 

3.21.2.1 Plasma Accelerators Driven over Extended Lengths 

The energy gain of a plasma accelerator varies approximately as 1/ne, provided that 

acceleration is maintained over the dephasing length Ld = λp
3
/λ

2
, where λ is the laser 

wavelength. The dephasing length is the distance over which the electrons outrun the 

plasma wave. The first monoenergetic electron beam experiments were performed at ne 

≈ 10
19

 cm
-3

, corresponding to Ld  2 mm, which was the interaction distance used in all 

of these early experiments. Increasing the electron energy by an order of magnitude 

requires operation at correspondingly lower plasma densities and acceleration over a 

distance 10
3/2

  30 times longer which - unless diffraction is reduced by increasing the 

size of the laser focus and hence its intensity - requires that the laser pulse is guided in 
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some way. UK groups have investigated two approaches for achieving this: relativistic 

guiding, and guiding in pre-formed plasma channels. 

The refractive index of a plasma is given by 
2

2
0

( )
1

( )


  
  e

e

n r e

r m
, where  = 

2c/λ and  is the relativistic factor associated with the electron quiver motion in the 

laser field. Both ne and γ may depend on the radial distance r from the axis of 

propagation. Relativistic self-focusing (RSF) arises because γ increases with the laser 

intensity: it is larger near the axis, where the intensity is high. This causes the refractive 

index to decrease with r, leading to continual focusing of the propagating laser pulse. 

The threshold for RSF can be shown to be power dependent, P > Pc = 17.4 (ω0/ωp)
2
 

GW. However, at high laser intensities, the laser pulse ―snow-ploughs‖ plasma in front 

of the laser pulse, which tends to counteract RSF. As a consequence, in this regime, the 

front of the laser pulse diffracts away, and relativistic guiding can only be said to be 

effective when the rate of diffraction of the front of the laser pulse is slow compared to 

the rate at which the front of the pulse is etched by transferring energy to the plasma 

wave. Lu et al. have considered this regime and showed that this requirement increases 

the required power for RSF to Pc
diff

 = (1/8)(ω0/ωp)
6/5

 Pc [22, 23]. A plasma channel can 

ease this requirement by preventing, or slowing, the diffraction of the front of the laser 

pulse. In a preformed plasma channel, a radially increasing electron density causes the 

refractive index of the plasma to decrease with r, leading to continual focusing of the 

laser pulse, just as in a gradient refractive index fibre. 

3.21.2.2 Electron Acceleration by Self-Guided Laser Pulses 

The Astra Gemini laser, commissioned in 2008 at RAL, was a major advance for 

laser driven particle acceleration in the UK. This is not only because it features an 

ultrashort high-intensity pulse, which is ideal for laser wakefield acceleration, but also 

because it is designed to operate at relatively high-repetition rate (1 shot every 20 

seconds) as compared to previous petawatt-scale laser facilities. Gemini increased by a 

factor of 10 the laser energy available on the Astra facility (as had been used for the first 

monoenergetic self-injected beam experiments in 2003 [4]). This allows a laser 

wakefield to be driven to close to wavebreaking at lower density. This is advantageous 

since at lower density the accelerator has a higher (phase) velocity, and so electrons can 

reach a higher energy before being dephased. Of course, to obtain maximum energy 

gain this must be coupled with longer interaction length. 

 



 189 

 

Figure 1: Maximum and mean energy of shots produced from a 1 cm nozzle irradiated with a0 

≈ 3.8 Gemini pulse. (Note, for linearly polarised laser pulses a0 = 0.86 (I0 [10
18

 Wcm
-2

] λ
2 

[µm])
1/2

, where I0 is the peak laser intensity). Mean energies show close to expected density 

scaling down to a threshold density ≈ 5 × 10
18

 cm
-3

. However maximum energies can be in 

excess of that (by ≈ 2.25 ×) to a maximum of ≈ 800 MeV. 

Figure 1 shows the scaling of maximum observed beam energy, as a function of 

density, on the first user experiment on the Gemini laser performed by the Imperial 

College group. Due to the increasing group velocity of the laser in lower density 

plasma, the wakefield can accelerate to a higher energy (up to a maximum of 800 MeV) 

with decreasing density, down to an optimum of ne ≈ 5.5×10
18 cm

-3
. At this density, 

electron beams were produced on every shot. Simultaneous imaging of the exit of the 

target showed that in these shots the laser pulse is maintained at close to its focal spot 

size even though it is many Rayleigh lengths away from best focus. This is due to RSF 

and shows that the high intensity beam can self-guide the sufficiently long distances 

required to trap and accelerate electrons from the background plasma [9]. Also the 

higher than expected maximum final energies implies that under ideal conditions, the 

laser can be ―intensity-amplified‖ and thus drive a higher amplitude plasma wave. 

Intensity amplification occurs through a combination of RSF and also temporal 

compression of the laser pulse, which was measured simultaneously on the same 

experiment. Below the threshold, the electron beams produced become less intense and 

more sporadic in appearance, in part due to the decreasing effectiveness of RSF at these 

densities. At optimum conditions it is noted that as much as 500 pC of charge can be 

accelerated to relativistic energies (>100 MeV), though usually in multiple bunches of 

varying energies. This high beam-loaded charge has implications on applications such 

as radiation generation, which will be expanded upon later. 

3.21.2.3 Electron Acceleration in Plasma Channels 

The Oxford group has led the development of the gas-filled capillary discharge 

waveguide [24], and its application to laser-driven plasma accelerators. As illustrated in 

Figure 2(i), in this device a capillary with a diameter of typically 200 µm, and a length 

of several tens of millimetres, is filled with hydrogen gas to an initial pressure of ≈ 100 

mbar. A current pulse, with a peak of typically 500 A and a duration of 200 ns, is driven 

through the capillary, ionising the hydrogen gas to form a plasma. Thermal conduction 

to the capillary wall causes the plasma temperature to decrease with radial distance from 

the capillary axis r, and hence – since pressure is rapidly equilibrated – the plasma 

density increases with r and a plasma channel is formed. This channel has been shown 
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to guide laser pulses with peak intensities above 10
17

 Wcm
-2

, over distances up to 

50 mm, with very low losses [24]. 

 

Figure 2: (i) Schematic of a gas-filled capillary discharge waveguide (ii) Raw electron energy 

spectra (a–d) and spectra in units of charge per relative energy spread (e–h) for: (a, e) initial 

hydrogen pressures P = 50 mbar, discharge delay td = 147 ns; (b, f) P = 80 mbar, td = 189 ns; 

(c, g) P = 110 mbar, td = 181 ns; (d, h) P = 200 mbar, td = 150 ns. 

Previous experiments with capillary guided laser wakefields performed at LBNL, 

have demonstrated energy gain in excess of 1 GeV from a laser accelerator for the first 

time [6]. The role of the plasma channel was investigated in more detail in recent 

experiments performed with Astra Gemini. In these, 80 fs laser pulses with energy up to 

5 J were focused at the entrance of the plasma channel formed in a 33 mm long, 200 μm 

diameter capillary. The size of laser focal spot was 22 μm (FWHM); however, by 

introducing a soft aperture in the unfocused laser beam it was possible to increase the 

size of the focal spot to 35 μm (FWHM) whilst also improving the focal spot quality. 

The best electron beams were obtained for a corresponding initial axial electron density 

ne ≈ 1.8 × 1018 cm-3, with a laser energy of 2.5 J and with the aperture in place. As 

shown in Figure 2, for these conditions electron beams of energy 540 MeV were 

generated, with divergence in the horizontal and vertical directions of approximately 4 

and 5 mrad (1/e full-width) respectively [22, 25]. 

Without the aperture the threshold laser energy for generating electron beams was 

approximately 3.5 J, but with the aperture in place electron beams were produced with 

input laser energies as low as 2 J. Simulations show that the reduced threshold achieved 

by introduction of the soft aperture arises from removal of laser energy in higher-order 

transverse modes [22]. This illustrates that attention to the quality of the laser beam is 

important for the optimisation of laser-driven plasma accelerators. 

 Simulations performed using the 3D axi-symmetric PIC code WAKE [26] show 

that in these experiments the plasma channel is important in maintaining the laser 

intensity as it propagates through the plasma (Figure 3). The propagation of the laser is 

compared in two cases: (i) a uniform fully ionised plasma of ne = 1.8 × 10
18

 cm
-3

 and (ii) 

a fully ionised plasma channel of axial density ne = 1.8 × 10
18

 cm
-3

 and a lowest-order 

mode of 41 μm FWHM. In both cases the peak input power of the laser pulses was 22 

TW and Pc
diff

 = 131 TW. The simulations show that without external guiding the laser 

pulse initially self-focuses relativistically, but then diffracts away as expected for P < 

Pc
diff

. However, in a plasma channel, the pulse maintains a small spot size over many 

Rayleigh ranges through a combination of channel guiding of the front of the laser pulse 

and relativistic guiding of the back. The plasma guide allows the normalised vector 

potential a0 to increase through temporal compression. This allows a0 to evolve 

(i) 

 

(ii) 
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sufficiently to reach the threshold for self-injection of electrons into the wake, which 

occurs at a0 ≈ 3–4 [23]. For a given electron density this combination of relativistic and 

channel guiding enables injection to occur at lower laser powers than RSF alone.  

 

In addition to self-injection at high intensity, electron beams have been observed in 

capillary experiments for even lower initial a0 [27]. By comparing the electron density 

measured interferometrically with that determined from the Raman shift of a probe 

laser, it was determined that electron beams were generated when the plasma channel 

was not fully ionised. This indicates that injection in these experiments can in part be 

explained by the birth of ionised electrons within the laser pulse, and hence dephased 

from the coherent motion of the remaining plasma wave electrons. This also 

demonstrates that capillaries could be of importance for plasma accelerators working in 

the linear regime, provided an alternative method of injection, such as ionisation-

induced injection (III), can be utilised. III has recently been demonstrated to work in gas 

jets by introducing controlled amounts of impurities [28, 29]. 

3.21.3 Ion Acceleration 

Ion beams can be generated by the enormous near-stationary electric fields 

generated when an intense laser beam strikes an opaque target such as a solid foil. 

Again energetic electrons are produced by the intense laser-matter interaction, and as 

they exit into vacuum away from the target, they generate a large space-charge field 

between themselves and plasma ions. This space-charge field rapidly accelerates the 

ions. At very high intensities, since the electrons are mostly pushed forward by the light 

pressure of the laser, the acceleration can also be strongly directed, making this process 

more efficient. Recent theoretical work suggests that for low mass targets in this 

radiation-pressure regime all of the target electrons can be forced out of the target 

causing the following ions to be accelerated rapidly and with a near uniform force over 

the focal volume, leading to narrow energy spread [30]. 

The UK has been at the forefront of studies into laser driven high-energy ion 

sources, beginning with the pioneering work done at RAL in the early 1990s. These 

 

Figure 3: Variation of (a) the peak a0, (b) the mean spot size (solid) and duration (dashed) of 

pulses propagating through a gas-cell (blue) and plasma channel (green). Temporal and 

transverse spatial profiles of the input pulses were gaussian, with initial FWHM duration of 

90 fs and focal spots of 35 µm. Laser energy was 2 J, so P = 22TW. 
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experiments were the first to be able to demonstrate the acceleration of ions to multi-

MeV energies using high-intensity CPA lasers [1, 2].  A major new development has 

been the creation of a consortium of UK groups working in this area by a new RCUK 

funded Basic Technology grant called Libra. Libra brings together the leading groups 

working on laser plasma ion acceleration (QUB, RAL, Strathclyde, Imperial). In 

addition, groups (RAL, Southampton) are working on advanced targetry and target 

injection, whilst others (Surrey, Birmingham and NPL) are applying this new breed of 

accelerator to applications. Libra has already resulted in a number of new and exciting 

advances. In the following sections, we expand on some of the key acceleration studies. 

3.21.3.1 Sheath Acceleration 

This is the most studied mechanism for ion beam generation by high-intensity 

lasers. The hot electrons generated by absorbed laser light expand from a both front and 

rear surfaces of a solid, and in the process pull surface ions along with them. The sheath 

potential and thus the maximum energy that ions can gain are comparable to the hot 

electron temperature. Since this temperature depends on intensity and is usually of the 

order of the ponderomotive potential, this means that for lasers with intensity in excess 

of 10
18

 Wcm
-2

 the energy of these ions can easily exceed several MeV [31]. 

A number of methods are being investigated in the Libra program to optimise sheath 

acceleration. Reduced mass targets are being implemented to maximise the mean 

temperature of electrons by limiting their number. Also both varying surface finish and 

using structured targets are being investigated to see if electric field enhancement on the 

target surface can increase absorption and so enhance efficiency. Finally, the influence 

of laser parameters on the acceleration process is being studied. The parameters to be 

investigated include; improving laser contrast to improve absorption and prevent 

degradation of the sheath, varying laser angle of incidence and polarisation to maximise 

hot electron temperature, and controlling electron divergence through resistivity 

changes in the targets. One interesting discovery recently made is that at high intensity 

(a0>10), ion production is not optimised at glancing incidence, which would increase 

the electric field component into the target. This is due to relativistic effects where 

electrons are driven strongly into the target even for near-normal incidence [32]. 

As part of the Libra programme, sheath accelerated ions are being assessed for ion 

beam applications. In particular, a set of experiments initiated at a QUB using the new 

Taranis laser will investigate the irradiation of biological samples with this ion source, 

to determine its suitability for cell irradiation, in particular for treating tumours. 

3.21.3.2 Radiation Pressure Acceleration 

An interesting new avenue of exploration for ion acceleration has been schemes that 

rely on the radiation pressure of the new generation of highest intensity lasers, such as 

the Astra Gemini and Vulcan Petawatt (VPW) lasers at RAL. The radiation pressure PR  

= 2I/c can be ≈10
12

 bar for these lasers. This means that for sufficiently light targets, 

this pressure is sufficient to drive the foils to relativistic energies in the duration of the 

laser pulse. But perhaps more interesting, is that the foil is driven as one body, and so 

radiation pressure acceleration can result in inherently small energy spreads. This is of 

particular interest for applications of laser-generated ion beams such as injectors for ion 

accelerators. Recently, major advances have been made by the Libra collaboration on 

both Gemini and VPW lasers investigating RPA. On Gemini, at close to best focus, 
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carbon foils of thicknesses down to tens of nanometres have been accelerated to 

energies in excess of 200 MeV for C
6+

 ions, and ≈ 20 MeV for protons, but with 

significantly reduced energy spread. Such high energies, and their non-linear scaling 

with intensity, imply the first evidence of RPA in the light-sail regime [13].  

Experiments performed on VPW with ultrathin foils have demonstrated the 

importance of having uniform foils and laser beam profile for RPA. In particularly, for 

the thinnest foil it has been demonstrated that that ion beam profile produced is strongly 

modulated spatially, with extremely high contrast between filaments and voids. The 

voids are spatially correlated with the transmitted laser profile after it has burned 

through the foil. This suggests interplay between the acceleration of the foil and 

directing of laser energy, in other words a photon-fluid driven Rayleigh-Taylor 

instability [33]. The study of this modulation is clearly of importance in the study of the 

stability of ultrathin foils to these enormous accelerations. 

3.21.3.3 Shock Acceleration 

In the initial stage of RPA, since the skin-depth of the plasma is usually thicker than 

the target thickness, not all of the plasma is accelerated immediately. Instead a 

ponderomotively-driven sheath is formed near the front surface of the interaction. The 

sheath is driven forward by the light pressure, but is balanced by the inflow of material 

into this electrostatic shock front. Hence the shock quickly reaches a steady velocity vhb 

= (2I/ρc)
1/2

. For solid targets, this hole-boring phase does not really produce interesting 

ion energies (even for Gemini and VPW Ep < 1 MeV), however this would change if the 

density of the target can be significantly reduced. But for the radiation pressure to be 

applicable the target must be opaque, which means that its density must be greater than 

the critical density, ne > ncr =  ε0meω0/e
2. 

 

Figure 4: Example of a shock accelerated ion beam from incidence of λ = 10 µm, I = 5 × 1015 

Wcm-2 laser on a gas-jet target at peak density around 5 × 1019 cm-3. The ion peaks at Ep ≈ 

1.3 MeV and shows remarkably small energy spread (< 4% rms) and background ion level. 

(The mark at E = ∞ is due to scattered light and neutrals). 

For λ = 1 µm lasers, ncr ≈ 10
21

 cm
-3

, which is difficult to attain since it is somewhere 

between solid and gas densities. Some experiments have been performed with foam 

targets, but it is difficult to produce foams with the required level of uniformity. 

However for a λ = 10 µm lasers (such as a CO2 laser), ncr ≈ 10
19

 cm
-3

, which is easily 

obtainable with gas targets. Of course the fact that the critical density is reduced also 

decreases the mass density further, which is of benefit to shock acceleration. In 

experiments performed with the ATF laser at the Brookhaven National Laboratory, an 

Imperial College led team has demonstrated the use of gas-jet irradiation to drive a 

shock into a low mass target, which has produced quasi-monoenergetic proton beams 

on the MeV energy scale [14] (e.g. figure 4). Since a hydrogen jet was used, these 

beams are relatively free from impurity (which is not the case if a solid was used). The 
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narrow energy spread beams produced in both this and the Gemini are amongst the first 

clear indications that RPA can help control the energy spread of laser accelerated ion 

beams, and vindicates the importance given to these studies by the Libra project. 

3.21.4 Radiation Generation 

An exciting application of laser-driven electron beams is the generation of pulses of 

tunable, femtosecond-duration radiation in the extreme ultraviolet (30 nm–100 nm) and 

soft x-ray (1 nm–30 nm) spectral regions. As is routinely done at synchrotron facilities 

around the world, radiation can be generated from an electron beam by passing it 

through a magnetic undulator. The wavelength of the radiation generated is given by 

                            (1) 

where λu is the undulator period, and the undulator parameter K = eB0λu/2mec, in which 

B0 is the peak magnetic field. For example, 1 GeV electrons passing through an 

undulator with λu = 10 mm generates soft x-rays with a wavelength of about 1 nm (i.e. a 

photon energy of 1 keV). 

Although this spontaneously emitted radiation is incoherent, the favourable 

characteristics of laser-accelerated electron bunches – notably the high peak current (≈ 

10 kA) and the short bunch length (≈ 10 fs) – allow the generation of ultra-short soft x-

ray pulses which could be used for time-resolved experiments. Radiation sources with 

similar characteristics, driven by larger conventional accelerators, have been operated 

for several years. Replacing the conventional accelerator with a laser-driven plasma 

accelerator could bring radiation sources of this type into university-sized laboratories, 

potentially transforming many branches of the biological and physical sciences. 

3.21.4.1 External Undulator  

The first steps in this direction were taken in experiments by work by a Strathclyde / 

Jena collaboration. In that work 55–75 MeV electron beams, generated by a plasma 

accelerator driven in a gas jet, were directed through a 1 m long undulator of period 

λu = 2 cm and K = 0.6. Radiation with wavelengths in the range 675 nm to 925 nm was 

generated, depending on the energy of the electron beam, with an estimated 310
5
 

photons per pulse in a bandwidth of ≈ 50 nm. The peak brilliance of the undulator 

radiation was estimated to be 6.510
16

 photons/second/mrad
2
/mm

2
/0.1% bandwidth [8]. 

These results were recently extended to the soft x-ray spectral region by a MPQ / 

Oxford collaboration. In this case, 210 MeV electron beams from a laser wakefield were 

passed through a 30 cm undulator with λu = 15 mm to generate radiation at 18 nm 

(fundamental) and 9 nm (second harmonic). The peak brilliance of the soft x-ray pulses 

was estimated to be 1.3  1017 photons/second/mrad2/mm2 /0.1% bandwidth [12].  

A remaining question, and one of current interest, is whether the quality of the laser-

driven electron beams is high enough to drive compact free-electron lasers (FELs) [34]. 

This exciting possibility is being investigated by several groups in the UK. 
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3.21.4.2 Betatron Radiation 

Extending light sources to operate in the x-ray region is of major importance due to 

their shorter wavelength and extended penetration, which thus improves their imaging 

properties. A recent advance has been the operation of the LCLS at SLAC to operate in 

the x-ray region, which has extended the usability of this light source to the point where 

it becomes possible, for example, to fully image a virus in a single shot. Clearly it 

would be desirable to extend plasma accelerator based light sources to the x-ray region 

if they are to offer the same level of performance as conventional ones. However for the 

currently available 100 MeV-GeV level plasma accelerators, this would require a 

shrinking of the undulator size to less than a millimetre. 

Luckily due to the intense fields within a plasma wave, this is an inherent feature of 

wakefield accelerators. A wakefield has transverse, as well as longitudinal electric 

fields, which are vital to prevent accelerating electrons from being lost transversally 

from the wakefield. Due to these fields, any electron born away from axis or with some 

small transverse momentum will be directed back to axis, where it will overshoot and 

begin a transverse oscillation. This is the betatron motion and has a frequency (in the 

bubble regime) of  

                               (2) 

The betatron motion is identical to that of an electron inside an undulator, and will 

thus cause radiation to be emitted at  = γ2β. For a wakefield operating at density ne 

≈ mid-1018 cm-3 producing electron beams > 200 MeV, it can be seen that this 

radiation is comfortably in the x-ray region (Ephoton > keV). 

First measurements of betatron radiation in the bubble regime were performed in the 

experiment on Gemini by the Imperial College group, which demonstrated that betatron 

radiation can produce an extremely bright x-ray source. Furthermore, due to the small 

spatial scales of the combined accelerator / undulator, the x-ray emission has an 

unmatched small source size. Later studies (performed at U. Michigan) have shown that 

this source size can be w0 < 2 µm, which coupled with the high photon number (> 108), 

implies an x-ray brightness, which is unprecedented from a laser-generated source: > 

1022 photons/second/mrad2/mm2/0.1% bandwidth [11]. Indeed this figure can only be 

matched by 3rd and 4th generation light sources. 

 

(a) 

 

(b) 

 
Figure 5: X-ray generated by 400 MeV beam from self-guided accelerator on Gemini as seen 

on an x-ray CCD camera: (a) differentially filtered beam profile showing x-rays are generated in 

the range 1-10 keV and beyond. (b) Radiograph of a grid made of 100 µm Cu wires placed 

between wakefield and CCD detector. Electrons have been deflected out of detector by bending 

magnet. The edge contrast of the radiograph suggests a source size < 5 µm. 
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3.21.5 Summary 

As can be seen from this report, UK groups continue to make world-leading 

contributions in the field of laser-driven accelerators; including the production of quasi-

monoenergetic electron beams at near GeV energies with and without plasma guiding 

structures, the use of these beams in the generation of short-pulse duration radiation, 

and now the first indications of ion beam generation due to radiation-pressure. 

Future work on laser-accelerated beams will centre on: increased control of electron 

injection and improved shot-to-shot stability, increasing output electron beam energy, 

staging plasma accelerators, and developing their applications, such as radiation 

generation, and ion beam radiography and medical treatment. 
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Basic Technology programme. The consortium includes several UK institutions and 

aims to develop laser-driven ion sources as a reliable, generic technology for a broad 

range of applications. The institutions parts of the consortium are: The Queen‘s 

University of Belfast, The Rutherford Appleton Laboratory (RAL) of the Science and 

Technology Facility Council, Imperial College London, The Universities of Strathclyde, 

Surrey, Birmingham and Southampton, with the National Physical Laboratory (NPL) as 

an external partner. Further details on the project and on participants can be found on 

the project website [1]. The consortium builds on pre-existing collaborations between 

several of the member institutions, which have often collaborated in the past in 

experiments carried out at the Central Laser Facility of the Rutherford Appleton 

Laboratory.  This article will describe briefly the background, structure and progress of 

the project, which has recently passed its mid-term). 

3.22.2 Background 

Energetic beams of ions can be produced from thin metallic foils, as a result of their 

irradiation with relativistically intense, short laser pulses [2]. These beams have unique 

characteristics, which differ greatly under several aspects from beams of comparable 

energy obtained from conventional accelerators.  

Mechanisms leading to forward-accelerated, high-quality ion beams, operating at 

currently accessible intensities in laser-matter interactions are mainly associated to large 

electric fields set by laser-accelerated electrons at target interfaces.  In particular, the 

fast electrons that are electrostatically confined on the target rear-surface set up a charge 

separation field over a Debye length λD, typically of the order of a micron, inducing 

strong (~TV/m) electric fields [3]. Such fields can ionize atoms and rapidly accelerates 

ions normal to the initially unperturbed surface. The accelerated ions form a dense 

bunch of short duration that is charge neutralized by co-moving electrons. The 

extremely short duration of the acceleration and the fact that, at the target rear, it starts 

from an initially cold surface are essential facts that result in excellent emission 

properties. After this initial phase, ions stream into vacuum with electrons, preceded by 

a Debye sheath of hot electrons. This acceleration from the target rear has been 

described as an extension of the classical case of a plasma expanding into vacuum, 

driven by the ambipolar electric field generated in a narrow layer at the front of the 

plasma cloud. This mechanism for ion acceleration from the target rear is usually 

referred to as Target Normal Sheath Acceleration (TNSA) [3]. Due to the presence of 

contaminant layers on target surfaces, protons and Carbon ions are always found as the 

main components of accelerated ion beams unless the target is treated just prior to the 

irradiation. 

An alternative acceleration mechanism, which has been studied extensively in 

theory and simulations over the past few years is based on the radiation pressure of 

intense laser pulses [4]. Predictions suggest that for laser intensities in excess of 10
22

 

Wcm
-2

  the radiation pressure (>1000 Gbar) exerted by the electromagnetic wave of the 

laser is so extreme that all the irradiated particles in a thin foil can be accelerated to 

peak velocities approaching the speed of light, on length scales of only a few 

micrometers [5]. This mechanism is sometimes referred to as light sail, and is predicted 

to have a much faster scaling with laser intensity than TNSA. Some indications of this 

mechanism have started to emerge in experiments. 
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Figure 1: Schematic of accelerator based on the TNSA mechanism. An intense laser pulse (left) 

is focused on the surface of a thin foil. A fraction of the laser energy is converted into 

relativistic electrons, which propagate through the target. The sheath field created by the 

electron at the rear accelerates away from the target the ions present on the surface. 

The current interest in laser-driven ion sources arises from a number of factors, 

including ease of beam production and synchronization in scientific experiments, and 

some unique features of their emission properties, opening up ample opportunities for 

applications [2]. The ions are accelerated in ultrashort bursts of ps duration at the 

source, opening up the possibility of employing them in innovative pump-probe 

experiments. Furthermore, it has been shown that for the higher energy end of the 

proton spectrum, the transverse emittance is extremely low. Emittances as low as 0.004 

mm.mrad have been reported, i.e. 100-fold better than typical RF accelerators and at a 

substantially higher ion current (kA range) [6]. 

Among the applications proposed for these beams, their use in plasma radiography 

for density and field detection has already been demonstrated successfully [2,7].  Other 

proposed applications include the production of high energy density matter of interest 

for astrophysics, high-brightness injectors for accelerators, use in cancer therapy or 

radioisotope production, or as a fast trigger for Inertial Confinement Fusion pellets. 

Some of these will require highly improved beam specifications compared to current 

performances. For example, proton therapy for cancer treatment of deep-seated tumors 

requires beams with energies in the range 50-250 MeV, and a bandwidth of a few % of 

the central energy [8]. While 60 MeV proton production has been demonstrated [3], 

energies in excess of 200 MeV are still beyond current capabilities. In addition, TNSA 

beams currently produced have broad energy spectra and are divergent, therefore there 

is a requirement to develop methods to reduce the energy spread to acceptable values 

and to control the beam divergence. On the other hand, Radiation Pressure Acceleration 

(RPA) appears promising for this purpose as it should lead to intrinsically narrow band 

and quasi-collimated beams [5]. 

3.22.3  The LIBRA Project 

The LIBRA project aims to address the current limitations of laser-driven ion 

sources by improving their characteristics, with the final aim to provide a generic 
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technology applicable in a number of different contexts. In addition to improving the 

energy spectrum of the beams, a necessary requirement is to provide energetic ions at 

high repetition rate. So far, acceleration to high energies (several tens of MeV/nucleons) 

has been possible only on large Nd:glass systems, such as the VULCAN laser at RAL, 

which typically provide significant laser energy (up to 100s J) in ps pulses, and operate 

on a single shot basis (i.e. a laser shot every 20 minutes or so). The most interesting 

drivers in view of applications are systems based on Ti:Sa technology, which reach high 

powers by providing smaller amounts of energy (up to a few joules) in pulses of 

duration of a few tens of femtoseconds, and can operate at higher repetition rate. For 

example, the GEMINI system currently operational at RAL delivers laser pulses at 20 

seconds intervals, but emerging laser technologies based on diode pumping of the 

amplifier media have the potential to deliver within a few years high power pulses with 

much higher repetition.   

Besides understanding, controlling and optimizing the acceleration mechanisms, a 

crucial aim of the project is to develop targetry, diagnostics and interaction environment 

enabling ion source operation at high repetition (e.g. > 10 Hz).  Plans and progress in 

each of these areas will be briefly discussed in the following. 

3.22.3.1 Targetry  

Ions are routinely accelerated from thin foils with µm scale thickness. However, 

recent results have highlighted the possibility of enhancing the ion beam properties by 

reducing the target thickness and transverse dimensions. Target miniaturization (down 

to thicknesses of nm scale and µm transverse dimensions) is seen as a way to increase 

the electron density at the target rear surface and consequently the strength of the 

accelerating field. LIBRA aims to develop techniques for delivering at high repetition 

rates in the interaction volume small, thin disks.  We plan to achieve this by a 

combination of various techniques:  silicon etching manufacturing of microdisk targets, 

target delivery via an electrostatic or electromagnetic injector, and use of optical 

levitation techniques for control and positioning of the targets. There is significant 

progress in each of these areas and integration of these technologies in a demonstrator is 

planned over the next two years.  

Alternative approaches investigated include the use of rasters of targets etched in silicon 

wafers, in particular spoke targets, where extreme miniaturization has been 

demonstrated (Si disks with 30 nm thickness and 1 µm radius).  

3.22.3.2 Diagnostics and Interaction Environment 

While passive detectors such as RCF, CR39 or image plates (requiring post-

irradiation retrieval or processing) are routinely used for detection of laser-driven ions, 

the development of high-repetition diagnostics with real-time response is crucial in 

view of the development of high repetition sources. LIBRA has investigated the use of 

fast-response detectors able to operate on a repetitive basis. In particular we have 

developed a multichannel system for energy-resolved monitoring of the proton beam 

footprint. This is based on the use of a number of consecutive fast response scintillators 

which are imaged optically onto CCD cameras. This diagnostic has been used to 

monitor the divergence of the proton beams in an experiment carried out on the 

GEMINI laser [9]. In parallel, LIBRA has developed a suite of Thomson parabola 
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spectrometers, based on Micro-Channel Plate detectors, which have been fully 

calibrated for proton and Carbon ion response [10].  

An issue associated with high-repetition operation is the production of debris, which 

can lead to degradation of the interaction environment and transport and focusing 

optics. A workpackage within LIBRA is charged with monitoring and controlling debris 

production. The use of limited mass targets as discussed in the previous paragraph is 

advantageous also to this respect as debris is in this case virtually suppressed.  

3.22.3.3 Source Development and Acceleration Mechanisms 

The consortium has been active in extensive experimental activity aimed to progress 

source development, explore ways to optimize the source characteristics and investigate 

novel acceleration mechanisms. Significant achievements have been:  

 The demonstration, in experiment carried out at LULI with limited mass targets, 

that the reduction of target transverse size leads to an increase of ion energy and 

conversion efficiency in TNSA accelerators, due to enhanced electron density 

and electron recirculation effects. 

 The first ion acceleration experiments on the GEMINI laser at RAL, carried out 

by the consortium, have shown the production of 20 MeV protons and >200 

MeV Carbon ions, with laser pulses containing 5 J. These energies are the 

highest obtained so far with ultrashort (50 fs) pulses, and higher than what 

obtained with longer laser pulses of similar energy. These results are promising 

as further increase with optimized laser pulses appears possible. 

 Most remarkably, the GEMINI experiment has highlighted the emergence of 

Radiation pressure acceleration, as predicted by simulations for this interaction 

regime [11]. Non-thermal spectra with clear high-energy peaks in the proton 

spectrum and a clear Carbon ion- proton correlation have been measured, when 

circularly polarized laser pulses were used at normal incidence on target.  

Indication of a transition to a fast energy scaling with laser intensity, which is 

typical of the light-sail mode of Radiation pressure, has also been obtained. 

 Finally, experiments have been carried out with innovative targets, which are 

intrinsically capable of high-repetition operation, e.g. water spray targets or high 

density gas jets. In particular the interaction with water sprays has highlighted 

the possibility of producing, besides positively charged ions, bright sources of 

MeV O
- 
ions, which opens up new applicative opportunities for laser-driven ion 

sources. 

3.22.3.4 Dosimetry and Radiobiology 

A part of the project is devoted to the development of techniques for precise 

dosimetry of laser-driven ion beams, particularly in view of future applications in the 

medical area. Dosimetry approaches developed aim to cope with the intense pulse 

nature of a laser-induced ion beam, and yield a reduced overall uncertainty, especially at 

the end of the proton range in the Bragg peak. The approaches investigated by the 

Birmigham group, in collaboration with the National Physical Laboratory, include 

Gafchromic film dosimetry, nuclear activation techniques and the development of a 

portable graphite calorimeter for high-flux proton beams. 

Also in view of medical applications, the project aims to assess the biological 

effectiveness of laser-driven ions. The main motivation for this work lies in the 
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ultrashort nature of laser-driven ion bursts, which allow ion irradiation at extremely 

high dose rates  (several orders of magnitude higher than tested so far). This is a 

completely unexplored area of radiobiology, which is currently under the attention of 

several projects worldwide. 
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3.23.1 Introduction 

Beam diagnostics is a rich field in which a great variety of physical effects are made 

use of and consequently provides a wide and solid base for the training of young 

researchers. Moreover, the principles that are used in any beam monitor or detector 

enter readily into industrial applications or the medical sector which guarantees that 

training of young researchers in this field is of relevance far beyond the pure field of 

particle accelerators.  

DITANET – "DIagnostic Techniques for particle Accelerators – a Marie Curie 

Initial Training NETwork" - covers the development of advanced beam diagnostic 

methods for a wide range of existing or future accelerators, both for electrons and ions. 

The network is the largest ever EU education action for PhD students and Postdocs in 

http://www.qub.ac.uk/sites/LIBRA
mailto:carsten.welsch@quasar-group.org
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the field of beam diagnostic techniques for future particle accelerators with a total 

budget of more than 4 M€. The network is coordinated by the University of Liverpool. 

3.23.2 Introduction 

DITANET covers the development of advanced beam diagnostic methods for a wide 

range of existing or future accelerators, both for electrons and ions. DITANET consists 

of the following network participants:  

University of Liverpool (coordinator, UK), CEA (France), CERN (Switzerland), 

DESY (Germany), GSI (Germany), HIT GmbH (Germany), IFIN-HH (Romania), 

Stockholm University (Sweden), Royal Holloway University of London (UK), and the 

University of Seville/Centro Nacional de Aceleradores (Spain).  

This consortium is complemented by seventeen associated and adjunct partners 

from all over the world: 

Diamond detectors Ltd (UK), ESRF (France), idQuantique (Switzerland), INFN-

LNF (Italy), Instrumentation Technologies (Slovenia), Lawrence Berkeley National 

Laboratory (USA), MPI for Nuclear Physics (MPI-K), PSI (Switzerland), THALES 

(France), Thermo Fisher Scientific (USA), TMD Technologies Limited (UK), TU 

Prague (Czech Republic), University of Dundee (UK), University of  Maryland (USA), 

University of  Uppsala (Sweden), ViALUX (Germany), and WZW Optics 

(Switzerland). 

Once all positions are filled, the network will train 18 Early Stage Researchers (PhD 

candidates) and 3 Experienced Researchers (normally Postdocs) within its four year 

duration.  

A core idea of DITANET is that all network members interact and collaborate 

closely, promote the exchange of trainees and staff within the network, and jointly 

organize training events, such as workshops and conferences that are open also to 

external participants.  

The participation of industry is an integral part of the training within DITANET and 

all partners from industry are included as members of the supervisory board to ensure 

that industry-relevant aspects are covered in the different projects carried out within the 

network and to enhance knowledge transfer. In addition, they offer internships to the 

students from the network to complement the scientific training and thus actively 

contribute to building the bridge between the academic and the industrial sector. 

3.23.3 Research 

DITANET covers very different kinds of particle accelerators from very low 

energies to present and future high energy colliders, diagnostics for electron as well as 

for ion beams [1]. In addition to the laser wire developments for the ILC/CLIC as 

reported in Section 3.4.3 in this newsletter, some examples from the present R&D 

program of the UK DITANET partners are summarized in this section. More 

information on the research program can be found in [2,3]. 

3.23.3.1 Simulation of Coherent Diffraction Radiation Process 

Any method for diagnostics of a charged particle beam is based on interaction of the 

particles or fields generated by the particles with surrounding media loosing a small 

fraction of their energy. A part of the lost energy is transformed into electromagnetic 



 204 

(EM) radiation which characteristics depend on different particle beam parameters. 

Measuring the EM radiation characteristics, or, to be more precise, their distortion, one 

can measure such particle beam parameters as transverse size and divergence, position, 

bunch length and chromaticity. In most cases the ideal EM radiation characteristics 

must be predictable either for diagnostics itself or for optimization of the device 

performance before manufacturing it. 

One of such methods developed for longitudinal particle beam profile diagnostics 

through the analysis of a Coherent Diffraction Radiation (CDR) generated when a 

charged particle (electron) moves in the vicinity of a conducting screen (target). The 

beauty of the phenomena is that the particle beam does not directly interact with the 

screen that excludes a possibility to deform the beam parameters by the screen itself. In 

order to derive the longitudinal profile of the bunch from a measured spectrum one must 

know the spectrum generated by a single electron. Because of that the configuration of 

the screen is usually chosen to be as simple as possible in order to predict the spectrum 

using the existing approximated theory. However, a simple target does not mean an 

optimal. There are so many phenomena which are a lot more attractive from 

experimental point of view such as Smith-Purcell Radiation (SPR) appearing when an 

electron moves parallel to a conducting grating; however, it is very difficult to predict 

its characteristics with an appropriate accuracy. 

In this project a computer code is being developed for simulating the CDR 

generated by a single electron. It is a staged approach that combines both numerical and 

experimental studies. A computer code for simulating the CDR process for a single 

target configuration was developed and compared with existing models. Single target 

configuration was used at CTF3 bunch profile monitor before upgrade in 2010, which 

included installation of a second target. Simulations were done for one single half 

target, Fig.1. [4]. 

 
     

Figure 1: CDR emitted from half target. 

The following parameters for the setup at CTF3 are used: target dimensions 40x60 

mm, beam energy 235  , distance from target to detector 2a m , wavelength   

depending on the detector. Experimental results show good agreement with 

expectations, but there is some distortion that can be explained by background caused 

upstream through wake-fields, CSR, etc., see Fig. 2. 
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Figure 2: Results from measurements at CTF3. 

As a next step, the computer code will be extended to allow for simulating more 

complicated phenomena such as CDR from two targets, Fig. 3 and Smith-Purcell 

radiation (SPR) from targets with more complicated shapes. 

 

 
 

Figure 3: Illustration of CDR measurement from two targets. 

The diffraction radiation spatial distribution from two targets can be written as: 
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where 
1

BDRE  is a backward diffraction radiation from the first target, 
2

FDRE  is a forward 

diffraction radiation from the second target, z  is a distance between targets, k  is a 

wave number and / 1v c   . In this analysis a classical theory of BDR based on a 

Huygen‘s principle of a plane wave diffraction will be involved. Simulations for two 



 206 

targets configuration that currently is used at the CTF3 bunch profile monitor is a part 

of ongoing work. 

3.23.3.2 Development of Beam Position and Tilt Monitors for ITB, CTF3 

and CLIC 

Beam position monitors (BPM) are essential diagnostics devices for monitoring the 

beam relative to magnetic devices and extracting important properties of magnetic 

lattices. In addition, position and angle feedback signals from BPMs can be used as a 

signal for closed loop feedback applications, where the response of the BPM is used 

directly after some processing to modify the beam control, such as kickers, steering 

magnets and quadrupoles. 

The main aim of this project is the development of beam position monitors for 

electron accelerator facilities such as ILC and CTF3/CLIC in CERN. Particular 

emphasis will be placed on the electromagnetic design, ease of fabrication and analogue 

signal processing. 

In collaboration with DITANET partner CERN and collaborators in KEK and 

SLAC, the next generation of beam position monitors is being developed. An integral 

part of the project is to understand with industry the most cost effective, yet high 

performance beam position monitor design.  

There exists space at the CLEX area of the CTF3 facility to build a new 

Instrumentation Test Beam (ITB). Beam position monitor test systems will be installed 

in this area, including the local RF infrastructure for example master oscillator phase 

locked local oscillator sources. 

3.23.3.3 Beam Diagnostics for the Ultra-low Energy Antiproton Storage 

Ring (USR) 

   In the future Facility for Low-energy Antiproton and Ion Research (FLAIR) at 

GSI [5,6], the Ultra-low energy electrostatic Storage Ring (USR) [7,8] will provide 

cooled beams of antiprotons down to energies of 20 keV. The storage ring is developed 

by the QUASAR Group [9] and described in detail in Refs. 7 and 19. 

Table 1 summarizes the USR parameters that are most relevant from a beam 

diagnostics point of view. Antiprotons will be injected into the storage ring at an energy 

of 300 keV at intensities of up to 2
.
10

7
 particles. With a ring circumference of 42.6 m, 

the revolution time of this beam equals to 5.6 s. The ring's split achromat lattice [10] 

allows for varying the beam width in the center of the straight sections between a few 

millimeters during internal collision experiments and up to 20 mm before electron 

cooling. Depending on whether slow or fast extraction will be applied, the beam 

intensity and its time structure of the extracted beam will vary in a wide range [11,12].  
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Table 1: Summary of USR parameters at 20 keV that are relevant for the beam diagnostics 

system. 

Parameter Value 

Energy 300 keV → 20 keV 

Relativistic =v/c 0.025 → 0.006 

Revolution frequency 177 kHz → 46 kHz 

Revolution time 5.6 s → 32.8 s 

Number of particles ≤2
.
10

7
 

Bunch length 1 ns - DC beam 

Effective in-ring pbar rates 10
10

 pps - 10
12

 pps 

Average rates of ectracted pbars 5
.
10

5
 pps - 10

6
 pps 

 

Current Measurement 
 

An electrostatic Faraday cup will be used as a simple destructive monitor for 

absolute beam current measurements. The mechanical design of the Faraday cup has 

been optimized for the USR, i.e., the aperture has been prepared for the beams of 

diameter up to 2 cm and the suppressing electrode length has been adjusted to increase 

the electron collection efficiency.  

Fig. 4 shows the simulation of secondary electrons emitted from the inner surfaces 

due to proton impact. For the intensity measurements, a sensitive amplifier needs to be 

applied because the expected average beam currents in the transfer lines will be as low 

as »100 fA. For the injection and fast extraction stages, the problem can be resolved by 

taking the advantage of the bunched beam delivery and measuring the peak current with 

a fast currentto-voltage converter working in the required bandwidth. 

 

 
 

Figure 4: CST Studio simulation of the imported model of the Faraday cup: Suppression of 

secondary electrons. 

A limitation of this solution is, however, that antiprotons will generate not only 

secondary electrons but also MeV-scale charged pions and recoil ions. Such particles 

cannot be captured within the cup. Therefore, the main use of the cup will be during the 

commissioning stage with protons or H
-
 ions.  

 

Position Measurement 
 

For the non-destructive beam position determination, up to 8 capacitive pick-ups 

(PUs) will be installed at the USR. Their design is shown in Fig. 5. In order to avoid 
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beam instabilities due to beam-to-ground impedance jumps, the PU should have the 

same diameter as the beam pipe. To increase the signal amplitude, the pipe diameter has 

been reduced from 250 mm to 100 mm. 

 

 
 

Figure 5: Design drawing of the USR diagonal-cut capacitive pick-up. 

The coupling capacitance between opposite PU plates and adjacent PU units can be 

minimized by introducing separating rings at ground potential. With the proposed 

diagonal-cut design a high linearity is achieved. Adjacent plates are separated by 

grounded rings which allow for a higher sensitivity to the beam displacement. 

 

Beam Profile Measurement 
 

A scintillator-based monitor will deliver information on the transversal beam 

profile. However, limited sensitivity and light yield decrease due to surface sputtering 

have been reported [12,13]; it is not clear if these results can be applied to the USR case 

for two reasons. First, the tests were mainly limited to plastic scintillators and other 

materials have not been fully investigated under different irradiation conditions. 

Second, the thickness and other parameters of the screens were not optimized for the 

lowest possible beam currents. Therefore, further studies on scintillator-based monitors 

were undertaken using different types of screens. 

Experiments at the Nuclear Physics Laboratory INFN-LNS in Catania, Italy were 

carried out with the invaluable help of Paolo Finocchiaro, Luigi Cosentino and Alfio 

Pappalardo. The tests were based on irradiation of the screens with a continuous beam 

of protons in the keV range with intensities down to a few fA. The scintillating 

materials used during the investigations included CsI:Tl, YAG:Ce and a Tb-glass-based 

Scintillating Fibre Optic Plate (SFOP). In order to reduce the initial beam currents of a 

few pA to only a few fA, pepper-pot-like attenuators were used, which produced multi-

peak images. This allowed resolution testing of the screens at the same time.  

Preliminary results indicate a high sensitivity to low intensity, low energy beams 

such as those expected from FLAIR. For 200 keV protons, the beam was still visible at 

approx. 10 fA and only a few seconds of averaging with a resolution better than 0.5 

mm.  



 209 

In addition to the above monitor, an ionization beam profile monitor relying on a 

supersonic gas-jet shaped into an extended thin curtain will be used [14,15]. Existing in-

ring monitoring techniques, such as residual gas monitors, can take up to about 100 ms 

[16] to make meaningful measurements due to the low residual gas pressure. The 

curtain jet monitor allows for varying the gas density and thus the event rate and for a 

two dimensional transverse profile measurement as well as beam imaging [17]. 

This monitor relies on a neutral gas-jet, shaped into a thin curtain crossing the beam. 

In its simplest configuration, the gas curtain crosses the stored ion beam under an angle 

of 45°. While the stored beam crosses the jet, ionization occurs. These ions are then 

accelerated by an electric extraction field towards an amplification stage with an MCP 

and detected via a phosphor screen and a CCD camera. The nozzle-skimmer system that 

shapes the gas jet was optimized in simulations with the Gas Dynamics Tool (GDT) 

[18] which formed the basis for the mechanical design. Most components of the monitor 

are already manufactured and the system is presently mounted at the Cockcroft 

Institute. 

3.23.4 Training 

Training within DITANET is composed of training through research, local training 

by the individual institutions, often in close collaboration with partners, and network-

wide events, such as school, topical workshops, or conferences. Partners offer for 

examples lecture programs, seminar courses, and language classes to their trainees. 

Some international events were already organized by the network and are summarized 

in this section. Detailed information on all events can be found on the DITANET 

homepage. 

3.23.4.1 First DITANET School on Beam Diagnostics 

From March, 30th - April, 3rd 2009 the first DITANET School on Beam 

Diagnostics took place at Royal Holloway, University of London. The School was 

combined with the first DITANET annual meeting and brought together more than 70 

researchers from major Research Centers, Universities and private industry from all 

over the world, see Fig. 6. 

 

 
 

Figure 6: Participants of the first DITANET School on beam diagnostics. 
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The School started with an introduction to accelerator physics and the definition of 

particle beams, before basic beam instrumentation such as beam energy, beam current 

or transverse beam profile measurement were covered. Later in the week more 

advanced topics, e.g. monitoring of the machine tune or electron cloud diagnostics were 

presented.  An excursion to Rutherford Appleton Laboratory including visits to ISIS 

and DIAMOND on Wednesday, April 1st in addition to two tutorials and one poster 

session complemented the broad program. 

A particular highlight was a dedicated industry session on the last day where 

lecturers from Thermo Fisher Scientific, TMD, Thales, ViALUX, and Instrumentation 

Technologies gave an insight into cutting edge R&D activities in the industry sector 

with a focus on differences as compared to research in academia. 

3.23.4.2 First DITANET Topical Workshop on the Diagnostics of Low 

Energy and Low Intensity Ion Beams 

The first DITANET topical workshop took place on November, 24th and 25th in 

Hirschberg-Großsachsen near Heidelberg in Germany. It focused on the diagnostics of 

low energy and low intensity ion beams and brought together around 40 scientists and 

engineers from all over the world. Its particular aim was to join early stage researchers 

both from within the network and from the wider community with renowned experts to 

allow for establishing important contacts for their careers and for reviewing the status of 

the different R&D activities.   

The first day started with an introduction to the future Facility of Antiproton and Ion 

Research, where many of the monitors presently under development in different groups 

will be used to monitor all beam characteristics with a high precession. It then stretched 

to the beam instrumentation used at different storage ring and cyclotron facilities around 

the world.  

The second day concentrated on electrostatic storage rings which are the ideal tool 

for lowest beam energies down to a few tens of keV and intensities as low as 10
4
 pps. 

Presentations were given on the ELISA (ISA, Arhus), DESIREE (MSL, Stockholm), 

CSR (MPI-K, Heidelberg), and USR (FAIR, Darmstadt) facilities and triggered 

interesting discussions on these challenging developments. 

3.23.4.3 Second DITANET School on Complementary Skills 

All DITANET Trainees will attend a Complementary Skills School at the University 

of Liverpool 15th-19th March 2010. Participants will arrive in Liverpool on the 

morning of Monday 15th March with sessions commencing that afternoon. Day one 

will include full introductions and an opportunity for trainees to get to know each other 

followed by a skills session on presentations. Professional trainers will cover many 

aspects providing insight into skills to enhance PhD study and research. Working days 

will provide a wide variety of practical skills including problem solving techniques; 

scientific writing; intellectual property rights and building the bridge from academia to 

industry. In addition to working sessions there will be an opportunity to tour the 

Daresbury Laboratory and the Cockcroft Institute. This School is also seen as an 

important means for Trainees to network with each other and the management team. 
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3.23.4.4 Second DITANET Topical Workshop on Longitudinal Beam Profile 

Measurements at High Energy Accelerators and Light Sources 

The University of Liverpool is presently in the process of organizing the second 

DITANET Topical Workshop.   This will be held at the Cockcroft Institute, Daresbury, 

UK on the 12th and 13th July 2010.  Although this is still very much in the planning 

stage, expert speakers have been confirmed from partner institutions and industry; there 

will be topical talks and discussion sessions where future projects and collaboration can 

be explored.   The workshop is for researchers at PhD and Postdoc level in addition to 

more advanced colleagues. 

3.23.5 Summary 

DITANET quickly established itself as a frame for international collaboration and 

training in beam diagnostics. Almost all position vacancies have been filled with highly 

qualified early stage and experienced researchers from all over the world. The network's 

research projects are making remarkable progress and this brief overview can only 

summarize a few developments.  

The joint organization of international training events, such as the first school on 

beam diagnostics and the network's first topical workshop, showed that DITANET has 

already become a real network where close collaboration between partners is one of the 

core ideas. 

The network will organize further topical workshops and schools, as well as an 

international conference in 2011. Institutions and researchers that share the network's 

ideas and ambitious are invited to contact the coordinator about opportunities.  

This work is supported by the EU under contract PITN-GA-2008-215080. 
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3.24.1 Introduction 

A primary concern of modern high intensity, high energy accelerators is potential 

damage and radio activation of accelerator components resulting from uncontrolled 

beam losses. Beam losses must be monitored all along the machine in order to keep the 

radiation level and the activation as low as possible. A major source of loss is the 

formation and evolution of beam halos at the periphery of the beam requiring high 

dynamic range beam profile measurements and thus putting high demands on the beam 

diagnostic system. As a consequence, halo and tail studies are needed in order to 

minimize any potential performance limitations of future accelerators from this source. 

It is imperative to have a clear understanding of the mechanisms that can lead to halo 

formation and to have the possibility to test available theoretical models with an 

adequate experimental setup. Measurements exploiting radiation in the visible spectrum 

such as optical transition radiation, diffraction radiation or synchrotron radiation 

provide interesting opportunities for high resolution measurements of the beam profiles 

and are under investigation for the purpose of halo monitoring.  
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3.24.2 Flexible Core Masking Technique 

The flexible core masking technique is based on the core masking technique which 

is well established in astronomy to observe for example the corona of the sun [1]. For 

an accurate image acquisition of the corona, an exposure time is required at which a 

normal camera overexposes due to the bright central region. The resulting blooming 

effects will superimpose the corona light and make an accurate image acquisition 

impossible. Therefore, the central bright region region of the sun is masked out to allow 

for a corona measurement without any negative blooming effects. Measurements with 

fixed masks are often used for the observation of astronomical objects [2, 3].  

However, in contrast to astronomical objects, the core of a particle beam is not of 

constant shape and varies with time. Initial experiments with fixed masks were already 

done at CERN [4] where the beam was adjusted to match a predefined mask. For time-

dependant particle beams, however, it is important that the mask can be adjusted to the 

beam shape on a short time scale. Unlike astronomical objects, a particle beam profile is 

typically variable in shape which is why an acquisition technique based no a fixed mask 

is no longer sufficient. Therefore it was decided to design a novel monitor based on a 

Micro Mirror Arrays (MMA). 

 

 
Figure 1: Principle of MMA-based beam profile measurements.  

The laser beam is reflected by an MMA into a camera that measures the two 

dimensional beam profiles, as illustrated in Fig. 1. If the mask is displayed on the 

MMA, the central beam core (red) will be deflected, while the halo (blue) is still 

reflected into the CCD-camera. The challenge of measuring a high dynamic range is 

reduced to the problem of measuring a low intensity. This can be realized by increasing 

the exposure time of the camera or adjusting the light level with different neutral 

density filters in case of a bright initial source. 

First results were obtained in lab measurements, where the light generated by a 

particle beam was simulated by a small laser. The opening angle of a tenth of a degree 

corresponds to typical values of OTR or SR from a 150 MeV electron beam as it is used 

in CTF3. These measurements indicated a dynamic range of up to 10
5
 with a 

conventional 8-bit camera system [5-8]. 
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Figure 2: Halo image measured at UMER [9]. The beam core was deflected by the MMA. 

Further studies with beam were then realized at the University of Maryland Electron 

Ring (UMER) with measurement data shown in Fig. 2.  

3.24.3 Summary and Outlook 

Beam halo monitoring based on a flexible mask generated by a micro mirror array 

has demonstrated a high potential in lab measurements, where dynamic ranges of up to 

10
5
 were reached even with a simple 8-bit camera system. In first measurements with 

beam at UMER, a mask was generated with the MMA as a function of the actual beam 

profile and with adjustable threshold levels. Data analysis is presently being done and 

this technique shall ultimately help improving the understanding of beam halo 

formation and propagation, as well as phase space tomography. 
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3.25.1 Introduction 

Beam loss monitors are one of the key components of any machine protection 

system as they help preventing beam induced damages. They should detect particle 

losses, identify their location and provide an input signal that, if necessary, triggers an 

interlocking system.  

It will be of high importance for all future high current accelerators to minimize 

particle losses and thus avoid activation of the installation. In the particular case of 

CTF3, with its 4kW average beam power, a final machine protection system will have 

to provide loss measurements at sensitivities of 10
-4

 – 10
-5

 with respect to the nominal 

in-tensity and a time resolution of better than 10 ns. 

The design of a monitor based on the exploitation of the Cherenkov Effect in optical 

fibers is presently being worked out. For the last four decades, it has been known that 

optical fibers show a tremendous increase of their attenuation when exposed to ionizing 

radiation [1,2]. In the last decade, fiber optic radiation monitoring systems for 

accelerators based on the generation of Cherenkov light by relativistic charged particles 

were integrated in different accelerators, see e.g. [3-5]. Such fast systems can be used 

for rapid accelerator switch off during unacceptable high beam losses and their 

localization, but they are not well suited for accurate radiation dose measurements. A 

particular difficulty at CTF3/CLIC comes from the fact that its two beam lines are very 

close to each other and the beam losses need to be monitored with a good spatial and 

angular resolution for both simultaneously, but independently.  

3.25.2 Detector Characterization 

Optimization of the signal level requires detailed investigation into all system 

components, in particular the optical fibers and the photon detectors. In this context, the 

introduction of Silicon Photomultipliers (SiPM) as single photon sensitive detectors 

represents a promising alternative to traditional photomultiplier tubes. They promise 

distinct advantages especially in applications in which it is compulsory to attain 

magnetic field insensitivity, low photon flux detection, quantum efficiency in the blue 

region that is comparable to standard photomultipliers, high timing resolution, 

dimensions comparable to the dimensions of an optical fiber diameters, and low costs. 

The structure of the SiPM is based on an array of independent avalanche 

photodiodes (APDs) working in Geiger-mode at a low bias voltage with a high gain. 

The output signal is proportional to the number of pixels "fired" by impacting photons. 

The detection efficiency for state-of-the-art devices is in the order of 20% at 500 nm. 

The intrinsic noise of a number of SiPMs was characterized in the Cockcroft 

Institute's optical lab, see Fig. 1. The more precise this noise is known, the better it can 

be filtering from the signal generated from the Cerenkov Effect which will then allow 

for a cleaner signal to estimate the losses.  
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In addition, knowledge of the noise characteristics allows for an in-detail 

characterization of the performances of alternative detectors and for determining their 

real applicability to loss monitoring. Finally, the knowledge of the noise rate will allow 

for calibrating these devices in different operating scenarios. 

 

 
 

Figure 1: Example signal from one of the SiPMTs under investigation. 

These tests allowed for a selection of the best performing PMTs. As a next step, the 

coupling efficiency of the SiPMTs to different optical fibers will be analyed, and 

measurements with beam will be carried out at CTF3.  
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3.26.1 Introduction 

The intense international activity involved in probing the structure of matter on all 

scales, with particle beams and radiation, owes much to recent advances in accelerator 

science and technology. Developments in the production of high power laser radiation 

also offer new avenues for accelerator design and new diagnostic tools of relevance to 

medical science, engineering and the communications industry [1]. Contemporary 

issues in novel accelerator development have motivated considerable interest in the 

interaction between charged particles and the electromagnetic field in domains where 

relativistic effects cannot be ignored. Our recent research spans numerous topics 

ranging from fundamental issues associated with radiation reaction, to the development 

of efficient analytical methods for obtaining electromagnetic fields driven by relativistic 

particle beams. A recurring theme in our work is the examination of effective theories 

of large collections of electrically charged relativistic particles and their electromagnetic 

couplings. 

The following is a brief account of recent work emphasising certain challenges 

associated with the interaction between matter and electromagnetic fields. The 

background literature associated this subject is vast and no attempt is made here to 

provide a complete list of references. 

Any self-consistent theory describing a large collection of charged particles must 

include all electromagnetic forces between the particles. However, the notorious 

problem of determining the classical force on a single accelerating point charge due to 

its own electromagnetic field has stimulated research for over a century and remains 

unresolved (see [2, 3] for recent reviews). The structure of an isolated single electron is 

currently beyond observation and one often proceeds classically by associating the 

electron with a singularity in the electromagnetic field described by Maxwell‘s 

equations in vacuo. Following Dirac [4], an equation of motion for the charged particle 

may be obtained by appealing to conservation of the total energy-momentum of the 

particle and its electromagnetic field. In order to remove singularities in the equation of 

motion Dirac made "natural assumptions" about the origin of the electron mass. The 

resulting Lorentz-Dirac equation of motion contains the acceleration of the particle and 

its proper time derivative and possesses solutions that violate intuition. In particular, 

unless special conditions are adopted for the final state of the electron, it predicts that a 

free electron in vacuo can self-accelerate; furthermore the equations predict solutions 

where the electron may experience a sudden acceleration before it enters a region of 

space containing a non-vanishing external electrostatic field. 
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Although one can employ approximation schemes that circumvent some of the 

above difficulties [5], it is not clear that such methods are applicable to distributions of 

relativistic particles with sufficiently high proper number density. As schemes for 

accelerating charged particles become more complex and ambitious in their aims such 

approaches may be inadequate for a proper understanding of new challenges. 

If one forgoes the use of point particle methods in favour of self-consistent effective 

theories based on classical continuum methods [2, 6], the existence of non-linearities in 

the governing partial differential transport equations gives rise to other challenges. In 

particular, the matter density in relativistic simple (single-component) fluid models of a 

beam of charged particles may exhibit singular behaviour [6] due to the evolution of 

shocks. This situation is analogous to shock formation in fluid and gas dynamics. 

Similarly, the electron velocity field of a cold plasma undergoing sufficiently large 

amplitude electrostatic oscillations may become multi-valued [6]. However, the 

dominant inter-particle forces in a cold collisionless plasma are long-range and multiple 

streams can form dynamically; in particular, particles may become trapped in an 

electrostatic wave and fine-scale mixing may destroy the wave. The evolution of an 

electrically charged continuum with a dynamical number of components was studied in 

[6]. 

Alternatively, one may describe such continua using the velocity moments of a one-

particle distribution function. For modelling warm plasmas or warm particle beams, it is 

common to assume that the infinite hierarchy of field equations, obtained from velocity 

moments of the Vlasov equation, may be truncated to yield a closed set of field 

equations. A novel geometric averaging procedure for constructing velocity moments 

was recently developed [7-9] and used to establish rigorous conditions for the validity 

of the truncation in the ultra-relativistic regime.  Geometrical constructions of 

distributional solutions to the Maxwell-Vlasov system were explored in [10]. 

The maximum sustainable amplitude (the "wave-breaking limit") of non-linear 

electrostatic oscillations has been a subject of considerable interest for over half a 

century [11–17]. Recent years have seen a resurgence of interest in the wave-breaking 

limit of warm plasma oscillations based on macroscopic fluid (hydrodynamic) models 

of plasmas. Wave-breaking limits were first calculated for cold plasmas undergoing 

nonlinear longitudinal electrostatic oscillations, and thermal effects were later included 

in non-relativistic and relativistic contexts [12, 13]. The results for the cold plasma are 

uncontroversial, but recent discussion has uncovered difficulties establishing an agreed 

analytical description of longitudinal wave-breaking in warm plasmas; in particular, it 

has been noted that different plasma models based on different assumptions yield 

different results [14]. Models of nonlinear plasma waves near breaking are approaching 

the limits of their domain of applicability, and different models exhibit different wave-

breaking limits. Although recent experiments operate in the three-dimensional "bubble" 

(or "blow-out") regime, and exploit transverse wave-breaking, recent work has 

rekindled interest in the theory of longitudinal wave-breaking. 

In an attempt to address issues raised in [14], we recently developed [15, 16] a 

geometric reduction of the Vlasov equation using a self-consistent 3-dimensional 

generalization of the 1-dimensional relativistic waterbag concept introduced by 

Katsouleas and Mori [12]. Furthermore, we showed [17] that the maximum amplitude 

of nonlinear longitudinal electric waves for a particular class of 3-dimensional 

waterbags converges as the phase velocity of the wave tends to the speed of light, 

whereas the maximum amplitude in the 1-dimensional Katsouleas-Mori model diverges 
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in this limit. The results in [17] bear some resemblance to the behaviour of fluid models 

such as [13], and we conclude that the dimensionality of the waterbag plays an 

important role in the behaviour of the electrostatic field. Work is currently underway to 

include the effects of trapped particles in the formalism. 

In the high energy regime in which relativistic effects dominate – such as laboratory 

based laser-plasma acceleration – plasmas are commonly described by the collisionless 

Vlasov equation. This approximation is often justified as the timescales governing 

relativistic processes in an underdense plasma are typically much shorter than the 

average time between collisions. However, recent advances in high energy density 

science have increased the demand for efficient descriptions of plasma dynamics fully 

incorporating both relativistic and collisional effects. 

Although the relativistic Fokker-Planck equation describes collisional plasmas in the 

relativistic regime, it contains a non-linear integral operator and is cumbersome to work 

with in many cases of interest. Furthermore, it does not easily lend itself to the 

generation of succinct fluid models. To address this issue, we recently developed [18] a 

relativistically covariant extension of the non-relativistic Lenard-Bernstein equation and 

used it to generate a new relativistic plasma fluid model that includes dissipative effects. 

Our induced fluid model contains new terms that arise from the non-trivial geometry of 

the unit hyperboloid in 4-dimensional (Lorentzian) phase space, and was used in [18] to 

investigate electric waves. 

 For small amplitude classical electromagnetic fields recourse is often made to  a 

linear approximation scheme in which the appropriate constitutive relations arising from 

the coupled matter-field equations are linearized.  If the medium is uniform in space 

Fourier techniques are adequate since (if gravity is ignorable) the coupled system can be 

projected into plane-wave eigen-solutions of the Helmholtz equation. Such an approach 

leads to the concept of classical dispersion in which the parameters describing such 

eigen-solutions are required to satisfy constraints involving properties of the medium. 

However if the medium is inhomogeneous, exhibits relaxation or memory properties, or 

gravitational fields are present such Fourier methods no longer diagonalize the system 

and prove impractical. We have developed new approaches to circumvent these 

difficulties [19] and obtained integral equations that supercede classical dispersion 

relations in homogeneous media permitting investigation of Landau damping in non-

stationary and inhomogeneous relativistic plasmas.  

Macroscopic fluid models are particular examples of theories based on the 

relativistic continuum paradigm. The vanishing of the space-time divergence of the total 

stress-energy-momentum tensor (describing matter and electromagnetic fields) leads to 

relativistic equations of motion and continuity equations for the material continuum. A 

specification of the total stress-energy-momentum tensor defines the (constitutive) 

model of the fully interacting continuum including fields and matter. Macroscopic 

descriptions of continua may involve effective theories demanding substantial input 

from experiment. Before the advent of precision experimentation and modern gauge 

descriptions of the the interaction of light with matter, stress-energy-momentum tensors 

associated with electromagnetic fields in a classical medium were guessed on the basis 

of relativistic covariance. A long running dispute based on alternative proposals by 

Minkowski [20] and Abraham [21] about one hundred years ago has yet to be settled by 

experiment. Our research has shown [22] how the choice made by Abraham follows 

naturally from a variational principal involving gravitation and the motion of the 

medium, and that the symmetrized version of the choice made by Minkowski follows 
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by alternative gravitational interactions [22, 23]. Although recent experiments 

employing sophisticated methods based on cold atom optics seem to favour 

Minkowski‘s choice other experiments seem to prefer the Abraham tensor and a final 

consensus is still to be achieved [24]. These issues have led us to develop a new 

approach to the calculation of electromagnetic forces and torques on magneto-electric 

media using the concept of a drive form [25]. 

We are exploring constitutive relations for uniformly rotating media [26] and how 

forces and torques can be defined covariantly and calculated for arbitrarily moving 

media. In particular, for a class of  media with  simple electromagnetic constitutive 

properties we show that, under the influence of an incident monochromatic, circularly 

polarized, plane electromagnetic wave, the Abraham and symmetrized Minkowski 

tensors induce different time-averaged torques on a uniformly rotating materially 

inhomogeneous dielectric cylinder and suggest that this observation may offer new 

avenues to explore experimentally the covariant electrodynamics of more general 

accelerating media. This work may have relevance to the development of new 

accelerating structures based on materials with novel constitutive properties (meta-

materials). 

Beam pipes that spatially curve and taper through magnet arrays in small-gap 

undulators feature in the designs of advanced machines for producing pulsed sources of 

intense focused electromagnetic radiation. The production of femto-second radiation 

pulses requires high peak electric currents and the maintenance of low emittance 

electron beams. Extreme design criteria are required to sustain beam stability in the 

presence of radiation backreaction on accelerated sources in SASE X-ray sources. A 

direct analytic approach to this electrodynamic problem via the coupled system of 

Maxwell‘s field equations and the equations of motion for the particle beams encounters 

difficult problems due to nonlinearities and retardation effects. Furthermore, the 

geometry of the beam pipe may be such that direct numerical solution of Maxwell‘s 

equations is too inefficient, especially when sweeping across a wide range of design 

parameters. Such considerations motivated the development of perturbative methods for 

calculating the electromagnetic fields inside curved [27] and tapered [28] beam pipes. In 

[27] a perturbative expansion in a small parameter characterising the curvature of the 

beam pipe is used to determine the longitudinal wake potential inside the pipe. 

Longitudinal wake potentials and impedance formulae are developed in [28] for a beam 

pipe whose circular cross-section slowly varies with radius; there, an asymptotic 

approximation is developed for the electromagnetic field based on a parameter that 

characterizes the slow variation of the cross-section‘s radius. Agreement with direct 

numerical solution of Maxwell‘s equations is impressive for tapers whose geometries 

are representative of the next generation of lepton colliders, with narrow bunches whose 

lengths are a couple of millimetres. The difficult challenge remains to develop 

analytical methods for tackling considerably shorter bunches. 

We also demonstrated [29] how interference effects in the electromagnetic field of 

an ultra-relativistic bunch in a straight beam-pipe shows a striking resemblance to that 

occuring due to CSR in cyclic machines, despite the fact that in the ultra-relativistic 

limit the source is no longer accelerating. We analysed how such enhanced spectral 

behaviour depends on the geometry of the source and the details of the stochastic 

distribution of structure within the source [29]. 

In a further attempt to address the radiation reaction problem and the breakdown of 

traditional Maxwellian electrodynamics in the context of high-field laser interactions 
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with matter, attention is currently focussed on high-field nonlinear vacuum 

electrodynamics. One expects classical vacuum Maxwellian electrodynamics to break 

down near critical electric field strengths of 1.3 × 10
16

 V/cm or magnetic field strengths 

of 4.4 × 10
13

 G, where electron-positron pair creation becomes possible. Such fields 

might be reached in a future laser with peak intensity 2.3 × 10
29

 W/cm
2
. However there 

may be a classical breakdown of Maxwell equations well before one needs quantum-

electrodynamics. A classical fluid model of non-linear electrodynamic interaction with 

matter in vacuo based on the vanishing of the divergence of the total stress-energy-

momentum tensor has been developed [30] that reduces to Maxwellian electrodynamics 

for suitably low-field strengths. In particular, the remarkable properties of the Born-

Infeld theory offer a promising constitutive model since this preserves electromagnetic 

duality and possesses singular charged (Bionic) vacuum solutions with finite field-

strengths at the location of the singularity. 

An exploration of the consequences of non-linear electrodynamics was recently 

initiated in [30]. Since the effects of the non-linearity are most marked for very high 

fields, it might be expected that astrophysical phenomena (such as magnetars, quasars 

and gamma-ray bursts) are the most likely candidates for exploring the ramifications of 

such theories. However, for Born-Infeld theory, we showed in [30] that a plane 

electromagnetic wave in a constant magnetic field propagates with a phase speed less 

than the speed of light in the vacuum and that this might be detectable in a terrestrial 

experiment.  

In summary, although Maxwell‘s equations have been known for over a century and 

a quarter, a number of intriguing theoretical challenges are revealed when one attempts 

to develop effective theories and approximations inspired by the on-going advances in 

plasma physics, laser technology and particle accelerator science. 
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3.27.1 Introduction 

 The UK currently emits approximately 10 tons of CO2 equivalent per person per 

year, which is broadly in line with the European average.[1] The government has set 

ambitious targets to improve this, including  the cutting of  CO2 emissions by 80% by 

2050 from the 1990 baseline[2], but there is no firm plan as to how such goals will be 

met. There is some scope for development of wave and tidal power and for offshore 

wind farms, less for onshore wind and solar power, however it appears virtually 

impossible to meet such targets without the use of nuclear power. 

 Although the UK currently obtains about 20% of its electricity from nuclear power, 

the reactors are old and are all but one due to be out of service by 2023. Steps are being 

taken to replace and even expand these plants, though progress is slow as there is still 

considerable public opposition.  

 The Thorium ADSR (accelerator-driven subcritical reactor) system is well placed as 

a match between the pragmatic need and the distrustful public: it is manifestly safe, as 

switching off the accelerator switches off the reactor, it produces no (or almost  no) long 

lived waste, and it is highly proliferation resistant. Although there has been little UK 

activity in this area until recently, this is changing rapidly and the number of groups and 

people interested in, and working on, the topic has grown greatly in recent years.  

3.27.2 ThorEA 

 ThorEA (Thorium Research for the Energy Amplifier) is a not-for-profit 

organisation and learned society. It aims to promote thorium-fuelled energy amplifier 

systems as a safe, sustainable and publicly-acceptable form of nuclear power. Its goal  is 

the construction of a thorium-fuelled ADSR in the United Kingdom. It provides a 

framework within which individuals and organisations can co-operate in pursuit of this. 

 There are over 80 individuals on the mailing list, and some 40 names appear (with 

permission) as members on the organisation website. They cover a very broad range of 

disciplines: Accelerator Scientists, Particle Physicists, Nuclear Physicists, Nuclear 

Engineers, and Economists. They also come from many different institutes: the UK 

Accelerator Institutes, Cockcroft and John Adams, are well represented, as are the 

Rutherford Appleton and Daresbury Laboratories. There are members of 10 different 

universities, and several from industry. Although most are UK based there are several 

from continental Europe, the US and elsewhere that use this as a way of keeping in 

touch, and they are very welcome – we are aware that we are behind in many areas. 

(Anyone who wishes to join should contact the author.) 

mailto:%20Principal.Author@myplace.org
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 ThorEA maintains a website http://www.thorea.org as a central point of information 

and contact, which includes details of the organisation, a news feed of relevant stories, 

links to other sites, and details of meetings. These open and informal workshops take 

place 3-4 times a year, and normally get around 30 participants and about 10 talks, 

covering all aspects of ADSR systems from the accelerator to the economics. 

 ThorEA also acts as a forum for partnerships to respond to funding opportunities. 

There have been several small successful bids: further ones are in progress. It seeks out 

and exploits opportunities to publicise Thorium and ADSRs, through the web, in the 

press, by public talks and private lobbying.   

3.27.3 Design Choices 

 In order to focus ideas one has to propose a particular system. In doing so we are 

aware that choices may need to be reconsidered as circumstances change and more 

knowledge is obtained.  

 We propose a Thorium fuelled fast reactor. Uranium ADSRs do not solve the 

waste or proliferation problems, and thermal Thorium reactors do not produce 

the fast neutrons needed for transmutation. 

 We emphasize energy production, with transmutation as an extra benefit, as we 

think this will have a stronger political appeal (in the UK situation) than a 

system purely for waste disposal.  

 We propose a 1 GW Thermal power station, large enough to make an 

appreciable contribution to the electricity generation capacity. 

 We propose a production reactor as the first system, rather than a prototype, 

which  would be expensive with no return on investment. 

 We operate at a criticality k of 0.985.  We believe that this is low enough to be 

safe.   

 For this we require an accelerator (or multiple accelerators) delivering 

approximately 30 mA at 1 GeV 

 This would be achieved by a 3 stage process, with a conventional cyclotron to 

35 MeV, a ring accelerating protons to 400 MeV, and another for the final 

acceleration to 1 GeV. 

 We use lead as target, coolant and moderator, and operate at a high temperature 

for high Carnot efficiency.  

 We have benchmarked different simulation codes (MCNPX, FLUKA, GEANT4 

and models within these) for the spallation process, and shown how target 

optimisation can increase the neutron yield [3]. 

 Fuel must be recycled.  
233

U must be reclaimed not only as fuel but also as it will 

be a proliferation hazard after a few hundred years, when the 
232

U has decayed. 

There is also a long term waste problem from the
 233

U decays.    The design of 

fuel elements to survive in high temperature lead is a challenge, but should be 

possible. 

 

 The FFAG is our preferred accelerator [3]. Its DC magnets are cheaper and more 

reliable than those of a synchrotron. The acceleration rate is limited by the RF rather 

than the magnets, and we envisage acceleration up to 1 GeV in around 1000 turns, 

which would take 1 ms for a 50 m ring. The beam energy of 1 GeV is very hard to 

http://www.thorea.org/
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attain using a cyclotron, and 10 mA is very hard to attain using a synchrotron. A Linac 

can achieve both, but its capital cost is inevitably large due to its length. 

 We are currently engaged in construction of EMMA, first nsFFAG, at Daresbury, 

which will start operating in 2010 [4,5] and hopefully this low energy electron 

accelerator will show the viability a high current proton machine.    

  At 1 KHz, if an FFAG is run with a ‗synchrotron style' duty cycle, in which 

individual pulses are injected, accelerated, and extracted, then a  10 mA current requires 

~ 6  10
13

 protons/bunch. This is well over typical space charge limits, which are of 

order 10
13

. A large harmonic factor (several bunches per turn) can only help slightly. 

However if it can be run ‗cyclotron style' with a 100% duty cycle the bunch is only ~ 6 

 10
10

   particles which presents no space charge challenge, however the  sweeping of 

the RF frequency (in itself an unsolved problem)  limits the duty cycle.  

3.27.4 Reliability: the Next Accelerator Frontier 

 The accelerator for an ADSR must attain levels of reliability far beyond those of 

present accelerators.  Requirements stated in the literature vary between 3 and 1000 

trips per year, with varying definitions of a ‗trip'. Thermal stresses in the window and 

target are directly beam-related, thermal stresses in the core and its components are 

moderated by the time constant of the reactor and cooling, and there are also limits from 

economics: a 1 GW plant cannot just drop out of the Grid with impunity.  We urgently 

need more investigation to harden up the actual requirements, but even the less rigorous 

limits quoted are far beyond current experience with accelerators.  

 Reliability is a science: it can be achieved by redundancy, robustness, graceful 

failure, under-rating and planned maintenance. These have a cost penalty, and the 

design must include them only where necessary. Ion Sources are known to be fallible 

and two or more should be used. The DC magnets will probably be sufficiently reliable. 

RF components will fail, and the design must cope with this: this probably rules out 

clever designs such as the Separated-Orbit Cyclotron, Recirculating Linear 

Accelerators, and harmonic number jumping, as these require the bunch to have a 

specified energy at a specified point in the cycle. There are also mundane components 

such as vacuum and power.  Multiple accelerators may be needed to provide adequate 

reliability.  

3.27.5 Conclusions  

 ADSR involvement in the UK is increasing rapidly. We have a wide range of 

specialists working together across discipline boundaries.  Activities are increasing in 

many areas, and those interested are welcome to browse the ThorEA website and help 

us towards the goal of establishing Thorium powered ADSRs as the sustainable carbon-

free energy source of the future.  
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3.28.1 Introduction 

Hadron Therapy, or Proton Therapy, or Light Ion Therapy, or Particle Beam 

Therapy was first proposed by Wilson [1] in 1946 in a paper modestly entitled 

―Radiological use of fast protons‖. The potential advantages of protons over MV 

photons are clear from Figure 1. 

 
 

Figure 1: The energy deposition in tissue 

(water equivalent) for protons and photons, 

showing clearly the ―Bragg peak‖ at the end of 

the proton range compared with the near-

exponential decay of the photon energy 

deposition. Note that there is no energy 

deposition beyond the distal edge of the 

tumour, and that there is a small excess dose in 

the first few mm below the skin.  (Diagram 

from the Francis H Burr Proton Therapy 

Center, Massachusetts General Hospital, 

Boston) 

Figure 2: The ―Spread-Out Bragg Peak‖ 

(SOBP) demonstrating how the tumour 

volume can be covered with a uniform dose by 

superimposing many Bragg peaks. (Diagram 

from the Francis H Burr Proton Therapy 

Center, Massachusetts General Hospital, 

Boston) 

 

The power of the technique is illustrated in Figure 2, which compares the ―Spread 

Out Bragg Peak‖ (SOBP) with the equivalent dose distribution from MV X-rays for a 

large volume tumour. In conventional radiotherapy, with Intensity Modulated Radio 

Therapy (IMRT), it is possible to obtain excellent high dose distributions, which 

conform well to the tumour geometry by combining many beam directions, but at the 

cost of subjecting a large volume of healthy tissue and other organs to a significant 

mailto:Ken.Peach@adams-institute.ac.uk
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dose. With protons and other light ions, it is possible to achieve the same dose 

distributions in the tumour while irradiating a much smaller volume of healthy tissue 

and sparing vital organs using beams from a small number (two or three) of directions.  

Light ions have a higher Relative Biological Effectiveness (RBE) – for carbon this is 

typically 3-5 – in the Bragg peak due to the increase in ionisation density on a 

microscopic scale. This couples with the dose advantage to provide a greater difference 

in bio-effectiveness between the tumour and most healthy tissues already traversed by 

the beam. Beyond the Bragg peaks there is only a small fragmentation dose beyond the 

tumour. For these reasons, there are now about 30 centres operating around the world, 

with 2/3
rd

 of them in hospitals, and a further 20 facilities are under construction or in the 

planning stage. A complete list of facilities in operation and under construction can be 

found on the Particle Therapy Co-Operative Group (PTCOG) website [3]. 

The UK has lagged behind many other countries in developing this therapy and 

making it available, despite having the world‘s first hospital-based service at the 

Clatterbridge Centre for Oncology near Liverpool, which opened in 1989, about a year 

before Loma Linda in California. The Douglas Cyclotron has proton energy of only 62 

MeV, and was initially intended for trials of neutron therapy. However, when the 

clinical trials produced disappointing results [3], the cyclotron was converted to treat 

tumours of the eye, and has treated more than 2000 patients in the past 20 years, with a 

very high success rate. In 1995, there were studies [4] of the possible use of the ISIS 

accelerator at the Rutherford Appleton Laboratory, which could have treated one patient 

per hour with protons using a PSI-like gantry and fast (50 Hz) variable energy 

extraction. However, this option was not pursued. 

In 2007, the UK Research Council‘s Basic Technology Fund supported two new 

programmes in accelerator R&D with potential application for hadron therapy. The first 

of these (CONFORM – the Construction of a Non-scaling FFAG for Oncology, 

Research and Medicine) uses conventional accelerator technology, whereas the LIBRA 

(Laser Induced Beams or Radiation and their Application) uses high-power lasers to 

generate ion-beams from specially designed targets ranging from small plastic films to 

water droplets.  

In August 2009, the UK Department of Health announced that it had asked the 

National Specialised Commissioning Team to identify possible providers of proton 

therapy to treat up to 1600 patients with rare cancers, especially children, per year. A 

procurement process is under way. 
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3.28.2 Clinical Requirements 

Table 1: A summary of the main clinical requirements on the accelerator for a Charged Particle 

Therapy centre with both protons and carbon ions. 

Parameter  Value 

Extraction energy (proton) [Min, Max] [MeV] 60, 250 

Extraction energy (carbon) [Min, Max] [MeV/u] 110, 450 

Energy step (proton)           [@Min, @Max] [MeV] 5, 1  

Energy step (carbon)          [@Min, @Max] [MeV/u] 15, 6 

Energy resolution  (FWHM) [@Min, @Max] [%]  3.5, 1.8 

Voxel Size                          [Min, Max] [mm] 4×4×4, 10×10×10 

Uncollimated field size      [Min, Max] [mm] 100×100, 250×250 

Average tumour dose rate (proton)               [Min, Max] [Gy/min] 2, >10 

Average tumour dose rate (carbon)               [Min, Max] [Gy/min] 2, >10 

 

A partial set of requirements on the accelerator capabilities for a clinical therapy 

system is shown in Table 1. The potential advantages of FFAG accelerators over 

cyclotrons and synchrotrons are that in principle they should be able to extract the beam 

at variable energy and at a high (~kHz) repetition rate, with the ability to change 

between protons and light ions relatively quickly, and to be able to match cyclotrons 

and synchrotrons in terms of dose rate, dose stability and dose precision 

3.28.3 The PAMELA Project 

The PAMELA Project stands for Particle Accelerator with Medical Application. 

While present day technology for proton and light ion therapy is adequate, both 

cyclotrons and synchrotrons have limitations. In principle, Fixed Field Alternating 

Gradient (FFAG) accelerators can address these limitations – being fixed field, the 

accelerator can be rapid-cycling (~kHz) and because the orbit-excursion is limited, 

variable energy extraction is possible. However, in the original FFAG configuration 

(now known as a scaling FFAG), the orbit excursion is still quite large (~1m). It was 

realised [5] in 1999 that if the scaling assumption was relaxed, the orbit excursion could 

be constrained still further, at the cost of having to deal with resonance crossing. In the 

original model, the magnetic design was arranged to compress the range of orbit radii 

and thus the magnet aperture, while maintaining a linear magnetic field, leading to 

expectations of smaller apertures, and thus significant cost reduction when compared 

with scaling machines. EMMA, the Electron Model with Many Applications will 

demonstrate the feasibility of this technology, and is described elsewhere [6]. Briefly, 

EMMA is a 42-cell, densely-packed ring, with the linear magnetic fields provided by 

displaced quadrupoles, and achieving  rapid acceleration by using 19 1.3GHz cavities, 

each with an accelerating voltage of 20-120kV, giving an energy gain per turn of 

between 0.38 MeV and 1.28 MeV. 

While this lattice is a natural starting point for PAMELA, there are features that 

make it unsuitable for protons and light ions. Studies with a 48-cell densely packed 
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linear lattice showed that it was difficult to achieve the high packing fraction with a 

realistic magnet design, and there was insufficient space in the short straight sections for 

the variable frequency RF cavities needed for the non-relativistic acceleration. It was 

also shown that the requirements on the field accuracy and alignment precision were 

severe. 

An alternative is to study a less dense lattice with longer straight sections, which 

means departing from simple linear magnetic fields. An advantage of this approach is 

that it is then possible to stabilise the horizontal and vertical tune (to avoid resonance 

crossing) and to limit the orbit excursion. There are several ways to achieve this. One 

approach [7] uses both edge and alternating gradient focussing to stabilise the tune. An 

alternative approach [8,9] is to stabilise the tunes through the addition of higher-order 

multipoles.  

In order to avoid resonance crossing it is necessary to constrain the total betatron 

tune to within an integer throughout acceleration. In other types of accelerators two 

methods are used which can achieve this. The first, employed in synchrotrons, is 

chromatic correction, adding higher order multipoles to achieve a constant tune. The 

second, used in a scaling FFAG, employs a magnetic guide field which follows the 

scaling law B = B0(r/r0)
k
, where r is the radial co-ordinate, k is the field index defined as 

k = (r/By)(dBy/dr) and y is the vertical direction. This results in a constant tune 

throughout acceleration. The PAMELA lattice design employs a combination of these 

two methods. Starting with the concept of a radial-sector F-D-F triplet scaling FFAG, a 

number of changes and simplifications are made. Firstly, the magnetic field becomes 

non-scaling, by expanding the scaling field profile and retaining only the dipole and 

first few multipoles. This significantly changes the magnet design, removing the need 

for iron-cored magnets with complicated pole shaping used in a scaling FFAG. To ease 

cost, construction and alignment issues, the magnets are made rectangular rather than 

sector-shaped and are aligned along a straight line in each cell rather than along an arc, 

further violating the scaling law. One such lattice is shown in Figure 3. The lattice has 

12 triplet (FDF) cells, with a median radius of 6.25m and 1.95m long straight sections 

(about 1.7m of useful length) see Table 2. 

  

Figure 3: A tune-stabilized non-linear 

non-scaling FFAG lattice for protons 31 

MeV to 250 MeV. The blue lines 

represent the orbits at injection (inner 

lines) and extraction at full energy 

(outer line). 

Figure 4: Available working points for the 

PAMELA lattice at reference energy (118 MeV 

protons). The 2nd stable region with x > 0.5 is 

shown to the right. 
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Table 2: Lattice Parameters 

 Injection Reference Extraction 

Proton K.E.     [MeV] 31 118 250 

C6+ K.E          [MeV/u] 7.8 31 68.4 

B                   [Tm] 0.81 1.62 2.43 

# Cells, R0        [m] 12, 6.25 

K value, D/F ratio 38, 1.35 

B
D

0, B
F

0            [T] 2.25, 1.67 

Packing factor 0.48 

Long, Short drift  [m]  1.7, 0.31 

Magnet length      [m] 0.31 

Orbit excursion    [m] 0.17 

 

A number of parameters can be used to further describe the PAMELA lattice design, 

including the field index, k and geometrical factors including the lattice packing factor, 

magnet length and average radius. The field index (k) influences both the magnetic 

focusing strength and the orbit excursion, that is, the difference in radial position of the 

maximum and minimum energy orbits, as shown by the two lines in Figure 3. A large 

field index results in a small orbit excursion, which is advantageous as it reduces the 

bore of the magnets, the beam pipe aperture and the RF aperture. However, the field 

index is limited when using the first stable region of Hill‘s equation, where the phase 

advance per cell is less than 180 degrees. In this design the second stable region of 

Hill‘s equation is used, with a horizontal phase advance per cell greater than 180 

degrees. This allows for a larger field index to be used, resulting in a smaller orbit 

excursion. The available working points as a function of field index and D/F magnet 

strength ratio are shown in Figure 4. By carefully choosing the field index to be as large 

as possible, a D/F ratio si selected to give cell tunes around x = 0.75, y = 0.25. 

The performance of the PAMELA lattice was studied using the ray-tracing code 

ZGOUBI [10] for tracking studies and S-Code [11] for the variation of basic lattice 

parameters. The beta functions in one cell, as calculated with S-Code, are shown in 

Figure 5. The variation of betatron cell tunes throughout acceleration is shown in Figure 

6. The variation of the total horizontal tune is 0.054 and the total vertical tune is 0.067, 

both of which are well within half an integer, as indicated by the dotted lines. These 

results illustrate that the design method for constraining betatron tunes is successful. A 

typical tracking example using ZGOUBI including acceleration is shown in Figure 7, 

clearly showing the small natural orbit excursion which is 17.6cm in total. 
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Figure 5: Beta-functions in one cell of the 

PAMELA lattice. 

Figure 6: Variation of horizontal (upper) and 

vertical (lower) cell tunes. 

  

Figure 7: Horizontal particle position vs. 

proton kinetic energy through acceleration at 

centre of long straight section. 

Figure 8: Magnetic field as a function of 

radius for the F and D magnets 

Preliminary ideas for the design of the magnets [12] and the RF [13] have been 

developed. The field shapes for the main ring magnets are shown in Figure 8. An 

outline of the RF cavity from reference [13] is shown in Figure 9, with the principal 

parameters in Table 3. 

 

 

Figure 9: PAMELA RF cavity Figure 10: Schematic of proposed injector 

assembly, including ion sources, LEBT, pre-

accelerators and MEBT. The proton source is 

contained within the cyclotron. 
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Table 3: RF Cavity Parameters 

Frequency [h=10] injection              [MHz] 19.4 

Frequency [h=10] extraction (max) [MHz] 46.2 

Repetition Rate   [kHz] 1 

Energy gain/turn   [keV] 100 

Number of cavities ≤ 8 

Length    [mm] 1100 

Aperture    [mm] 230 

 

There are also preliminary ideas [14-15] for the injection chain (see Figure 10). The 

protons and carbon ions will be produced in separate sources, allowing faster switching 

between ion species in a clinical situation, improving the productivity of the facility. A 

Low Energy Beam Transport line (LEBT) will transport the particles from the sources 

into a pre-accelerator, and another beam transport section (MEBT) will inject the 

particles into PAMELA. A standard 30MeV proton cyclotron can be used for the proton 

beam injection, and a radio frequency quadrupole (RFQ) and linac can be designed for 

the carbon injection.  

Finally, in order to achieve the performance requirements in the treatment room, it is 

necessary to use an achromatic beam transport and gantry. Studies are under way [16] 

to design an FFAG-like beam transport system. 

3.28.4 Laser-Driven Ion Acceleration 

High power lasers can be used to generate accelerated beams of ions (see for 

example [17]). The beams have interesting properties, for example they are intrinsically 

low emittance and different ion species can be readily accelerated. However, so far the 

energies are achieved are in the tens of MeV range, and the energy spread is generally 

large. Nevertheless, there has been significant progress over recent years, as shown in 

figure 11, where the maximum achievable proton energy tracks the available laser 

power. 

The LIBRA (Laser Induced Beams or Radiation and their Application) consortium 

(see [18]) is investigating the generation of protons and ions from laser-induced 

interactions with thin films. One mechanism is Target Normal Sheath Acceleration 

(TNSA), illustrated schematically in figure 12, first observed in 2000 [19,20]; the 

proton energy spectrum obtained in [20] is shown in figure 13. More recently, a new 

acceleration regime has been proposed [21-23] – Radiation Pressure Acceleration 

(RPA) – which uses circularly polarised high power laser pulses incident on thin films 

to achieve efficient acceleration at moderate intensities – the maximum proton energy 

scales as the laser intensity in RPA, to be compared with scaling as the square root of 

the intensity for TNSA. Testing RPA is currently under investigation. A simulated 

proton energy spectrum from [21] is shown in Figure 14. There remain limitations in 

terms of laser repetition rates, but optimisation of target composition, shape and means 
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of their delivery into the laser beam are being addressed along with accuracy and 

reproducibility of dose profiles. The wider energy spectrum may be usefully employed 

to cover most of a tumour, while using narrower ranges of energies for its periphery. 

Also the production of gamma rays along the beam direction may allow useful 

simultaneous imaging. 

 

 

 

Figure 11: Maximum proton energy from 

laser-irradiated metal foils for experiments on 

different laser systems as a function of the 

laser pulse irradiance, grouped in three 

different ranges of pulse durations [18]. 

Figure 12: Sketch of Target Normal Sheath 

Acceleration (TNSA) (after Borghesi). 

 

 

Figure 13: The proton energy spectrum from [20]. Figure 14: Simulated proton energy 

spectrum from [21]. 

In the medium term, laser-plasma ion acceleration could provide a compact and 

flexible ion source, allowing conventional acceleration of a range of ion species 

(helium, carbon, oxygen …) for therapy, and in the longer term could provide beams of 

ions with the required energy and intensity. 
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3.28.5 Summary 

Hadron therapy (the use of beam of energetic protons and light ions such as carbon) 

for the treatment and local control of tumours is an established modality in the 

management of cancer, particularly well adapted to a range of tumours and some 

paediatric cases. Existing technology is adequate but is capable of improvement. There 

is an established programme of innovative research in the UK aimed at addressing some 

of these limitations.     
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3.29.1 Introduction 

The Cockcroft Institute has the charter of integrating the academic depth of 

university partners, the breadth of large scale facilities and national laboratory partners 

and societal applications via industrial engagement under one collaborative association 

and stewardship. The institute already has a 11-member strong Industrial Advisory 

Committee (IAC), with members from the Research Councils, Technology Strategy 

Board, relevant industries and expert professionals from the Energy, Healthcare and 

Security/Defense communities that have prepared a Technologies Readiness Map as 

well as a ―Market Pull‖ analysis of the various offerings from the science and 

technology knowledge and associated skills base of particle accelerators and free 

electron lasers. In addition the institute has facilitated the formation of the UK base 

Tech-X UK Ltd. for the computational accelerator science company Tech-X,Inc.USA 

and has motivated local businesses (e.g. Shakespeare Engineering) to engage in 

superconducting radio frequency technology. The institute is engaging with the 

microwave industry for the development of unique microwave controls and power 

components. Finally it is interacting with the Health and Energy sectors for industry-led 

accelerator-based systems for proton/hadron therapy in UK and sustainable Thorium-

based nuclear fission reactors driven by accelerators, towards which the ThorEA 

Association UK has been created by the UK community.  

3.29.2 SRF Structures 

The Cockcroft Institute (CI) is currently developing a variety of accelerator designs, 

which exploit the fundamental benefits of Superconducting RF (SRF) technology; 

whether it is for the optimization of modest gradient, CW, L-band accelerating 

structures for ALICE and NLS; high gradient, pulsed, L-band and C-band, accelerating 

and dipole mode structures for ILC; or low velocity, VHF accelerating structures for 

HIE-ISOLDE; all of which require specialist qualification, handling, forming, 
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machining, cleaning and validation processes in industry to ensure such devices can be 

successfully transferred and operated in a working accelerator environment. There is a 

distinct global shortage of appropriately recognised and validated commercial vendors 

who can deliver such specialist devices to the scientific community and so the CI has 

strived to engage with industry, both nationally and internationally, to ensure that the 

SRF requirements for such demanding projects can be appropriately maintained.  

For the ALICE facility at Daresbury Laboratory, the SRF accelerating systems 

proposed at the design stage were in fact not commercially available and so subsequent 

discussions with Research Instruments GmbH in Germany (or ACCEL GmbH as it was 

at the time), identified an opportunity for licensing the FZD-Rossendorf ELBE 

cryomodule design, which would meet the requirements for the ALICE accelerator. 

Having successfully delivered two such cryomodules, which have operated on ALICE 

since Sept 2007 (see Figure 1), ACCEL now have a demonstrated and commercialized 

cryomodule solution for Energy Recovery Linac (ERL) applications. 

 

 

Figure 1: ACCEL ERL cryomodule preparing to be installed on ALICE. 

For the ILC project, the CI has lead the development of a C-band SRF crab cavity 

system for rotating the 500 GeV electron and positron bunches locally at the Interaction 

Point, to maximize collision luminosity. To provide a mechanism for validating both the 

crab cavity structure design and the precision Low Level RF (LLRF) control system 

that was developed, several single-cell dipole mode cavities were fabricated in industry. 

The CI at the time were building an array of SRF processing and testing facilities which 

included; chemical cleaning, high-pressure rinsing, ISO 4/5/6 clean rooms and a vertical 

test stand and so, when it came to placing an order with industry for these single-cell 

cavities, it was a requirement that CI staff could take part in the structure processing and 

qualification, thereby transferring critical skills from industry, to be then utilized by CI 

staff at Daresbury Laboratory. Niowave Inc in the USA were the only company 

approached who offered the ability to not only fabricate and qualify the SRF structures, 

but also to spend time training CI staff in the various cleaning and qualification stages 

(see Figure 2). The expertise developed has enabled CI staff to successfully complete 

the qualification of the ILC crab cavity system using the new SRF infrastructure at 

Daresbury, to performance levels which now exceed the stringent requirements for ILC. 

http://www.research-instruments.de/
http://www.niowaveinc.com/
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Figure 2: CI staff being trained at Niowave Inc. 

Nationally, the UK does not currently have a recognized vendor for fabrication of 

SRF structures for the scientific accelerator community. In order to try and instigate a 

mechanism whereby UK industry can learn from CI staff as to how SRF structures are 

handled and processed, an STFC Innovations Partnership Scheme grant has been 

secured with Shakespeare Engineering Ltd, to fabricate and qualify an L-band single-

cell SRF structure. This will be the first bulk-niobium accelerating structure to have 

ever been built and qualified in the UK. 

3.29.3 Compact Linac Applications 

The design challenge for Compact Linac accelerating and dipole mode structures 

requires full understanding of surface wall losses in order to correctly predict the 

coupling between cells in the device, as well as S-parameter analysis and wakefield 

impedance suppression. Work being undertaken by Tech-X UK Ltd and CI will develop 

models that will help the understanding of these devices, and produce linacs which meet 

the needs of accelerator designers around the world (see Figure 3). With techniques that 

embrace modern software design practices and high performance computing clusters, 

problems in developing complex geometry models and parameterization of such models 

to converge on an optimum solution, solutions which previously were out of reach, are 

now becoming realisable. 

 

 

Figure 3: Compact linac design for security applications 

The collaboration between Tech-X CI and e2v Technologies Ltd is also delivering 

the capability to simulate a complete magnetron startup, something which has been 

http://www.scitech.ac.uk/KE/FOpp/ktgs/ktgs.aspx
http://www.shakespeareengineering.co.uk/
http://txcorp.co.uk/
http://www.e2v.com/home/
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performed with only limited success in the past, and to take this further to look at phase 

locking performance. If sufficient phase stability can be obtained from this phase 

locking process, it presents magnetrons as a much cheaper alternative to Klystrons as 

RF sources in the accelerator world. These developments are expected to flow into 

benefits to many UK and international producers of magnetrons. 

CI and Tech-X supported work is also improving the capability we have to 

understand the multipactor effect. Multipactor is the primary cause of breakdown and 

failure in many classes of high power microwave devices. The collaboration is actively 

looking at RF power couplers at the SPL, and benchmarking experimental data taken 

from waveguide breakdown events to assess various techniques for circumventing the 

damage multipactor can cause and to ensure a 'right first time' design of accelerator 

components.  

Tech-X in the US has already been working on multipactor in crab cavities, and is 

bringing its successes from this research to the problems being addressed by the UK 

community. The same phenomena is the cause of failure for many high power 

amplifiers, and the ability to simulate cavities in RF sources such as klystrons and IOTs, 

as well as in complete accelerators, is expected to lead to savings for manufacturers as 

well as those who operate such devices in the accelerator community. 

3.29.4 Security Applications for Accelerators 

Threats to society arising from unknown mobile cargo systems either in 

commercial, governmental or military transportation are higher than ever today, 

requiring smart, compact and cost effective inspection systems in bulk for diverse and 

distributed use. In particular, limited but successful experience in the past with X-ray 

sources derived from ‗brehmstrahlung‘ radiation from a metal target irradiated by MeV 

energy electron beams, leads us to believe that a series of compact X-Ray sources are 

required for integration in a new series of cargo and vehicle inspection systems. The CI 

is collaborating with Rapiscan Systems for the development of these next generation 

cargo scanners. 

3.29.5 Outlook 

The recently commissioned (by the UK government) ― Hauser Review‖ completed 

by the physicist and innovator Hermann Hauser , calls for the formation of technology 

innovation centers that will maximize the return on the scientific knowledge base of the 

academic institutions and national facilities in UK. The accelerator community in UK 

distributed amongst the universities, institutes, national laboratories is rising to this 

challenge by creating a national accelerator program that addresses the national and 

international grand challenges in Energy, Health and Security.  

http://www.rapiscansystems.com/ourcompany.html
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4 Workshop and Conference Reports 

4.1 Strategy Workshop on High Power Laser Technology for Future 

Accelerators 

 
 

A first strategy workshop was held at GSI Darmstadt, April 8-10, on the laser 

technology needed to meet the challenge of future accelerators that use or rely on very 

high average power lasers. The workshop was opened by Hartmut Eickhoff, Technical 

Director of GSI and Wim Leemans from LBNL, Chair of the newly established Joint 

Task Force on Future Applications of Laser Acceleration. The Joint Task Force 

operates under the umbrella of ICFA (International Committee for Future Accelerators) 

and ICUIL (International Committee for Ultra Intense Lasers) and invited experts on 

high power laser technology as well as accelerator technology and their applications to 

this workshop. The 47 participants came from China (1), France (4), Germany (18), 

Japan (4), Switzerland (2), the UK (4) and the US (14).  

The main topics discussed were the laser performance needed for accelerator 

technology to support the most challenging present and future accelerator needs, as well 

as questions of laser architecture, laser material and optical components. At the 

workshop, accelerator and light source representatives outlined the top level laser 

requirements for potential laser-based accelerator applications, i.e. colliders, light 

sources and medical applications.    

The largest challenge for laser technology comes from a laser-plasma e
+
e

-
 collider 

with a center of mass energy as much as 10 TeV. The consensus in the world high 

energy physics community is that the next large collider after the LHC would be a TeV-

scale lepton collider. Options currently under study include the ILC (0.5-1 TeV), CLIC 

(up to 3 TeV) and the muon collider (up to 4 TeV), all using RF technology. On the 

other hand, the very high gradients (~10 GeV/m) possible with laser acceleration open 

up new avenues to reach even higher energy and more compact machines. At this 

workshop participants discussed and set forth a set of beam and laser parameters for a 

1-10 TeV, 10
36

 cm
-2

s
-1

 e
+
e

-
 collider based on two different technologies – laser plasma 
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acceleration (LPA) and direct laser acceleration (DLA). The main challenges to the 

practical achievement of laser acceleration are high average power (~100 MW), high 

repetition rate (kHz to MHz), and high efficiency (~40-60%) at a cost that ideally would 

be an order of magnitude lower than using RF based technology. The workshop also 

studied the laser requirements for a 200 GeV γγ collider, proposed as the first stage of a 

full scale ILC or CLIC. The required laser systems for such a collider may be within the 

reach of today‘s technology. 

For light sources, lasers already play a significant role in existing facilities, and face 

new challenges with future light sources that aim at much higher repetition frequency. 

Ultrafast (femtosecond) lasers reaching 1-10 kW levels will be required for seeding and 

user driven experiments. Another important area is medical applications of laser 

acceleration of protons/ions and its potential to replace current technology used in 

tumour therapy. Such lasers are typically very high peak power (PW-class) and require 

special pulse shapes with very high temporal contrast. Again, multi-kW compact lasers 

will be needed. 

Laser requirements for these applications are often many orders of magnitude 

beyond the capabilities of the lasers used in today's scientific demonstrations, i.e. MW's 

vs. 10‘s of W's.  Laser science representatives at the workshop discussed and outlined 

how, with appropriate R&D, emerging 100-kW-class industrial lasers, 10-MW-class 

laser fusion energy technologies and MW-class defence laser systems might be adapted 

to meet these challenging requirements. 

Results of the workshop, including parameter tables on laser technology 

requirements and goals will be compiled in a workshop report and submitted to ICFA 

and ICUIL for their approval, prior to public release.  

5 Recent Doctoral Theses 

5.1 Muon Capture Schemes for the Neutrino Factory 

Stephen Brooks 

University of Oxford, Trinity College, OX1 3BH, U.K. 

Mail to:  Stephen.brooks@stfc.ac.uk 

 

Graduation Date: April 2010 

Supervisors:  Dr. J.H. Cobb and Dr. C.R. Prior 

 

Abstract: 

The proposed neutrino factory, a facility for precision measurements of neutrino 

oscillations, requires directional neutrino beams to reach the required sensitivities. 

Among the few sources of such beams is the decay of muons travelling at relativistic 

speeds; therefore an intense source of muons and subsequent rapid acceleration must be 

designed so they can reach the required energy before decaying. 

This thesis investigates the design of several stages in this process: pion production 

from an energetic proton beam hitting a target and the decay of those pions to a beam of 

muons, confined by a channel of solenoids. Issues related to producing the original 

proton beam, the target efficiency, the arrangement of the solenoids and the start of 

http://mylab.institution.org/~mypage
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muon acceleration are all discussed in the context of eventual muon yield, with the 

target particle production and muon beam optics simulated by computer codes. The 

code MARS15 [1] is used for the target (and benchmarked against GEANT4 [2] and 

initial results from the HARP experiment [3]) and the author's code Muon1 [4] for 

muon tracking, with the techniques it uses also explained in the thesis. 

To find the highest-yielding arrangement of magnets and accelerating components 

from the target onwards, Muon1 incorporates an optimisation feature where almost all 

parameters of the beamline can be varied. This produces a high-dimensionality search 

space where the best muon yield is sought using a genetic algorithm. As each individual 

evaluation of a design is itself a time-consuming simulation with tens of thousands of 

particles, the code has been deployed as a distributed computing project that is able to 

perform millions of simulations per optimisation. 

5.2 3D Simulation Study of Space Charge Effects on High Intensity 

Cyclotrons 

Jianjun Yang 

Department of Engineering Physics, Tsinghua University, Beijing, China 

Mail to: yangjianjun2000@tsinghua.org.cn  

 

Graduation Date: January 10, 2010 

Supervisor: Prof. Yuzheng Lin (Tsinghua University) 

Cooperate Supervisor: Prof. Tianjue Zhang (China Institute of Atomic Energy) 

 

Abstract: 

High intensity has maintained its prevailing position as one of the important 

research directions in the cyclotron development and constant efforts have been made 

and are still in progress to pursue higher beam current since the first cyclotron was built. 

Along with the steady increase of beam current, the beam collective effects would 

become stronger, among which the space charge effects, being the most significant 

collective effects in cyclotrons, are one of the main causes of beam loss and the 

activation of accelerator components. For high intensity isochronous cyclotrons, the 

space charge effects should include not only the interactions of the internal particles of a 

single bunch, but also the mutual interactions of neighboring multiple bunches in the 

radial direction. In compact AVF cyclotrons, the neighboring multi-bunch effects are 

particularly remarkable. 

In this thesis, the space charge effects are studied quantitatively by numerical 

methods. Based on the beam dynamics analysis, a ―Start-to-Stop‖ model and a ―Central 

Bunch‖ model are established for compact AVF cyclotrons with multi-turn extraction 

and separated-sector cyclotrons with single-turn extraction respectively. In both models 

the neighboring bunch effects are included by multi-bunch tracking. On that basis, the 

parallel Particle-In-Cell based numerical simulation algorithms are studied and a new 

3D object-oriented parallel code for large scale particle simulation in cyclotrons, 

OPAL-CYCL, is developed and validated by comparing with other similar codes. The 

usage of this code is not restricted to the study of space charge related issues, but it is 

also applicable to the conventional beam dynamics design and study of a cyclotron. The 

parallel scalability test shows that the code is functioning at high performance both on 

cluster systems and MPP systems. 

mailto:yangjianjun2000@tsinghua.org.cn
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To meet the running requirement of OPAL-CYCL, a new HPC cluster system of 

small scale is built at China Institute of Atomic Energy (CIAE).The Linpack test shows 

the parallel efficiency of up to 87% can be achieved on this system. 

The high intensity beam dynamics problems in the 100MeV compact AVF 

cyclotron being constructed at CIAE are studied by using OPAL-CYCL. The simulation 

shows that for the initial matched beam at the exit of the central region given by the 

physical design, no massive beam loss would be caused by space charge effects when 

the extracted beam current is less than 1mA, and the beam current limit given by 

vertical space charge effects is about 10mA. Furthermore, the space charge related 

study in PSI 590MeV Ring is presented as well, for which the simulation shows the 

neighboring multiple bunches impose positive effects on this single-turn extraction 

cyclotron. 

6 Forthcoming Beam Dynamics Events 

6.1 49
th

 ICFA Advanced Beam Dynamics Workshop on Electron 

Cloud Physics: ELOUD2010  

The 49
th

 ICFA Advanced Beam Dynamics Workshop will take place from October 

8 to 12, 2010 at Cornell University, Ithaca, New York, USA. 

The development of the electron cloud (EC) in accelerator vacuum systems remains 

a significant issue for the operation of present and planned high intensity accelerators.  

The interaction of the cloud with the beam can lead to single and multi-bunch 

instabilities, emittance growth, and betatron tune shifts.   The presence of the cloud in 

the beam chambers can result in a rapid rise in vacuum pressure, significant heat loads 

on cryogenic surfaces, and can interfere with beam diagnostics.  Since the last 

ECLOUD workshop in 2007, an intense R&D effort has been underway to further 

understand the physics of the EC and to investigate new methods to mitigate the EC 

effects.  The ECLOUD10 program will focus on: a review of EC observations at 

existing machines; recent experimental efforts to characterize the EC (including EC 

diagnostics, experimental techniques, characterization of mitigation methods, and 

characterization of beam instabilities and emittance growth); the status of EC physics 

models and simulation codes and their comparison to recently acquired experimental 

data; and, the mitigation requirements and potential performance limitations imposed by 

the EC on upgraded and future machines. In addition to the technical reports at the 

workshop, ECLOUD10 will present a set of introductory lectures for students and those 

new to the field on the opening day of the workshop.   

The meeting will be held at the Statler Hotel on the campus of Cornell University 

overlooking picturesque Cayuga Lake.  We are looking forward to a gathering where 

we can enjoy the beautiful foliage as Fall begins in the Finger Lakes region.  The 

workshop will include a tour of the facilities at Wilson Laboratory.  

 

Contact  

ECLOUD10 Chair, Mark Palmer, Cornell University, USA 

ecloud10@lepp.cornell.edu 

file:///C:/Chou_driveC/icfa/Newsletter/newsletter51/ecloud10@lepp.cornell.edu
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6.2 16
th

 International Workshop on Beam dynamics and 

Optimization: BDO2010 

The 16th International Workshop Beam Dynamics and Optimization (BDO‘2010) 

will be held in the St. Petersburg State University (St. Petersburg, Russia) June 28–30, 

2010. It is organized by the Faculty of Applied Mathematics and Control Processes at 

St. Petersburg State University. For further information please visit the Workshop 

website: 

http://www.bdo2010.compmath.spbu.ru/ 

 

Program Committee  

Chairperson — D. A. Ovsyannikov (Russia) 

A. Alisherov (Kyrghistan), S. Kawata (Japan), V.P. Stepanchuk (Russia), V.A. 

Belyakov (Russia), E.D. Kotina (Russia), Yu. A. Svistunov (Russia), M. Berz 

(USA), K. Makino (USA), A. Todd (USA), Yu.A. Budanov (Russia), F. 

Meot(France), E.I. Veremey (Russia), A.N. Dovbnya (Ukraine), A.D. 

Ovsyannikov (Russia), M.F. Vorogushin (Russia), A.P. Durkin (Russia), R. 

Ryne (USA), I.P. Yudin (Russia), R. Jameson (USA), P. Snopok (USA/Russia), 

A.P. Zhabko (Russia) 

 

Organizing Committee 

Chairperson — E. D. Kotina (Russia) 

S.N. Andrianov (Russia), H. Mais (Germany), V.L. Uvarov (Ukraine), M. Berz 

(USA), V.V. Petrenko (Russia), Y. Yamazaki (Japan), N.S. Edamenko (Russia), 

V.A. Ploskikh (Russia), I.P. Yudin (Russia), N.V. Egorov (Russia), Yu. 

Senichev (Germany), A.V. Zherebtsov (Russia), V.P. Gorbachev (Russia), P. 

Snopok (USA/Russia), D.V. Zhukov (Russia), A.B. Kurzhanskiy (Russia) 

 

Contacts 

Coordinator – D.V. Zhukov 

Secretary – A.G. Golovkina 

E-mail: bdo2010@apmath.spbu.ru 

Phone: +7(812)4284250 

+7(812)4284868 

+7(812)4284729 

Fax: +7(812)4287159 

Postal address: BDO‘2010 

Saint-Petersburg State University 

Faculty of Applied Mathematics and Control Processes 

Universitetskij pr., 35 

Saint-Petersburg, 198504 

Russia 

 

Scope 

Traditionally the objective of the Workshop is to bring together mathematicians, 

physicists and engineers to present and discuss recent developments in the area of 

mathematical control methods, modeling and optimization and theory and design of 

http://www.bdo2010.compmath.spbu.ru/
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charged particle beams and plasma, parallel and distributed computing in accelerator 

physics. 

 

Historical Overview 

The series of workshops on Beam Dynamics and Optimization started in 1994. 

Since that, 14 workshops were held, either in St.Petersburg, or in Saratov and the 15th 

workshop (2008) took place in St. Petersburg, Florida, USA. In years 2004 and 2005 the 

BDO workshops were included as separate sections into the 8th International 

Computational Accelerator Physics Conference (ICAP 2004), and the International 

Conference ―Stability and Control Processes (SCP 2005)‖, respectively. In 15-years 

time the workshop had developed into a full scale conference with more than 100 

participants every time. Nevertheless, we are keeping the traditional and well-

recognized name ―BDO Workshop‖. 

 

Technical Program 

1. Beam Dynamics 

2. Optimal Control Theory and Methods of Optimization 

3. Mathematical Modeling of Electromagnetic Fields 

4. Charged Particle Beam Generation 

5. Plasma Control and Optimization 

6. Applications of Accelerators 

7. Code Development 

 

Official Languages 

The working languages of the BDO‘2010 Workshop are English and Russian. 

 

Sessions 

Reports at the BDO‘2010 Workshop may be presented in oral or poster form. The 

lecture hall for the oral session will be equipped with a PC-connected electronic 

projector. Please provide your presentations on CDs or memory sticks in Adobe PDF or 

MS PowerPoint format.  

In the room for the poster session poster boards and material for attachment will be 

available. 

 

Venue 

The Workshop will be held in the New Conference Hall of the Faculty of Applied 

Mathematics & Control Processes (St. Petersburg, Staryj Petergof, Universitetskij pr., 

35). 

 

Dates and Deadlines 

Registration and abstract submission deadline: March 21, 2010 

Notification of acceptance:    April 1, 2010 

BDO‘2010 Workshop:     June 28–30, 2010 

 

Registration 

To register as a participant of the BDO‘2010 Workshop please fill in the online 

registration form at the Workshop website: 

http://www.bdo2010.compmath.spbu.ru/register.php 

http://www.bdo2010.compmath.spbu.ru/register.php
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Abstracts Submission 

Abstracts are to be prepared in LATEX or in Word (*.doc) and should not include 

any graphics. The size is limited by two pages. Your abstract should be send to the 

Organizing Committee using the online registration form. The deadline for submitting 

abstracts is March 21, 2010. The LATEX and Word templates are available at the 

Workshop website: 

http://www.bdo2010.compmath.spbu.ru/abstract.html 

 

Accommodation 

We can arrange your accommodation at the hostel of St. Petersburg University 

(about 5-7 min by foot to the Workshop location). This is an economic accommodation 

(550 RUR* per night per person) in double rooms or in rooms for 3-4 persons 

(dependent of availability). Please inform us before the 1st April 2010 if you want us to 

book places for you, by e-mail: bdo2010@apmath.spbu.ru. Otherwise you can book a 

room at hotels in Peterhof. (Some information about the hotels is given at the Workshop 

website: http://www.bdo2010.compmath.spbu.ru/). Please book your accommodation 

there as soon as possible because June is a high season (White nights) in St. Petersburg. 

*1 EUR = 40.6285 RUR 

  1 USD = 30.1510 RUR (the rate of exchange on 2010.02.20) 

6.3 19
th

 International Conference on Cyclotrons and Their 

Applications: Cyclotrons2010 

The 19th international Conference on Cyclotrons and Their Applications 

(CYCLOTRONS‘10) will take place at Lanzhou, P.R. China on September 6 – 10, 

2010. The Institute of Modern Physics (IMP), affiliated to Chinese Academy of 

Sciences will be hosting the conference. The location of the conference will be at the 

Ning-Wo Zhuang Hotel in downtown Lanzhou. The conference will include a reception 

evening, oral presentations (invited talks and oral contributions), poster sessions, a 

conference banquet, a technical tour of IMP facilities and an option for a half day 

excursion. 

The scientific program of the conference will include the following topics: 

 Cyclotron applications 

 Newly operating cyclotrons 

 Operational cyclotrons: developments and status 

 Facilities under construction 

 Projects and proposals 

 FFAG accelerators 

 High beam intensity operation 

 Radioactive beams 

 Beam dynamics 

 Ion sources , strippers and targets 

 Radio frequency systems 

 Magnet and vacuum 

 Beam transport, diagnostics and control system 

A conference web site will be available on March 1st 2010: 

http://www.bdo2010.compmath.spbu.ru/abstract.html
mailto:bdo2010@apmath.spbu.ru
http://www.bdo2010.compmath.spbu.ru/
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http://cyclotrons10.impcas.ac.cn 

 

Conference Venue 

The conference will be held at the Ning-Wo-Zhuang Hotel located in downtown 

Lanzhou, with advanced equipments, elegant decorations and satisfying environment, 

the venue provides participants warm services of fruitful scientific discussions in an 

informal and relaxed atmosphere. Details of the venue are available on the following 

web site: 

http://www.gsnwzhotels.com/English/index.asp 

 

Lanzhou, the capital of Gansu province, is a major stop on the ancient "Silk Road", 

located at the upper reaches of the Yellow River. It‘s an amazing city with a long 

history, offers many historic spots and interest places. Today, Lanzhou is an important 

heavy industrial base in the western China. In Lanzhou, everyone will be interesting in 

her unique charm. You can find the interesting information on the web site: 

http://www.chinats.com/lanzhou/index.htm 

 

Registration and Fee 

All colleagues interested in the related fields of the conference are cordially invited 

to participate in the conference and present contributions in oral or poster format. All 

conference attendees are encouraged to complete the registration form on the 

conference web site via the JACoW SPMS system, which will be available on March 

1st 2010. 

Because the registration in time is crucial for organization of the conference, 

participant‘s cooperation will be highly appreciated. The reduced conference fee is EUR 

€550.00 (five hundred fifty EUROS) for payments which are received on or before 

August 6th 2010. After that date the registration fee will increase to EUR €600.00 (six 

hundred EUROS). A special reduced registration fee EUR €300.00 is offered to 

students. The registration fee for each accompanying person is EUR €200.00. The 

conference registration fee includes: 

 Materials of conference including the abstract book and the proceedings 

 Coffee breaks and lunch buffet 

 Conference excursion and technical tour 

 Reception and banquet 

 Transportation between Lanzhou airport and the hotel 

 

The reduced registration fee can be paid by transfer only. The conference bank 

account is: 

Name: Institute of Modern Physics, Chinese Academy of Sciences 

Bank of Deposit: Bank of China Gansu Branch 

Account: 325127835688091038 

Swift: BKCHCNBJ660 

 

It is also possible to pay by cash or credit card at the conference desk when you 

arrival in Lanzhou. 

 

  

http://cyclotrons10.impcas.ac.cn/
http://www.gsnwzhotels.com/English/index.asp
http://www.chinats.com/lanzhou/index.htm
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Abstracts 

Abstracts must be submitted to the SPMS system developed by the JACoW 

collaboration. Authors must register to the JACoW system before submission. The 

website for registration and submission will be available on March 1st 2010: 

 

Hotel Accommodations 

The conference hotel is the Ning-Wo-Zhuang Hotel. A number of rooms have been 

reserved for participants. Please make your reservations online by visiting hotel 

website: 

http://www.gsnwzhotels.com/English/index.asp 

 

Be sure to reference CYCLOTRONS‘10 when making reservations so that you can 

get special rate! 

Please do not hesitate to contact the conference secretary if you have any problem 

for the hotel reservation. Information on alternate hotels nearby will be available on the 

conference web page after March 1st 2010. 

 

Visa Information 

Participants (including the accompany person) are required a visa to enter P.R. 

China. Please contact local secretariat (mail to: cyclotrons@impcas.ac.cn) with the 

following information in order to receive the formal documents needed for the visa 

application. 

 

********************************************************************** 

1-First Name; 2-Family Name; 3-Sex; 4-Birthdate; 5-Nationality; 6-Affiliation and 

Position; 7-Postal Address; 8-Passport No.; 9-Embassy/Consulate to apply for Chinese 

VISA; 10-Planned date of entry and leaving China. 

********************************************************************** 

Then you will receive an invitation letter for the visa application from IMP and an 

official visa application form by regular mail. Please keep in mind that the visa 

application process could take up to more than one month in extreme cases. Please 

apply for your visa as early as possible. 

 

Insurance 

Attendees have to take care of proper health and personal liability insurance. No 

responsibility can be taken by the organizers. 

 

Important Dates 

Opening of Delegate Registration   March 1, 2010 

Abstract Submission Available   March 1, 2010 

Abstract Submission Deadline   June 15, 2010 

Early Registration Deadline (€550.00)  August 6, 2010 

Paper Submission Deadline    August 20, 2010 

 

International Organizing Committee 

P. Bertrand (GANIL), R. Bhandari (VECC), S. Brandenburg (KVI), L. 

Calabretta (INFN-LNS), J. Conradie (iThemba LABS), M. Craddock 

(TRIUMF), G. Dutto (TRIUMF), S. Gales (GANIL), K. Hatanaka (RCNP), P. 

http://www.gsnwzhotels.com/English/index.asp
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Heikkinen (JYFL), Y. Hirao (NIRS), Y.Jongen (IBA), M. Loiselet (UCL), 

C.Lyneis (LBNL), R. Maier (FZ-Jülich), F. Marti (NSCL/MSU), D. May (Texas 

A&M Univ.), Y. Mori (Kyoto Univ.), L. Onischenko (JINR), H. Schweickert 

(FZK), M. Seidel(PSI), Y.Yano (RIKEN), W. L. Zhan, IMP (Chairman) 

 

Program Committee 

P. Bertrand (GANIL), S. Brandenburg( KVI), L. Calabretta (INFN-LNS), M. 

Craddock (TRIUMF), A. Goto (RIKEN), Y. Jongen (IBA), C. Lyneis (LBNL), 

F. Marti (NSCL/MSU), Y.Mori (Kyoto Univ.), M. Seidel (PSI), W. L. Zhan 

(IMP), T.J. Zhang (CIAE), H.W. Zhao (IMP, Chairman) 

 

Local Organizing Committee 

X.H. Cai, H.L Chen, H.F. Hao, Y. He, Z.G.Hu, Q. Liang (Secretary), Y.Liu, L.J. 

Mao(Scientific secretary), M.T. Song, B. Wang, J.W. Xia, M. Xie, Z. Xu, H.W. 

Zhao, X.D. Yang, Y.J.Yuan (Chairman) 

 

Contact 

Please address any further questions to the conference scientific secretary: 

Dr. Lijun Mao 

Institute of Modern Physics (IMP), Chinese Academy of Sciences 

509 Nanchang Road, Lanzhou, 730000, P.R. China 

Tel: +86-931-4969221 

Fax: +86-931-8272100 

Email: cyclotrons@impcas.ac.cn 

Conference Website: http://cyclotrons10.impcas.ac.cn 

7 Announcements of the Beam Dynamics Panel 

7.1 ICFA Beam Dynamics Newsletter 

7.1.1 Aim of the Newsletter 

The ICFA Beam Dynamics Newsletter is intended as a channel for describing 

unsolved problems and highlighting important ongoing works, and not as a substitute 

for journal articles and conference proceedings that usually describe completed work. It 

is published by the ICFA Beam Dynamics Panel, one of whose missions is to encourage 

international collaboration in beam dynamics. 

Normally it is published every April, August and December. The deadlines are  

15 March, 15 July and 15 November, respectively. 

 

Categories of Articles 

 

The categories of articles in the newsletter are the following: 

1. Announcements from the panel. 

2. Reports of beam dynamics activity of a group. 

file:///C:/Chou_driveC/icfa/Newsletter/newsletter51/cyclotrons@impcas.ac.cn
http://cyclotrons10.impcas.ac.cn/
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3. Reports on workshops, meetings and other events related to beam dynamics. 

4. Announcements of future beam dynamics-related international workshops and 

meetings. 

5. Those who want to use newsletter to announce their workshops are welcome to 

do so. Articles should typically fit within half a page and include descriptions of 

the subject, date, place, Web site and other contact information. 

6. Review of beam dynamics problems: This is a place to bring attention to 

unsolved problems and should not be used to report completed work. Clear and 

short highlights on the problem are encouraged. 

7. Letters to the editor: a forum open to everyone. Anybody can express his/her 

opinion on the beam dynamics and related activities, by sending it to one of the 

editors. The editors reserve the right to reject contributions they judge to be 

inappropriate, although they have rarely had cause to do so. 

 

The editors may request an article following a recommendation by panel members. 

However anyone who wishes to submit an article is strongly encouraged to contact any 

Beam Dynamics Panel member before starting to write. 

7.1.2 How to Prepare a Manuscript 

Before starting to write, authors should download the template in Microsoft Word 

format from the Beam Dynamics Panel web site: 

 

http://www-bd.fnal.gov/icfabd/news.html 

 

It will be much easier to guarantee acceptance of the article if the template is used 

and the instructions included in it are respected. The template and instructions are 

expected to evolve with time so please make sure always to use the latest versions. 

The final Microsoft Word file should be sent to one of the editors, preferably the 

issue editor, by email. 

The editors regret that LaTeX files can no longer be accepted: a majority of 

contributors now prefer Word and we simply do not have the resources to make the 

conversions that would be needed. Contributions received in LaTeX will now be 

returned to the authors for re-formatting. 

In cases where an article is composed entirely of straightforward prose (no 

equations, figures, tables, special symbols, etc.) contributions received in the form of 

plain text files may be accepted at the discretion of the issue editor. 

Each article should include the title, authors‘ names, affiliations and e-mail 

addresses. 

7.1.3 Distribution 

A complete archive of issues of this newsletter from 1995 to the latest issue is 

available at 

http://icfa-usa.jlab.org/archive/newsletter.shtml. 

 

http://www-bd.fnal.gov/icfabd/news.html
http://wwwslap.cern.ch/icfa/
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This is now intended as the primary method of distribution of the newsletter. 

 

Readers are encouraged to sign-up for electronic mailing list to ensure that they will 

hear immediately when a new issue is published. 

The Panel‘s Web site provides access to the Newsletters, information about future 

and past workshops, and other information useful to accelerator physicists. There are 

links to pages of information of local interest for each of the three ICFA areas. 

Printed copies of the ICFA Beam Dynamics Newsletters are also distributed 

(generally some time after the Web edition appears) through the following distributors: 

 
Weiren Chou  chou@fnal.gov    North and South Americas 

 

Rainer Wanzenberg rainer.wanzenberg@desy.de  Europe
++

 and Africa 

 

Susumu Kamada susumu.kamada@kek.jp  Asia
**

 and Pacific 
 

++ Including former Soviet Union. 

** For Mainland China, Jiu-Qing Wang (wangjq@mail.ihep.ac.cn) takes care of the distribution 

with Ms. Su Ping, Secretariat of PASC, P.O. Box 918, Beijing 100039, China. 

To keep costs down (remember that the Panel has no budget of its own) readers are 

encouraged to use the Web as much as possible. In particular, if you receive a paper 

copy that you no longer require, please inform the appropriate distributor. 

7.1.4 Regular Correspondents 

The Beam Dynamics Newsletter particularly encourages contributions from smaller 

institutions and countries where the accelerator physics community is small. Since it is 

impossible for the editors and panel members to survey all beam dynamics activity 

worldwide, we have some Regular Correspondents. They are expected to find 

interesting activities and appropriate persons to report them and/or report them by 

themselves. We hope that we will have a ―compact and complete‖ list covering all over 

the world eventually. The present Regular Correspondents are as follows: 

 
Liu Lin   Liu@lnls.br     LNLS, Brazil 

 

Sameen Ahmed Khan Rohelakan@yahoo.com   SCOT, Oman 

 

Jacob Rodnizki  Jacob.Rodnizki@gmail.com    Soreq NRC, Israel 

 

Rohan Dowd  Rohan.Dowd@synchrotron.org.au   Australian Synchrotron 

 

We are calling for more volunteers as Regular Correspondents. 

mailto:chou@fnal.gov
mailto:rainer.wanzenberg@desy.de
mailto:susumu.kamada@kek.jp
mailto:wangjq@mail.ihep.ac.cn
mailto:Liu@lnls.br
mailto:Rohelakan@yahoo.com
mailto:Jacob.Rodnizki@gmail.com
mailto:Rohan.Dowd@synchrotron.org.au
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7.2 ICFA Beam Dynamics Panel Members  

Name eMail Institution 

Rick Baartman baartman@lin12.triumf.ca    
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 

2A3, Canada 

Marica Biagini marica.biagini@lnf.infn.it  LNF-INFN, Via E. Fermi 40, Frascati 00044, Italy 

Yunhai Cai yunhai@slac.stanford.edu 
SLAC,  2575 Sand Hill Road, MS 26, Menlo Park, CA 

94025, U.S.A. 

Swapan 

Chattopadhyay 
swapan@cockcroft.ac.uk  

The Cockcroft Institute, Daresbury, Warrington WA4 

4AD, U.K. 

Weiren Chou 

(Chair) 
chou@fnal.gov Fermilab, P.O. Box 500, Batavia, IL 60510, U.S.A. 

Wolfram Fischer  wfischer@bnl.gov 
Brookhaven National Laboratory, Bldg. 911B, Upton, 

NY 11973, U.S.A. 

Yoshihiro 

Funakoshi 
yoshihiro.funakoshi@kek.jp 

KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305-0801, 

Japan 

Miguel Furman mafurman@lbl.gov 
Center for Beam Physics, LBL, 1 Cyclotron Road, 

Berkeley, CA 94720-8211, U.S.A. 

Jie Gao gaoj@ihep.ac.cn 
Institute for High Energy Physics, P.O. Box 918, Beijing 

100049, China  

Ajay Ghodke ghodke@cat.ernet.in 
RRCAT, ADL Bldg. Indore, Madhya Pradesh, 452 013, 

India 

Ingo Hofmann i.hofmann@gsi.de 
High Current Beam Physics, GSI Darmstadt, Planckstr. 

1, 64291 Darmstadt, Germany 

Sergei Ivanov ivanov_s@mx.ihep.su 
Institute for High Energy Physics, Protvino, Moscow 

Region, 142281 Russia 

Kwang-Je Kim kwangje@aps.anl.gov 
Argonne Nat‘l Lab, Advanced Photon Source, 9700 S. 

Cass Avenue, Argonne, IL 60439, U.S.A. 

In Soo Ko  isko@postech.ac.kr 
Pohang Accelerator Lab, San 31, Hyoja-Dong, Pohang 

790-784, South Korea 

Alessandra 

Lombardi  
alessandra.lombardi@cern.ch CERN,  CH-1211, Geneva 23, Switzerland 

Yoshiharu Mori mori@kl.rri.kyoto-u.ac.jp 
Research Reactor Inst., Kyoto Univ. Kumatori, Osaka, 

590-0494, Japan 

Mark Palmer mark.palmer@cornell.edu  
Wilson Laboratory, Cornell University, Ithaca, NY 

14853-8001, USA 

Chris Prior c.r.prior@rl.ac.uk 
ASTeC Intense Beams Group, STFC RAL, Chilton, 

Didcot, Oxon OX11 0QX, U.K. 

Yuri Shatunov yu.m.shatunov@inp.nsk.su 
Acad. Lavrentiev, prospect 11, 630090 Novosibirsk, 

Russia 

Junji Urakawa junji.urakawa@kek.jp 
KEK, 1-1 Oho, Tsukuba-shi,  Ibaraki-ken, 305-0801, 

Japan 

Jiu-Qing Wang wangjq@mail.ihep.av.cn 
Institute for High Energy Physics, P.O. Box 918, 9-1, 

Beijing 100049, China 

Rainer 

Wanzenberg 
rainer.wanzenberg@desy.de DESY, Notkestrasse 85, 22603 Hamburg, Germany 

 

The views expressed in this newsletter do not necessarily coincide with those of the editors.  

The individual authors are responsible for their text. 
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