原子状水素を用いた表面清浄化による 超格子半導体フォトカソードの高量子効率化

山本 将博^{1,A)}、西谷 智博^{A)}、渡辺 修^{B)}、中西 彊^{,A)}、奥見 正治^{A)}、鈴木 千尋^{A)}、和田 公路^{,A)}、 古田 史生^{A)}、宮本 延春^{A)}、小早川 久^{,B)}、竹田 美和^{,B)}

A) 名古屋大学理学研究科
 〒464-8602 愛知県名古屋市千種区不老町
 ^{B)} 名古屋大学工学研究科
 〒464-8603 愛知県名古屋市千種区不老町

概要

GaAs-GaAsP などの歪み超格子結晶を用いることで、 高いスピン偏極度(~90%)をもつ電子ビームを生 成することが可能となった。しかしその量子効率は、 NEA(Negative Electron Affinity)表面作成前の GaAs 表面の清浄度によって大きく異なる。通常、高温加 熱が清浄表面作成に用いられるが、超格子構造保護 の観点からは、高温加熱(600 以上)することなく 清浄表面を得られる新たな技術が必要となった。そ こで、低温加熱(~450)においても GaAs 表面の酸 化物・炭化物を除去できる原子状水素による表面清 浄化処理を行い、超格子構造を作成時の状態に保持 しつつ高い量子効率(1.2%@780nm)を得ることに成 功した。

1.はじめに

我々は GaAs-GaAsP 歪み超格子結晶から 90%を超え る高いスピン偏極度をもつ電子ビーム生成^[1]、サブ ナノ秒マルチバンチ電子ビームの生成を実現し^[2]、 リニアコライダー用偏極電子源として実用化に大き く近付けた。

残る課題としては、高量子効率化、長時間に及ぶ 高いピーク電流の引出しがある。ここでは、その高 量子効率化について述べる。なお、後者は現在 200kV 偏極電子銃の開発し試験を進めている^[3]。

偏極電子ビームの生成原理について少し触れてお く(図1)。GaAs 系半導体フォトカソードにバンド ギャップエネルギーに相当する波長の円偏光レーザ ーを照射することにより価電子帯のスピン状態を選 択して偏極伝導電子を作成できる。この電子は半導 体表面に電子親和性が負である NEA 表面を形成する ことによって真空中へ取出される。

NEA 表面は2つの物理機構を経て形成される。

- a) 半導体結晶表面に p 型不純物ドーピングするこ とによって価電子帯及び伝導帯バンドを低エネ ルギー方向へ曲げる。
- b) 超高真空中において清浄な結晶表面に Cs 蒸着 と 02 導入を交互に行うことにより、結晶表面に 電気的 2 重層を形成する。

¹ E-mail: yamamoto@spin.phys.nagoya-u.ac.jp

NEA に関与する p 型不純物ドープによるバンドの 曲がりはせいぜい数百 meV であるのに対し電気的 2 重層の効果は 4eV 程度に達する。そして、フォトカ ソードの量子効率は NEA の大きさ($\Delta \chi$)に強く依存 するため、Cs 蒸着による活性化は、最も重要な要素 であり、その成否には半導体表面の清浄度が深く関 わっている。

図1:スピン偏極電子の生成・放出機構

現在開発している GaAsP 系超格子は MBE 法に比べ 純度の高い P 原料を使用できる MOVPE 装置によって 作製されている^[4]。しかし、成長後に表面に As など の保護膜を形成することが困難で、一度大気にさら された結晶の表面には酸化膜や炭化物等の NEA 活性 化に障害となる物質の付着が避けられない。

表面に付着した物質は、超高真空中での高温加熱 によって除去できるが、超格子構造が高温によりそ の境界が乱れる恐れがある。

そこで、より低温で有効な表面清浄化技術として 原子状水素(Atomic Hydrogen Cleaning)による酸 化膜除去機構に注目し、超格子結晶を用いた試験を 行うことにした。

2.実験装置

実験装置は、2 つの部分にから構成されている。-つは、大気中より結晶を導入し、原子状水素による 清浄化処理を行うチェンバーと、もう一つは結晶を 加熱洗浄し、Cs と 02添加による NEA 活性化を行うた めのチェンバーである。両者はゲートバルブを介し て接続されており、トランスファーロッドによって 超高真空中で結晶を移送することができる。

結晶は、パックと呼ぶ部品の上に Ta の薄板によっ て固定されている。パック本体の材質は Mo、形状は 円柱状でトランスファーロッドを回転させることで ロッドの先端にパックを装着できる構造になってい る。

図3:超格子結晶の導入から NEA 活性化までの工程

結晶の導入から NEA 活性化までの工程を図3に示 す。最初に行う原子状水素による清浄化処理は、ガ ラス管に水素を真空度で数Paになるようリークさせ、 100MHz の高周波印加により水素分子を解離させ原子 状水素を生成している。このガラス管とチェンバー の間は 0.8mm の穴のあいたガラス板によって遮ら れているため、チェンバーはターボポンプ排気によ って洗浄中も常に10⁻³~10⁻⁴ Pa の真空度に保たれて いる。原子状水素照射中は、結晶はその背後から W フィラメントによる放射過熱によって約 300~400 に加熱を行う。原子状水素によって表面の Ga₂03酸化 物がより蒸気圧の高い Ga₂0 に還元され、加熱によっ て除去される^[5]。

$$Ga_2O_3 + 4H \rightarrow Ga_2O \uparrow + 2H_2O \uparrow$$

清浄化処理終了後は、結晶を次の活性化チェンバ ーへ移送する。

NEA 表面は残留ガスとの反応によって容易に破壊 されやすいため、活性化チェンバーは、イオンポン プと NEG ポンプによる排気によって真空度は 10⁻⁸~ 10⁻⁹ Pa の超高真空に保たれている。活性化チェンバ ーへ移送されたパックは、高周波加熱により再度加 熱洗浄される。温度は、パックに固定された結晶よ り放射される赤外線を View Port を通してサーモパ イルメーターで受けて計測している。 加熱洗浄された結晶は、常温まで温度が下がった 後、回転導入機によりCsディスペンサー正面へ移動 させ、Csを蒸着させる。活性化チェンバー内のパッ ク及びパックホルダーはチェンバー本体と絶縁され ており、活性化中はパック本体に-100Vの電圧を印加 し、He-Ne レーザーを照射しながら引出した光電流を モニターしている。

3.実験及び結果と考察

実験に用いた GaAs-GaAsP 歪み超格子結晶の構造を 図4に示す。

実験は最初に、結晶成長後に Photoluminescence 測定を行い GaAs 基板層、GaAsP buffer 層、超格子層 からの発光強度を測定する。その後、結晶をチェン バーへ導入し、NEA 活性化を加熱洗浄のみと原子状水 素による洗浄処理を施した場合の量子効率の測定を 行い、結晶を取出した後に再び Photoluminesecence 測定を行う。この 2 つの発光強度を比較することで 超格子結晶の構造変化を評価した。

図4:実験に用いた GaAs-GaAsP 歪み超格子の断面 模式図

2つの清浄化処理後の NEA 活性化によって得られ た量子効率の比較を図5に示す。

原子状水素による清浄化処理によって少ない活性 化サイクルで最大量子効率に到達し、NEA 活性化後の 量子効率が改善されることが確認された。

NEA 活性化中のモニター用励起光源として He-Ne レーザーを用いているが、偏極度が最大となるバン ドギャップエネルギーに相当する波長 780nm のダイ オードレーザーを光源とした量子効率測定も行い、 同様に清浄化処理によってその量子効率は約 3 倍に 向上した。結果を以下の表にまとめる。

	450 2時間 (加熱洗浄のみ)	A.H.C.15 分 450 2 時間
633nm	2.5%	7.0%
780nm	0.4%	1.2%

Photoluminescence 測定の結果を図6に示す。共に 励起光としてアルゴンレーザーを用い、結晶温度 77K で測定を行った。GaAsP buffer 層の発光強度を規格 化の基準として用い両者の比較を行った。

結果は、原子状水素による 15 分間の清浄化処理後 で超格子層からの発光強度は数%減少しているが、 大きな変化は見られなかった。清浄化処理による超 格子構造の乱れはほとんどみられないことが確認で きた。

4.まとめと今後の課題

原子状水素による表面清浄化処理を行うことで以 下のことが確認できた。

- (a) 量子効率が1.2%(波長780nm)と清浄化処理前に 比べて約3倍に改善された。
- (b) Photo luminescence の結果より 15 分の清浄化 処理及び、450 の加熱洗浄によってその前後 で超格子構造にほとんど変化を与えないと推 測できる。

今後の課題として以下のことを予定している。

- (a)清浄化処理の繰返し、長時間化による量子効率 の改善、高温による超格子構造の破壊の調査
- (b)清浄化処理後のスピン偏極度の測定
- (c)清浄化処理後のマルチバンチ電子ビームの生 成試験

参考文献

- T.Nishitani et al., AIP Conf. Proc.570 (2001) 1021
 K.Togawa et al., Proc. of the 25th Linear Accelerator Meeting in Japan (2000), pp. 153-155
 K.Wada et al., Proc. of the 27th Linear Accelerator Meeting in Japan (2002) on this proceedings.
 O.Watanabe et al., AIP Conf. Proc 570 (2001) 1024
 M.Wameda et al., MIP Conf. Phys. 23 (1004) 1671
- [5] M.Yamada et al., Jpn.J.Appl.Phys. 33 (1994) L671

図5:Cs 蒸着と0,導入サイクルの繰返し回数と量子 効率の変化

図6:原子状水素による表面清浄化処理による超格 子結晶からの Photoluminescence 変化