FEL 発振によって強調された3次高調波の測定

橋本 英子^{1,A)}、早川 恭史^{B)}、佐藤 勇^{B)}、早川 建^{B)} 田中 俊成^{B)}、横山 和枝^B、菅野 浩一^{A)}、境 武志^{A)}、石渡 謙一郎^{A)}、中尾 圭佐^{A)} 藤岡 一雅^{A)}、村上 琢哉^{A)}、長谷川 崇^{A)}、宮崎 慎也^{A)}

> A)日本大学大学院 理工学研究科 量子理工学専攻 〒274-8501 千葉県船橋市習志野台 7-24-1
> B)日本大学 量子科学研究所 電子線利用研究施設 〒274-8501 千葉県船橋市習志野台 7-24-1

概要

日本大学電子線利用研究施設(LEBRA)では可視光 であるアンジュレータ放射光の3次高調波がFEL発 振した時に強調される現象が観測された。そこで、 この現象を調べるためにスペクトルを解析した。光 のスペクトルは2つのピークから構成されており、 電子ビームが1つのマクロパルス内に2つのエネル ギーピークを持つと考えられる。さらに、2つのマ クロパルス内で加速器の調整次第でどちらのピーク からも FEL 発振を生ずることがわかった。

1.はじめに

日本大学電子線研究施設(LEBRA)では、短波長自由 電子レーザー発振を目指し、125Mevの電子線形加速 器を基盤とした波長可変な単色光源の開発を目指し、 近赤外から可視領域までのFELの開発を進めている。 2001年に,波長1.5µmでのFEL発振に成功した。

我々は、FEL の基本的特性を調べるため、測定系 の整備をすすめ、高調波スペクトルの測定、マクロ パルス内での増幅の様子を調べている。現在、FEL の強度は光共振器に蓄積される自発放射光の約 10[®] 倍に達しているが、しかし、FEL の飽和に至ってい ない。

光共振器の反射鏡は誘電体多層膜からなっている。 高反射率の波長範囲が 200nm 程度、レーザーが発振 する基本波長1.5 μm 付近は、99.5%の反射率であ る。基本波発振が強くなると、0.5μm波長の可視 光強度が3次高調波の自発光強度の10~10⁵ 倍にな る現象を観測した。

2.アンジュレータと光共振器の仕様

FEL 発生装置は加速器とFEL 発振を行うアンジ ュレータ及び両端にミラーを配置した光共振器から なる。現在のシステムは波長 0.8~5µm の近赤外 領域をターゲットとしている。リニアックとFEL

表1 リニアックと FEL 発生装置の仕様

Electron linac	
beam energy	50-125 Mev
acceleration	2856 MHz
beam pulse duration	20 μ m
beam intensity	200 mA
repetition rate	12.5 Hz
normalized emittance	20 π mm mrad
Planar undulator	
magnet array type	Halbach
material of magnets	Nd-Fb-B
number of period	50
total length	2400 mm
effective K-value	065-1.1
Optical cavity	
cavity length	6728 mm
mirror type	multi-layer or metal coat

発生装置のパラメータを表1に示す。

3.測定システムの概要

FEL スペクトルの測定システムを図1示す。トン ネルの入り口のコールドミラーによって赤外である FEL 基本波と可視であるアンジュレータ放射光の2 次、3次高調波に分けられる。赤外である基本波 (FEL)は HgCdZnTe 赤外線検出器、InSb 赤外線検出 器によって観測される。

同時に測定される可視光の輸送ラインは、石英ミ ラーを使用することによって CCD カメラ、スペク トルメータ、フォトダイオードの3本のビームライ ンに分割され、ビームプロファイルの観測、フォト ダイオードによる強度測定、スペクトル分光を同時 に行うことが可能である。LEBRA では、2mのコン クリートのシールドを通って隣接される実験室まで 輸送される。また、分光器では、分光した像を加速 器に同期した冷却 CCD カメラで取得している。そ れによって、マクロパルスあたりのスペクトルを得 る。

¹ E-mail: hashimoto@lebra.nihon-u.ac.jp

4.放射光のスペクトルの計測結果

2.1 測定結果

上記のシステムで、FEL の測定で興味ある現象が 見つかった。このときの電子ビームのエネルギー 86.8Mev で行ったときの実験データである。CCD カ メラで可視光フラッシュ(3 次高調波)を目撃した。こ れは、FEL 発振に伴い急激に増幅していることがわ かった。この現象の時間構造を測定するため、Si フ ォトダイオードを望遠鏡の接眼部につけ測定した。 これにより得られたデータを図 2 に示す。FEL 基本 波のゲインが大きくなった時にのみ、この増幅が確 認された。増幅した時のゲインが基本波 FEL よりも 大きいことから、その現象は非線形高調波と呼ばれ る現象ではないかと考えられる。

2.2 スペクトル分析

測定によって得られたスペクトルを図3に示す。 から得られたデータより分析した結果を図3に示 す。2つのピークが重なったような形状をした自発 放射3次高調波が、増幅するとき決まった波長で発 振せずに、ある波長幅で発振していることが分かっ た。その間隔 =1.9nm である。これよりアンジュ レータの自発光の式

$$\lambda = \frac{\lambda_w}{2\gamma^2} \{ 1 + \frac{K^2}{2} + \gamma^2 \theta^2 \} \quad (1)$$

(1)から =0 の場合、 が シフトしたときの 波長のずれ は

$$\lambda + \Delta \lambda = \frac{\lambda_w}{2(\gamma + \Delta \gamma)^2} (1 + \frac{K^2}{2}) (2)$$
$$\frac{\Delta E}{E} = \frac{\Delta \gamma}{\gamma} = \sqrt{\frac{1}{1 + \frac{\Delta \gamma}{\gamma}} - 1} (3)$$
$$\frac{\Delta E}{E} = 0.2\% (4)$$

光のスペクトルは2つのピークから構成されて おり、電子ビームが1つのマクロパルス内に2つの エネルギーピークを持つと考えられる。さらに、2 つのマクロパルス内で加速器の調整次第でどちら のピークからも FEL 発振を生ずることがわかった。 (4)式より、電子ビームのエネルギー差 E=0.168Mev である。この原因として、1つ目に、オーバーバン チングによる可能性も挙げられる。2つ目にパルス の途中で位相がずれていることが挙げられる。この ような、不安定なビームの状態であっても加速器の 調整によって発振しうることが増幅した高調波ス ペクトルから分かる。また、最近 LEBRA において 実験中,基本波の発振が途中で挫折する現象が確認 されている(図4)。このことは、後者の原因とも結び つくのではないかと思われる。

図4 フォトダイオードで3次高調波を測定し たときのビーム電流と赤外領域の FEL。基本波 FEL が増幅過程途中、挫折している。

5.まとめと今後の課題

2つのピークを持つビームの状態をさらに分析し、 原因を探る。また、光のスペクトルを使って電子の バンチの様子、位置の計測するシステムを確立する 予定である。

6. 参考文献

- [1]Y.Hayakawa.,et.,Proc.of FEL Conf.DarmstadtGermany
 [2]T.Tanaka,et.,Proc.of 26th Linear Accelerator Meeting in Japan,246(2001)
 [3]H.Nakazawa et al.,Proc. Of 23th Linear Accelarator Meeting in Japan,84(1998)
 [4]Z.Huara, and K.Kim Phys. Rev. E62 (2000)
- [4]Z.Huang and K.Kim, Phys. Rev. E62.(2000)