# 低熱膨張材を用いた C-Band RF パルスコンプレッサーの開発

 吉田 光宏<sup>1,A</sup>、松本 浩<sup>B</sup>、新竹 積<sup>C)</sup>
<sup>A)</sup>東京大学素粒子物理国際研究センター 〒113-0033 東京都文京区本郷7-3-1
<sup>B)</sup>高エネルギー加速器研究機構 〒305-0801 茨城県つくば市大穂1-1
<sup>C)</sup>理化学研究所播磨研究所
〒679-5148 兵庫県佐用郡三日月町光都1-1

### 概要

極低熱膨張材であるスーパーインバーをマイクロ 波蓄積空洞の母材として用いた RF パルスコンプレ ッサーの開発を行っている。RF パルスコンプレッサ ーは常伝導の加速器コンポーネントの中では最も高 い Q 値を持つ空洞が必要なデバイスであり、温度変 化に敏感である。このような高い Q 値の空洞に対し て温度安定化や冷却機構を簡略化するための手段と しては、熱膨張率の低い材料を使用するのが最も有 効である。現在、スーパーインバーを用いた数百 MW の大電力対応の RF パルスコンプレッサーと、その試 験に必要な RF コンポーネントを開発し、大電力試験 を行う。

## 1. 設計

## 1.1 電気設計

現在開発している C-band パルスコンプレッサー は、リニアックのマルチバンチ運転に対応するため 3 セル結合型空洞<sup>[2]</sup>を採用し、フラット出力パルスで の電力効率が最大になるように最適化した形状であ る。また定格電力は入力 100MW、出力 350MW、50pps である。図1左に規格化したパルスコンプレッショ ン入出力電力をシミュレーションした波形を示す。

パルスコンプレッサーを構成する空洞は、第一及 び第三空洞を  $TE_{01,15}$  モードで、第二空洞を  $TE_{01,5}$ モードで共振するように設計した。これらの空洞の 無酸素銅での理論的なQ値は、それぞれ 185400 及び 82600 になる。

#### 1.2 熱設計、機械設計

マイクロ波エネルギーは主に第三空洞に蓄積され るため、エネルギー増倍率は第三空洞の性能の影響 を顕著に受ける。この第三空洞の寸法変化に伴う共 振周波数のずれは、T向部の長さLに対して f/

L=10.8kHz/µm、直径 に対しては f/ =6.6kHz/ µm である。

図1右は第三空洞の共振周波数が入力マイクロ波の周波数から f ずれた場合の、エネルギー増倍率





の低下を示したものである。設計の99%の出力を得 るためには、第三空洞の周波数のずれ f に対して± 25kHz 以下が要求される。これは円筒部の長さLに 対して L=2.3µmに相当する。この条件を満たすに は銅を使用すると 0.3 の温度制御が要求され冷却 方法は容易では無い。そこで空洞の円筒部母材に極 低熱膨張材であるスーパーインバーを用いる事を考 えた。

表1に銅と極低熱膨張材であるスーパーインバー (Fe:63%, Ni:32%, Co:5%)の物性的な特性を示した。ス ーパーインバーの熱膨張係数は銅の1/40 であり、全 てこれに置き換えれば、理想的には10 以上の温度 変化が許される事になる。従ってこれを空洞母材と して使用すれば大幅な温度安定化が見込める。

また高いQ値を得るためには、空洞内壁は電気伝 導度の高い銅である必要があるため、スーパーイン バー円筒内壁にPR電鋳法やHIPにより高純度の銅壁 を形成する事で解決する。

|                       | 銅                        | スーパーインバー                      |
|-----------------------|--------------------------|-------------------------------|
| 熱膨張係数                 | 大:16×10 <sup>-6</sup> /  | /」\: 0.4 × 10 <sup>-6</sup> / |
| 電気伝導度                 | 良:1.7×10 <sup>-8</sup> m | 悪(銅電鋳等で解決)                    |
| 熱伝導度                  | 良 394 W/(m· )            | 悪 13.5 W/(m・)                 |
| 表 1. 銅とスーパーインバーの物性的特性 |                          |                               |

熱負荷に関しては、第三空洞での壁電流による電 力消費は1パルス当たり 25J で、このうち円筒部が 38%, 端板でそれぞれ 31% である。50pps にて運転 できるように熱負荷を見積もると、円筒部での熱負



図2: RF パルスコンプレッサー全体図

荷は 2.2kW/m<sup>2</sup> となる。スーパーインバーの熱伝導 率は非常に悪い(13.5W/m・K)が、この熱負荷でも内壁 と3 程度の温度差であり、これによる周波数変化 は問題無い。

端板に関しては熱伝導率の問題から、銅を用いる 事が望ましい。従って端板のみは温度により寸法変 化する。前回試作した試験空洞では、円筒部と端板 を電子ビーム溶接によって接合していたため、この 端板の熱膨張による変形が問題となった。そのため 設計を変更し、円筒部と端板をステンレス製の1mm 厚の薄いリングで結合する事で端板の熱膨張による 影響を回避する事にした。これにより接合方法は、 この SUS リングと銅端板をロウ付けし、その後円筒 部との TIG 溶接が可能になり、接合も簡便になった。

## 2. 製造

#### 2.1 スーパーインバー円筒母材

円筒部の母材となるスーパーインバー材料は鋳造 材を用いる事とした。

鋳造品を用いたのは、鋳造低熱膨張材の研究開発 を行っている日本鋳造(株)の協力が得られた事と、直 接円筒形状の物が得られるため少量ロットでも低価 格で生産できるからである。

通常の鋳造品は鍛造品と比較すると不純物や欠陥 が多く、電気メッキや真空特性に関して問題がある。 しかし同社の尽力により、今回使用した鋳造品は、 大気溶解ではあるが、低カーボンで純度が高く、欠 陥も少ない。真空でのガス放出量を測定した結果、 鍛造材と同じオーダーになっている事が確認できた。

### 2.2 内面銅壁(PR 銅電鋳法による)

近年三菱重工(株)により開発された PR 銅電鋳法<sup>[3]</sup> により形成される銅壁は、純度が高いため電気伝導 が非常に高く、真空放出ガス特性も優れている。そ のため今回のように非常にQ値の高い空洞に用いる 事ができるようになった。

また空洞のマイクロ波モードは TE<sub>01</sub> モードであ り空洞表面には旋盤の引き目方向にしか電流が流れ ないため、電鋳後の加工は普通旋盤にてダイヤモン ドでの切削による仕上げで十分であると判断した。 これにより銅壁の厚さ 0.3mm、表面粗度 1s 以下に 仕上げ、無酸素銅を使用した場合の理論値 (IACS:102%)の 99% 程度のQ値(=184500)を得る事 ができた。 また熱負荷に対する耐久性試験のために、電鋳し たサンプルを加熱して剥離試験を行ったが、少なく とも 200 までは接合が保たれる事を確認した。

なお銅電鋳の前処理や施工に関しては、三菱重工 (株)の壁谷氏の貴重な意見を参考にさせて頂いた。

### 2.3 内面銅壁(HIP 法による)

黒木コンポジット(株)の助力により、図3のよう なHIP(熱間等方加圧)による銅・スーパーインバー・ 銅の3重管の製造を行う事ができた。 HIP は量産効 果の望める方法であり、また拡散接合は表面欠陥に も影響されず強固である。従って全体を一度にロウ 付けできる可能性も検討できる。



図3:HIPによる銅・スーパーインバー3重管

今回の接合では 800 ,1000 気圧,2 時間の HIP を 行った。問題は、スーパーインバー材のキュリー点 を越えて加熱するため熱膨張率に影響が出る事であ る。そこで、HIP 後の材料の熱膨張率を測定したとこ ろ、0.82 x 10<sup>-6</sup> という値が得られ、多少の膨張率の 増加が見られたものの、依然、銅の 1/20 であり問題 ない範囲であった。なお HIP 後に加熱急冷などの熱 処理を行えば元の熱膨張率に戻る事は既に試験を行 い実証したが、急冷による歪みや剥離の可能性は否 めない。

#### 2.4 TE01.5 試験空洞による評価

端板の熱膨張による影響を回避するため、端板と 円筒の間には薄い SUS リングを挟む構造とした。こ の新しい接合方法の評価をするため、図4の TE01,5 試験空洞を製造し共振周波数の温度による影響を測 定した。



図4:TE01.5 試験空洞

スーパーインバー材は非常に熱伝導率が悪く、端 板のみの急速加熱によって、端板のみの影響が測定 できる。結果として片端板のみの加熱では -8kHz/ という非常に小さい値を得、端板の熱膨張による影響は非常に小さくできた事が検証できた。なお、こ の値は、端板と円筒の間にある SUS の長さ 10mm の リングの熱膨張にほぼ合致している。

また今回試作した空洞のモードは TE01,5 であり、 パルスコンプレッサーに使用する主蓄積空洞の TE01,15 モードでは、端板からの周波数に与える影 響はこの値のさらに 1/3 になる。従って TE01,15 空 洞では、両端板からの影響を換算し、さらにスーパ ーインバー円筒部の熱膨張率が銅の 1/20 と仮定した 場合 9.18kHz/ となるはずである。この値は、全て 銅で製造した従来の空洞の 1/10 の周波数変化である。

# 3. 大電力試験装置



図5:大電力試験セットアップ

# 3.1 構成

図5にパルスコンプレッサーの大電力試験のセットアップ図を示した。パルスコンプレッサー本体2台の他、この大電力試験のために TE<sub>10</sub> TE<sub>01</sub>モードコンバーター2台、ボタン無しハイブリッド1台、周期構造型減衰器2台、ダミーロード1台の開発を行ってきた。

3.2 モードコンバーター

TE<sub>10</sub> TE<sub>01</sub> モードコンバーターは4ホール結 合型を大電力用に再設計し、コールドモデルで電気 設計の確認を行った後、図6のような大電力モデル の製造を行った。



図6:モードコンバーター大電力モデル



図8:周期構造型減衰器(-3dB)とその特

## 3.3 新型ハイブリッド

従来の 3dB ハイブリッドは分岐比を半分に調整す るためのボタンが中央部に存在した。しかしハイブ リッドの位相条件を満たしつつ、分岐比がちょうど 半分になる結合ホールの幅を数値計算で求める事が できた。これにより図7のような無調整の非常に簡 単な形状のハイブリッドを製造する事に成功した。

製造したハイブリッドを RF 測定した結果、分岐比 はそれぞれ -3.07dB, -3.08dB で、位相差は 89.9°、 及びアイソレーション -40dB が得られ、製造も簡単 で、帯域も広く使い易い物が実現できた。

#### 3.4 周期構造型減衰器

パルスコンプレッサーからの RF 出力は今回予定 している試験でも 200MW 近い。しかしマイクロ波吸 収体の許容最大電力は限られており、このような大 電力を直接吸収体で吸収しようとすると非常に大掛 かりな装置が必要になる。

そのため加速管の設計方法を応用し、図8のよう な方形 TE<sub>101</sub>モードの周期構造型減衰器(-3dB)を製造 し、大電力試験を行った。その結果 40MW,2.5 μ s,50pps で問題無く動作し、積分消費電力としても問 題無い事が実証された。

# 4.現状と今後

大電力試験に必要なコンポーネントがほぼ完成した。本体2台の製造の最終段階に入っており、すべてがそろう9月頃には大電力試験を行う予定である。

# 参考文献

- [1] http://c-band.kek.jp
- [2] T.Shintake et al., "A New Pulse-Compressor Using Multi-Cell Coupled-Cavity System", EPAC96, Sitges, June 10-14, 1996, KEK Preprint 96-71.
- [3] K.Tajiri et al., "大型ハドロン計画におけるPR銅 電鋳法適用技術", 第 25 回リニアック技術研会