FEL 用 S バンドロングパルスクライストロンの動作安定化テスト

境 武志^{1,A)}、佐藤 勇^{B)}、早川 建^{B)}、田中 俊成^{B)}、早川 恭史^{B)}、横山 和枝^{B)}、菅野 浩一^{A)}、 石渡 謙一郎^{A)}、中尾 圭佐^{A)}、橋本 英子^{A)}、藤岡 一雅^{A)}、村上 琢哉^{A)}、長谷川 崇^{A)}、宮崎 慎也^{A)}

〒274-8501 千葉県船橋市習志野台 7-24-1 日本大学理工学部船橋校舎物理実験 B 棟

^{B)} 日本大学 量子科学研究所 電子線利用研究施設

〒274-8501 千葉県船橋市習志野台 7-24-1 日本大学理工学部船橋校舎物理実験 B 棟

概要

日本大学量子科学研究所電子線利用研究施設(以下 LEBRA)では、2000年度から行っているクライスト ロンRF窓下流側の真空排気能力強化によって、短パ ルス用クライストロンPV-3030A1(三菱電機製)をく り返し12.5Hz、パルス幅20µsで出力電力20MWの 厳しい運転条件で動作させることに成功した。しか し高出力、長パルス動作が可能になったが、出力電 カパルス内での位相変動、位相変動によるFEL発振 不安定性等の問題が起きている。ここではクライス トロン入力空洞からの反射電力、クライストロン出 力電力内位相変動、RF窓周辺の放射線量等をモニタ ーしながら、集束磁場の条件を変えて調整を行いク ライストロンの動作安定化を行った。その結果調整 前に比ベクライストロン出力電力が安定した。

1.はじめに

LEBRA では赤外線から紫外線波長領域(0.3~5.0µm)の FEL 発振、エネルギー範囲 3~30keV のパラメトリック X 線放射の発生を目指しており、2001 年 5 月に 1.5µm の FEL 発振に成功している^[1]。そして各線源 の実用化のために発生装置には安定で良質な電子ビ ームの供給が必要であり、リニアックの安定化、及 び高度化を現在行っている。リニアックの安定動作 にとって RF 源安定化は特に重要である。

今回クライストロン 1 号機に使用していたアンプ の交換を行った。アンプのクライストロンへの接続 前の出力動作試験では出力位相には変動が目立たな かったが、クライストロンに接続したところ急に変 動が起き始めた。そこでクライストロンから RF入力 部分への反射電力を測定したところ、反射電力とア ンプ位相変動の間には何らかの関係があることがわ かった。そこでクライストロン出力電力、出力電力 パルス内位相変動をモニターし、さらに出力空洞か ら RF 窓周辺部の放射線量を測定しながらクライス トロン集束磁場調整を行った。ここではクライスト ロンからの反射測定、集束系調整について報告する。

2.クライストロン集束磁場調整

今回パルス内の位相変動の小さい S バンドアンプ (前置アンプ)への交換を行ったが、アンプからクライ ストロンに供給するラインを接続すると、アンプの 出力位相と振幅がパルスごとに変動することがわか った。これはアンプ単体で行ったテスト試験の時に は起きていなかったが、供給ラインを繋ぐと変動が 生じた。この現象は交換前のアンプでも起きていた ようだが、新しいアンプでは位相に特に注目してい たので、詳しく原因を追求することにした。クライ ストロン入力空洞からの反射が何らかの影響を与え ていると考え、空洞からの反射を測定することにし、 クライストロン集束磁場調整を行うこととした。

2.1 使用中の S バンドククライストロン

LEBRA では KEK の RF 入射部で使用していた短パ ルス用クライストロン PV-3030A1 を移設し、真空排 気強化を行い2 台使用している^{[2][3]}。使用しているク ライストロンを図1に、運転スペックを表1に示す。

表 1:LEBRA でのクライストロ _ン PV-3030A1 運転スペック		
動作周波数	2856MHz	
出力電力	18~20 MW	
パルス幅	20~21 µs	
パルスくり返し	2~12.5 Hz	
ビーム電圧	210~249kV	
ビーム電流	195~226A	

図 1: クライストロン PV-3030A1(三菱電機製)。RF 窓下流 で真空排気強化を行っている。

2.2 反射電力測定

クライストロンの電力入力端子の前に方向性結合 器をつけ、クライストロンから反射してくる電力の 測定を行った。反射電力は較正した検波器を用い測 定した。測定方法の概略図を図2に示す。

図 2:反射測定での概略図。クライストロンからの反射は 方向性結合器で取り出し、検波器を用いて測定した。

¹ E-mail: sakai@lebra.nihon-u.ac.jp

反射電力測定の結果、クライストロンを動かして いないときは入力電力約100Wに対して、およそ27W も反射し、クライストロンを動かしている場合(ビー ム電圧249kV時)でもおよそ7W反射していることが わかった。クライストロン停止時に反射電力が多い のはクライストロンとのマッチングが取れていない ためで、ビームを通し、ビーム電圧を上げていけば マッチングが取れ始め、反射が減少する。

2.3 反射とアンプ位相との相関関係

クライストロン入力空洞からの反射電力とアンプ 位相との相関関係を見るために、2つの値を同時に測 定し比較した。測定ではクライストロン集束コイル の電流値をいくつか変えて行った。測定した中で大 まかに 2 つのパターン (パルスごとの反射電力の変 動が大きい時と小さい時)があった。図3に反射電力 とアンプ位相角の相関関係を示す。しかし、アンプ にはサーキュレーターが入っているので反射の影響 は通常考えにくいが、反射電力とアンプの位相の間 には何らかの相関関係があると思われる。

図 3:反射電力とアンプ位相角の相関関係。(a)パルスごとの反射電力の変動が大きい時。いくつかの島に分かれている。(b)パルスごとの反射電力の変動が小さい時。

2.4 クライストロン集束磁場調整

2.2 節で述べたように、クライストロンの反射の測 定からクライストロン入力空洞からの反射電力が以 外に多いことがわかり、現在のクライストロン集束 磁場があまり最適化されていないと考えられた。ま た 2.3 節で示したように、反射電力とアンプ位相角の 間に何らかの関係がある。そこで、反射電力とクラ イストロン出力電力、出力電力位相、アンプ出力位 相を主にモニターし調整を行うことにした。また集 束の状態によってはドリフト管にビームがあたり、 そこからの放射線量の増加があると考えられるので、 クライストロン出力空洞から RF 窓周辺部の放射線 量のモニターも行うことにし、合計 5 つの値をモニ ターしながらクライストロン集束磁場の調整を行う ことにした。この調整では、クライストロン出力電 力値のみを見るのではなく、位相変動に注意しなが ら、クライストロンから戻ってくる反射をできるだ け少なくなるようにし、なおかつ、放射線量もでき るだけ低くなるように調整を行うこととした。放射 線量の測定はアロカ製の 線サーベメータを用い、 RF 窓部に取り付けてある鉛ブロックを外して行っ た。集束磁場調整前の出力電力、反射電力、クライ ストロン出力位相、アンプ位相を図 4 に示す。この ときの放射線量は 1.5µSv/h であった。

ch1:クライストロン出力電力 ch2:アンプ出力の位相 ch3:クライストロンからの反射 ch4:クライストロン出力位相 (出力電力 18MW、反射電力 7W、 放射線量 1.5µSv/h、パルスごとのア ンプの位相変動 2°、パルスごとの クライストロン位相変動 0.8°)

図 4:クライストロン1号機における出力電力、反射、アン プ位相、クライストロン出力電力位相。

2.5 調整結果

クライストロン集束磁場の調整はいくつかのパタ ーンで行った。図5にクライストロン集束コイルと 各空洞の位置関係を示す。同図内に過去に三菱電機 で行った動作テスト時の磁場分布を示した。はじめ に、図5で示した磁場分布にするために集束コイル の電流値を設定し、その値を基準として集束磁場調 整を行った。表2に各調整条件を示す。

表2:各調整条件

(a):三菱電機での動作テスト時の磁場分布(図 5 参照)
(b):設定(a)からコイル 1 の電流を 30%下げ、コイル 5 を 30%上げる

(c):設定(a)からコイル 3~5 の電流を 10%上げる

(d):設定(a)からコイル3を25%、コイル5を10%上げる

調整条件(a)では、図 6-(a)のような結果になった。 このとき出力電力18MW、反射電力0.8W、放射線量 1.0~1.3µSv/h であった。次に調整条件(b)では、図 6-(b) のようになり、出力電力波形の形や出力値にはあま り変化が見られなかったが、後半部分の位相と反射 波が部分的に欠ける現象が見られた。このときの出 力電力 19.8MW、反射電力 0.9~2W、放射線量 2.0µSv/h であり、(a)より全体的に悪くなった。次に調整条件 (c)の結果を図 6-(c)に示す。このとき各波形の後半部 分が乱れてしまった。このときの出力電力 17MW、 反射電力 1.2W、放射線量は(a)、(b)の時より多く 2.5~3.0μSv/h であった。この磁場分布では、クライス トロン内部で電子ビームがドリフト管等に当たって いる可能性が高いと考えられる。図 6-(d)には調整条 件(d)の場合を示す。このとき、出力電力 18MW、反 射は十分に抑えられ約0.6Wであった。また放射線量 も 0.5~1.0µSv/h と低く抑えることができ、位相の変 動量も少なくなった。表3に各条件での反射電力、 パルスごとの変動量(温度による長期変動は含んでい ない)、放射線量をまとめた(条件(c)は変動計測を行っ ていないので未記入)。以上の調整より、調整前に比

べ出力電力は減少したが、電子ビーム加速ための必 要電力値は満たしているので、調整(d)を採用した。

図 6: クライストロン集束磁場調整による反射と位相の波 形(*各 ch は図 4 と同じ)。(a)三菱電機での動作テストで 用いた磁場分布の場合。この時を基準に調整。(b)コイル 1 の電流を 30%下げ、コイル 5 を 30%上げた場合。(c)コイル 3~5 の電流を 10%上げた場合。(d)コイル 3 の電流を 25%、 コイル 5 を 10%上げた場合。

表 3:各調整におけるパルスごとの安定度の比較

調整条件	kly 出力 変動[%]	kly 位相 変動[°]	Amp 位相 変動[°]	反射電力 [W]	放射線量 [μSv/h]
調整前	±1	0.8	0.2	7	1.5
(a)	± 1	0.5	0.2	0.8	1.0~1.3
(b)	± 2	0.3	0.15	0.9~2	2.0
(c)				1.2	2.5~3.0
(d)	± 0.8	0.3	0.15	0.6	0.5~1.0

*温度変化による長期変動^[4]は含んでいない。

3.反射波の周波数成分測定

クライストロンから反射してくる波の中に高調波 成分やサブハーモニックな周波数成分が含まれてい る可能性が懸念されたので、反射波の周波数成分測 定を行うことにした。始めにスペクトラムアナライ ザーを用いた測定を行ったが、2856MHzの周波数成 分があることの確認が取れただけで、高調波、サブ ハーモニック成分は無かった。また同時にミキサー を用いた測定も行った。測定方法の概略図を図7に 示す。測定では反射してくる波とシグナルジェネレ ータ(SG)の CW の信号をミキサーに入れ、周波数を 変化させながら測定を行った。しかし、反射波に対 して周波数の低い周波数帯域をカットできるフィル ターが無かったので、ミキサーでの測定も2856MHz の測定しか行えなかった。図8にSG入力信号の周波 数が2856MHzの時と、1MHz ずれた時の信号を示す。

図 7:反射波の周波数測定の概要図。反射信号と SG からの信号をミキサーに入れ測定。

図 8: 反射波の周波数測定結果。(a)SG からの信号の周波数 が 2856MHz のとき。反射波には 2856MHz の周波数成分が 含まれていることがわかる。(b)SG からの信号が 2856MHz から 1MHz ずれたとき。反射波と SG からの信号との周波 数のずれが見えている。

4.まとめ

クライストロン入力空洞からの反射電力、出力電 力、出力電力パルス内の位相、アンプ位相、放射線 量をモニターしながらクライストロン集束磁場の調 整を行ったが、集束磁場の調整により反射を抑えな がら位相変動もできるだけ小さい状態にし、なおか つ放射線量を下げるように調整を行うことで、変動 をある程度まで抑えることができたといえる。クラ イストロンの長パルスでの安定動作のためには、単 に出力電力のみに注目して集束調整を行うのではな く、クライストロン入力空洞からの反射電力、クラ イストロン出力電力位相、アンプ位相、放射線量等 の複数のパラメーターをモニターしながら調整を行 うことが必要といえる。

5.今後の課題

今回の集束磁場調整では、1号機のみの調整を行ったが、2号機でも同様の調整を行い、実際に加速する 電子ビームの安定度、自由電子レーザー発振での安 定度と比較した確認を行う予定である。

また、LEBRA でのロングパルス運転条件における クライストロンの最適な集束条件に関して、今回の 調整条件と結果とを考慮しシミュレーションを行い、 クライストロン内部での状態を調べ、出力電力のよ り高い安定化を行っていく。

3章で述べたスペクトラムアナライザー、ミキサー を用いた反射波周波数測定では高調波成分等が存在 するかどうかの確定ができなかったので、バンドパ スフィルターを用いて反射波の周波数成分に 2856MHz 以外の周波数成分が含まれていないかどう かの測定を行い確認する予定である。

参考文献

- Y.Hayakawa, et al., "First Lasing of LEBRA FEL in Nihon University at a wavelength of 1.5µm", Nucl. Instr. and Meth. A (2002), Volume483/1-2,pp.29-33 (NIMA18811)
- [2] T.Sakai, et al., "Improvement of the Long Pulse Operation of the S-Band Klystron", Proceedings of the 25th Linear Accelerator Meeting in Japan, Himeji, July.12-14, 2000, p228-230.URL:http://www-linac.kek.jp/mirror/www.sprin g8.or.jp/JAPANESE/conference/li-me00/proc_index.html
 [3] 境 武志,その他、"FEL 用クライストロンのグレードアップ",
- [3] 境 武志,その他、"FEL 用クライストロンのグレードアップ"、 Proceedings of the 26th Linear Accelerator Meeting in Japan、Tsukuba、August.1-3、2001、p222-224. URL: http://conference.kek.jp/LAM26/
 [4] 横山 和枝,その他、"クライストロンドライブ系の位相安定化"、
- [4] 横山 和枝,その他,"クライストロンドライブ系の位相安定化", Proceedings of the 26th Linear Accelerator Meeting in Japan, Tsukuba, August.1-3, 2001, p231-233. URL: http://conference.kek.jp/LAM26/