SASE 高調波の特性測定

大西 徹¹⁾、井合哲也、古川真一、猪坂 智、三原彰仁、 加藤龍好、末峰昌二、磯山悟朗 大阪大学産業科学研究所 〒567-0047 大阪府茨木市美穂ヶ丘 8-1

概要

阪大産研のLバンドライナックと赤外自由電子レ ーザー(FEL)用アンジュレータを用いて、自発放射 光増幅型 FEI(Self-Amplified Spontaneous Emission、 SASE)の原理検証実験を遠赤外線領域で行っている ¹¹。この実験中、SASEの基本波の成長に伴って高次 高調波が生ずる非線形高調波発生による2次と3次 の高調波を観測した。基本波やこれら高次高調波の 特性を調べるために、アンジュレータ前方の光軸上 に水平角・垂直角を遠隔操作で調節できる平面鏡を 設置し、基本波と2次高調波、3次高調波を分光し ながらそれぞれの放射パワー角度分布を測定した。 その結果、SASEの放射角度分布はシンクロトロン放 射のそれと比較して指向性が良いことが示され、さ らに SASE の高次高調波の次数が高くなるにつれて 指向性が高くなることがわかった。

1.はじめに

相対論的電子が磁場の作用のもとで円運動を行う とき、強力で指向性の高い放射光即ちシンクロトロ ン放射が発生する^[2]。一方、 アンジュレータ放射はシ ンクロトロン放射と異なる特徴を持つ光で、その一 つにシンクロトロン放射より指向性が高いことが挙 げられる。以上の2つの放射光と発生メカニズムの 異なる SASE において放射パワーの角度分布の測定 実験を行った。この測定実験を行うためにアンジュ レータ前方に遠隔操作できる平面ミラーを設置し、 その平面鏡の角度を変えることにより、SASE の放射 パワー角度分布を測定した。その測定結果をシンク ロトロン放射、アンジュレータ放射の角度広がりと 比較し、SASE の指向性の高さを評価してみた。さら に、SASEの理論によると基本波の光強度の増大に伴 う電子ビームの密度変調には基本波成分以外に高調 |波成分が含まれる。この高調波成分と密度変調の相 互作用により増幅される高調波を非線形高調波と呼 ぶ。我々の実験では非線形高調波の発生による2次 と3次高調波を観測した。基本波とこれらの高次高 調波の特性を調べるために、それぞれの放射角度分 布を測定した。今回はこれまでに得られた実験結果 について報告する。

2.理論

シンクロトロン放射は、 ~1/ 程度の角度広がり をもつ。ここで =E/mc² は相対論的エネルギーであ る。電子ビームから放射された光には、光子ビーム の太さ と角度発散 '(共に標準偏差)との積で表 される次の関係がある^[3]。

$$\sigma \cdot \sigma' \ge \frac{\lambda}{4 \pi}$$
 (1)

アンジュレータの放射光は、自然角度発散 'を放射 光の角度分布を Gauss 分布として近似することで n 次の放射に対して

$$\sigma' = \sqrt{\frac{\lambda_n}{L}} = \sqrt{\frac{1+K^2}{2n\gamma^2 N}} = \frac{1}{\gamma} \sqrt{\frac{1+K^2}{2nN}}$$
$$\approx \frac{1}{\gamma} \sqrt{\frac{1}{nN}}$$
(2)

と表すことができる^[4]。ここで、Nはアンジュレータ 周期数であり、L=N uはアンジュレータの長さを表 す。以上の式により、シンクロトロン放射、アンジ ュレータ放射の角度広がりを計算し、実験より得ら れた SASE の放射角度分布の測定結果と比較する。

3.実験配置

実験配置を Fig.1 に示す。アンジュレータは周期長 6 cm、周期数 3 2 の Halbach 型アンジュレータで K 値は磁極間隔を変えることにより 0.013 から 1.472 ま

Fig.1:Schematic diagram of the linac and the FEL system

¹ E-mail: onishi25@sanken.osaka-u.ac.jp

で変えることが可能である。今回、SASEの放射パワ ー角度分布を測定するために新しくアンジュレータ 前方の光軸上に平面ミラーを設置した。このミラー は、水平角、垂直角を遠隔操作で任意の角度に調節 できる。水平角、垂直角はそれぞれ-34mrad~34mrad の範囲で測定でき、このミラーを実験で使用する前 に He-Ne レーザーをミラーに反射させ充分に長い距 離をとった場所でスポットの位置の変化を測定し、 水平、垂直角それぞれ最低で 13mrad ずつ正確に動く ことを確認した。このミラーの角度を変えることに より SASE の放射パワー角度分布を測定する。この ミラーで反射した光はこのミラーの設置に伴って新 しく構築した光輸送路を通って分光器に導かれる。 分光器には格子定数 0.126 の平面回折格子が設置し てあり、そのブレーズ波長は112µmである。分光器 によって単色化された光は液体ヘリウムで冷却され た Ge:Ga 検出器により検出される。

4.実験結果

4.1 SASE の分光スペクトル

Fig.2 に電子エネルギー11.7MeV において SASE の 分光実験で観測した波長スペクトルを示す。SASEの 光強度は時間変動が大きいので連続する30個のデ - タを測定し、そのうち上位5個の値の平均値と標 準偏差を各々の測定値と誤差棒とした。Fig.2にはピ ·クは3つある。一番右のピークを SASE の基本波 と仮定すると、その左に見えるピークは基本波のほ ぼ半分の波長位置に現れているので2次高調波であ ると考えることができ、そして一番左にあるピーク は基本波の3分の1であることから3次高調波であ ると推測できる。この測定波長について考察してみ ると、電子エネルギーと産研のアンジュレータのパ ラメータより予想される基本波の波長は約 180µm となり、実験結果とは一致しない。この理由として エネルギースペクトルを測定するためのホール素子 の劣化により正確な電子エネルギーが測定できてい ない等が考えられるが、このことは現在検討中であ る。

4.2 SASE の放射角度分布測定

この SASE 分光測定をしたときのピーク位置につ

Fig.2:wavelength spectra of fundamental and higher harmonics of SASE

(c): 3rd harmonic Fig.3:horizontal output profile of SASE

Fig.4:vertical fundamental output profile of SASE

いて放射パワー角度分布の測定を行った。Fig.3(a)~(c) に垂直方向を光軸上に固定し水平方向の基本波、2 次高調波、3次高調波の放射角度分布の測定結果を それぞれ示す。横軸の0mradの位置が水平方向の光 軸上を表している。さらにFig.4には水平方向を光軸 に固定した垂直方向の基本波の放射角度分布を測定 した結果を示す。同様に横軸の0mradが光軸上を表 す。この測定実験では、SASEの分光測定の際と同じ 理由で連続する50個のデータのピーク値を測定し、 そのうち上位5個のデータの平均値を各々の測定値 とした。Fig.3、4にはそれぞれ測定値を点で表し、こ れらのピークに対して当てはめた Gauss 分布とその 中心位置×0、標準偏差 が示した。

5.実験結果の解析と考察

5.1 電子ビーム軌道の光軸上とのずれ

Fig.3(a)、Fig.4 で示されている基本波の放射角度分 布の測定結果より、ピークの位置が光軸上からずれ ていることがわかる。これは、アンジュレータに入 射した電子ビームが光軸上を走っていないことを表 している。通常、アンジュレータ内の光軸上を走っ ている電子ビームからのアンジュレータ放射を光軸 上で観測すると、偶数次の光の位相は軸の左右逆に なるため、偶数次の高調波は現れず、奇数次の高調 波のみが観測できるはずである。しかし、電子ビー ムが光軸上からずれているために偶数次の高調波が 確認できるようになり、2次の高調波を観測するこ とができた。

5.2 高次高調波の指向性

式(2)より電子エネルギー11.7MeV でのアンジュ レータ放射の角度広がりの計算結果と実験結果から 得た SASE 放射角度分布の標準偏差の値を表1に示 す。基本波についてはほぼ同じ値となったが、高調 波成分では計算値より小さい値が得られた。高調波 の次数が高くなるにつれて角度分布の値が小さくな っていくことより、指向性が高くなっていくことが 確認できる。

	アンジュレー	SASE
	タ放射[mrad]	実験値[mrad]
基本波	7.71	7.96
2 次高調波	5.45	4.15
3 次高調波	4.45	2.04

表1:実験値と計算値の比較

5.3 SASE とシンクロトロン放射の指向性の 比較

実験で得られた SASE の放射角度分布の結果をシ ンクロトロン放射の放射角度広がりと比較してみる。 シンクロトロン放射の放射パワーの角度広がりは、 電子エネルギーが 11.7MeV のとき 43.6mrad となる。 この値と SASE の基本波成分における放射角度の実 験値と比較してみると、SASE のほうが数分の1程度 に放射角度が小さいことがわかる。従って、SASE は シンクロトロン放射よりも高い指向性をもつことが 確認できた。

6.まとめ

SASE の分光スペクトルを測定し、基本波と2次、 3次高調波を確認した。そして、それぞれのピーク の放射角度分布の測定を行った。その結果、高次高 調波になるにつれて指向性が高くなっていくことが 確認できた。SASE の放射角度分布のより正確な値を 得るためには、計算コード GENESIS を用いたシミュ レーションの結果が必要となる。その結果と比較し、 検討しなければならない。このことについては、今 後の課題である。そして、SASE の指向性はシンクロ トロン放射のそれよりも高いことが示された。今後、 SASE の絶対強度を評価するために、標準光源として 黒体炉を用いて今回新しく構築したFEL測定系の 感度較正実験を行う予定である。

参考文献

[1]R.Kato, et al.,Nucl.Instr.and Meth. A 475 (2001) 334

[2]J.D.Jacson ,Classical Electrodynamics

[3]David Attwood,Klaus Halbach,Kwang-Je Kim, Sciencie 228 1265 (1985)

[4]大柳 宏之.シンクロトロン放射の基礎