アルミナセラミックスの銅電鋳被覆配線

田尻桂介^{1,A)}、壁谷善三郎^{B)}、中村止^{C)}、山中泰宏^{C)}、金正倫計^{D)}、斎藤芳男^{E)} ^{A)} 中菱エンジニアリング(株) 実験総括部

〒455-8515 愛知県名古屋市港区大江町10番地 三菱重工業㈱名古屋航空宇宙製作所内

^{B)} 三菱重工業(株) 名古屋航空宇宙システム製作所

〒455-8515 愛知県名古屋市港区大江町10番地

C) 旭金属工業(株)

〒503-01 岐阜県安八郡安八町牧字新長田4851-4

D) 日本原子力研究所 大強度陽子加速器施設開発センター

〒319-1195 茨城県那珂郡東海村白方2-4

E) 高エネルギー加速器研究機構

〒305-0801 茨城県つくば市大穂1-1

概要

高融点金属法で部分的にメタライズしたアルミナ セラミックスに銅電鋳を施し、メタライズ部を銅電 析物で被覆したRFシールド配線を形成させた。電鋳 法としては電析物の電気伝導度が高いPR銅電鋳^{||| |2|} を用いた。また、これらの被覆配線間を繋ぐ架橋配 線についても開発し、日本原子力研究所が建設する 大強度陽子加速器の3GeVシンクロトロン用真空ダク トに適用した。

1. はじめに

日本原子力研究所の大強度陽子加速器計画で建設 中の3GeVシンクロトロン用真空ダクトはアルミナセ ラミックスで製作される。このダクトを銅電鋳でス トライプ状に被覆できれば、ISISのステンレスワイ ヤ・ダクト内組込方式に替わる、嵩張らずに、メン テナンスフリーなRFシールド配線をダクト外面に形 成できる。そこで著者等はろう付け前処理として知 られる高融点金属法で形成させたメタライジング層 を下地とする銅電鋳被覆配線の開発に取り組んだ。 また、これらの配線間を繋ぐ架橋配線についても併 せて開発した。

2. アルミナセラミックスの銅電鋳被覆配線

アルミナセラミックス上に銅電鋳で配線するには、 セラミックスの被配線部に導電性の中間層を形成さ せる必要がある。著者等はこの中間層としてろう付 け前のメタライジング処理として行われている高融 点金属法(Mo-Mn 法)を用いた。この高融点金属法は 1950年頃に真空管のガラス封止用に開発された技術 である。¹³¹メタライズ層の表面は金属モリブデンで 覆われているので導電性を有している。アルミナセ ラミックス上の銅電鋳被覆配線の形成プロセスを図

図1:被覆配線の形成プロセス

1に示す。

メタライジング後のニッケル保護めっきに対して は、下地めっきとして機能させるために、ろう付け の場合よりも高い品質が要求される。即ち、ニッケ ルめっきは欠陥が無く、厚さが2~3µmで、均一 にメタライジング層を覆っていなければならない。 このニッケルめっきは熱処理によりメタライジング 層としっかり密着する。青化銅めっきは銅電鋳の密 着性を良くするための下地めっきとしての役割を果 たすとともに、電鋳工程で用いる処理液からメタラ イジング層を保護する。

図2:アルミナ母材上の銅電鋳断面

図2にアルミナ小片上に形成させた銅電鋳の断面観 察像を示す。12~15É h程度のメタライジング層、 数É hのニッケルめっき、並びに約20É hの青化銅 めっきが銅電鋳とアルミナ母材との間に観察される。 この試験片の密着強度を調べたところ4 kg/mm²前後 であった。図3に被覆配線を施したダクトモデル (長さ1 m)の外観を示す。

図3:被覆配線を施した1mダクトモデル

3. 被覆配線間の接続(架橋配線)

長いアルミナ管は入手し難いので、ダクトは複数 のアルミナ管(単位ダクト)をろう付け接合して製作 される。また、ダクトの両端には金属製フランジが ろう付けで取り付けてある。従ってRFシールド配線 はストライプ状の被覆配線とこれらを繋ぐ配線から 構成されるが、この接続用配線は被覆配線を形成さ せた後、単位ダクト間のろう付け部に接触しない様 に架橋して形成させる必要がある。(架橋配線)

架橋配線の形成方法としては、ロストワックス法 を応用した「架橋電鋳」と金属細線を電鋳で固着す る「電鋳接合」とを試みた。何れもろう付けや半田 付けとは異なって非加熱プロセスであり、ダクト本 体やダクト本体と被覆配線との界面を傷める心配が ない.前者ではストライプ部と同じ幅、同じ高さの 見映えの良い架橋配線が得られるが、部品サイズが 大きくなるにつれて作業性が悪くなる。後者では、 形成される架橋配線は前者に比し見映えは落ちるが、 簡便で作業性が良く、架橋配線の中にダクトに必要 なコンデンサーを容易に組み入れることが出来ると いう大きな利点がある。実機ダクトには後者を採用 した。

3.1 キロストワックス法を応用した架橋電鋳

本方法にて製作した小型ダクトモデルの架橋部外 観を図4に示す。本法では一旦約0.5mmの厚さまで ストライプ部配線を形成させておき、この配線間の 窪みにワックスを充填する。この後、金属粉を擦り 込む導電処理を施し、再びストライプ部ともども約 0.5mm電鋳する。最後にワックスを除去すると、架 橋部を有する所期のシールド配線が完成する。前述 の様に、本法は被覆配線部に目標厚みの半分程度ま で電鋳したうえで架橋電鋳を行い、架橋部のみなら ず被覆配線全体に残りの厚みの電鋳層を形成させる ので、配線は架橋部で段差を生じない。

図4:小型ダクトモデルの架橋電鋳外観

3.2†金属細線を電鋳で固着させる電鋳接合

この方法は被覆配線完了後、被覆配線間に金属細線を渡し、その端部を銅電鋳で固着・接合させるものである。即ち、金属細線を包み込んで被覆配線と 一体化させる様に銅電鋳層を形成させる。電析物が この様に成長する様子は接合部断面の金属組織観察 で確認することができる。

図5:電鋳接合部断面

図5はこれを示したもので、予め青化銅めっきを 施した直径 0.5mm のピアノ線を銅板に電鋳接合し たものの観察像である。ピアノ線と銅板の双方から 成長してきた針状の電鋳層がぶつかり合って境界を 形成しているのが分かる。

本方法で製作した架橋配線の外観を図6、並びに 図7に示す。図6は金属細線(予め青化銅めっきを施 した直径 0.3mm の SUS316 線)を接合すると同時に 接合部以外でも同細線を銅電鋳で被覆して架橋部の 通電容量を増加させたもので、単位ダクト間の接続 に用いられる。一方図7は金属細線(直径 0.5mm の 銅線)の接合のみを行い、その後同細線内にコンデン サーを組み込んだものである。これはダクトとフラ ンジとの間の接続に用いられ、渦電流を遮断する機 能を有する。

図6:銅電鋳被覆タイプの架橋配線外観

図7:コンデンサー組み込みタイプの架橋配線外観

4. むすび

アルミナセラミックスの銅電鋳被覆配線がメタラ イジング技術の応用により可能となった。また、被 覆配線間を繋ぐ架橋配線も銅電鋳技術を応用して形 成できた。これらの技術により、世界で初めての 『銅電鋳シールド配線を有するセラミックスダク ト』が実現できた。本技術はシンクロトロン用ダク トのみならず、ステアリングコイル等の磁石製品や 各種モニター等、絶縁物(セラミックス、フェライ ト、プラスチック)の上に複雑な配線(特に電力配 線)が必要なリニアック周辺機器への広範囲な適用 が考えられる。

参考文献

- [1]田尻桂介、壁谷善三郎、斎藤芳男:真空、Vol.44, No9(2001)
- [2] K. Tajiri and T. Imamura : Meeting Abstract, Seattle, 99-1, (The Electrochemical Soc. 1999)
- [3] H. J. Nolte et al. : Tele Vision Engineering, (1950)