Laser circulation system for compact monochromatic hard X-ray source

F.Ebina^{1,A)}, A.Fukasawa^{A)}, F.Sakamoto^{A)}, H.Ogino^{A)}, M.Uesaka^{A)}, K.Dobashi^{B)}

^{A)} The University of Tokyo Nuclear engineering research Laboratory

2-22 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1188

^{B)} National Institute of Radiological Sciences

4-9-1 Anagawa, Inage-ku, Chiba-shi, JAPAN, 263-8555

Abstract

We are going to develop a compact monochromatic hard X-ray (10-50 keV) source based on laser-electron collision using by the X-band (11.424 GHz) linac system. To enhance the luminosity of laser-beam collision, we adopt the technique of circulation of laser light. Pulse length of Q-switch Nd:YAG laser is shorter than RF-pulse length. This mean that most of electron bunch don't collide the laser light. Laser Circulation system (or ring laser system) is effective to increase the X-ray yield for the proposed system. The colliding laser light is bent by a mirror and its polarization plane is changed by a pockels cell. Laser light from Q-switch laser system and circulated laser light are merged by polarized beam splitter. Laser light can be collide with electron beam more times.

小型単色硬X線源用レーザー周回システム

1. はじめに

我々は、医療、生命科学への応用が期待される単 色硬X線を、Xバンドライナックからの電子ビーム とレーザーとの衝突によって発生させる装置を開発 中である。

衝突によって発生するX線の量はルミノシティの 計算から求められ、電子数(ビーム電流)、レー ザーの光子数(レーザーエネルギー)に比例する。

だが、導入予定のレーザーのパルス幅(10ns, FWHM)は電子ビームのパルス幅(1µs)と比べて 短く、X線発生に寄与するのは全体のごく一部であ る。そこで我々は、レーザーの偏光を利用して光路 の切り替えを行うことでレーザーを周回路中に閉じ こめ、同一のレーザー光を繰り返し衝突点に入射す るレーザー周回システム(レーザーサーキュレー ションシステム)の導入を検討している。レーザー 周回システムの設計方針を定めるとともに、導入に よる効果を見積もった。

2. レーザー周回システム導入検討

2.1 レーザー周回システム概要

レーザー周回システムの概要を図1に示す。レー ザー光は入射レンズ群によって調整された後、偏光 ビームスプリッターを透過して周回路に入射される。 入射されたレーザー光は衝突点で電子ビームと衝突 した後に $\lambda/2$ 波長板を通過、このとき偏光面が90回 転するため偏光ビームスプリッターで90反射され、 再び衝突点へ導かれる。二度目以降の周回ではポッ ケルスセルにて偏光面を90回転させるように電圧 を印可 ($\lambda/2$ 条件)するため、 $\lambda/2$ 波長板と合せて 180回転することになり、偏光面は変化しない。こ

図1:レーザー周回システム概要

¹ E-mail: ebina@utnl.jp

れによりレーザー光は常に偏光ビームスプリッター で反射され、周回路中に閉じこめられる。

2.2 X線発生量の見積り

単色硬X線を用いた撮像の種類と、撮像に必要な 光子数を表1に示した。本研究の主要な目的の一つ である経静脈血管造影には、10¹¹photons/secと、第3 世代放射光源相当の光量が必要となってくる。

表1:撮像に必要な光子数

撮像の種類	光子数[photons/sec]
マモグラフィー(乳房撮像)	10 ⁶
単色CT	10^{8}
Auger Cascade Therapy	10 ⁹
経静脈血管造影	10 ¹¹

Xバンドライナックからの電子ビームとパルス レーザー(Q-switch Nd:YAG laser)との衝突を考え る。電子ビームは運動エネルギー50MeV、電荷量 20pC/bunch、パルス幅1µs、繰り返し10ppsで、レー ザーは波長1064nm、エネルギー2.5J/pulse、パルス 幅10ns (FWHM)、繰り返しは電子ビームと同じ10pps である。ビームサイズ100µm (ms)としてルミノシ ティを計算した結果、X線発生量は10⁸photons/secで あった。これはマモグラフィー等静止画像の取得に は適用できるが、経静脈血管造影のようなリアルタ イムでの動画像取得には不十分な量である。

レーザー周回システムにおける見掛け上のエネル ギーI_Nは以下の式によって表される。

$$I_N = \sum_{n=0}^{N} I_0 A^n = I_0 \frac{1 - A^n}{1 - A}$$

ムは入射レーザーの初期エネルギー、Aは周回一周あたりの透過効率、Nはレーザーパルスと電子ビームの衝突回数である。周回路中の光学機器の透過率、反射率からA=0.9 (90%)程度と見積もられ、電子ビームのパルス幅1µs、周回一周にかかる時間はおよそ21nsであることからNは40以上である(図2参照)。以上から、周回によりレーザーのエネルギーはおよそ10倍、X線発生量は10⁹photons/secになると予想される。

将来的には周回路中にゲイン媒質を設置してレー ザーのエネルギー損失を補填(A=1が得られる)、 5J/pulse以上のレーザーと組み合わせることで 10¹⁰ photons/secのX線発生を目指す。

3. 実証実験

3.1 概要

レーザー周回システムのビームラインへの導入に 先立ち、レーザー光閉じこめの実証実験を準備中で ある。ビームラインへ導入するものと同じ光学系を 構築し、比較的低エネルギー(50mJ/pulse程度)か つ視認性の高い(YAG二倍波、532nm)レーザーを 用いて周回システムの測定、調整手法を確立する。

3.2 方針

この実験の目的は、ポッケルスセルを用いたレー ザー光の閉じこめを確認、定量的な評価を行うとと もに、衝突点におけるレーザー光のサイズ、位置、 光軸の傾きを、独立かつ周回の条件を崩さずに調整 する手法を確立することである。周回の条件とは、 衝突点における上記のパラメータが周回によって変 化しないことを指している。

平行なガウスビームを収束した場合、衝突点での スポットサイズのは、

$$\sigma_0 = M^2 \frac{\lambda}{4\pi} \frac{f}{\sigma_c}$$

と表される。ここで、fは集束レンズから衝突点まで の距離、 λ はレーザー光の波長、 σ_{f} はレンズ上での ビームサイズ、Mは理想的なガウスビームからのず れを表すパラメータで、Nd:YAGレーザーでは経験 $\perp M^2 = 2 \sim 3$ 程度である。これにより、入射レーザー光 のサイズを調整することで、衝突点におけるビーム サイズを独立に操作することが可能である。例えば $M^2 = 3$ の場合、 $\sigma_{0} = 100 \mu m$, $f = 1500 \mu m$ であるから、 $\sigma = 3.7 mm$ となるように入射光を調整すれば良い。

収差を考慮しなければ、レンズに入射した並行光 はレンズ上の位置にかかわらず一点に収束される。 レンズの中心からrだけ離れた位置に入射レーザーの 中心がある場合、レンズの焦点距離をfとすると、焦 点においてレーザー光の光軸はrffだけ傾いている。 このことから、入射レーザーの位置を動かすことで 衝突点での光軸の傾きを独立に操作できる。光学機 器のサイズにもよるが、±10mrad程度の範囲で調整 が可能である。

スポットの位置はミラーの角度によって調整でき るが、ミラーを動かすと光軸の傾きも同時に変化し、 周回の条件が崩れてしまう。そこで、本実験では一 旦周回の条件を満たした後のスポット位置の調整を、 ミラーを使わずに衝突点を挟む2枚のレンズの位置 を同時に動かすことによって行う。光軸に垂直な平 面内で収束レンズを動かせば、焦点の位置を調整す ることができる。このとき衝突点後方のレンズを同 じ量動かせば、集束レンズ入射時の光軸の傾きは光 軸によって変化しないので、周回条件を崩すことな くスポット位置のみを独立に操作できる。スポット 位置調整の分解能はレンズ移動距離の分解能と一致 し、10µm以下のオーダーでの調整が可能となる。 調整範囲はレンズ移動のストロークと一致するが、 光軸の傾きが変わらぬよう微調整に留めておくのが 無難である。

3.3 進行状況

現在実験に必要な物品の手配を行っており、実験の開始は9月上旬となる見込みである。実験開始までには収差、光学系の誤差による影響についても評価する必要がある。

4. まとめ

小型単色硬X線源へのレーザーサーキュレーショ ンシステムの導入を検討し、X線発生量の見積を 行った。周回によるエネルギー損失を補填しない場 合で、レーザーのエネルギーは10倍、X線発生量は 10[°]photons/secとなる見込みである。

レーザー周回システムの光学系の設計は、衝突点 におけるビームの状態を周回の条件を崩さずに操作 することを目標として行った。現在低エネルギーの レーザーによるレーザー周回実証実験を準備中であ り、9月上旬には実験を開始できる見込みである。

参考文献

- [1] K.Dobashi, et al., "X-bandリニアックを用いた小型 硬X線源" Proceedings of the 28th Linear Accelerator Meeting in Japan, Tokai, Aug. 1-3, 2003
- [2] Y.Suzuki, et al., "A New Laser Mass Spectrometry for Chemical Ultratrace Analysis Enhanced with Multi-Mirror System (RIMMPA)" ANALYTICAL SCIENCE 2001, VOL.17 SUPPLEMENT