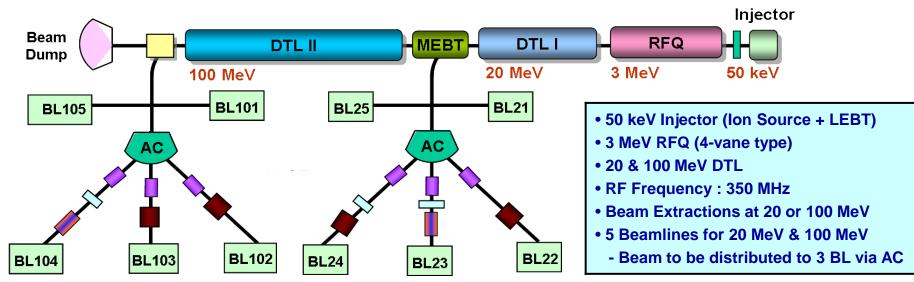
WAO 2012

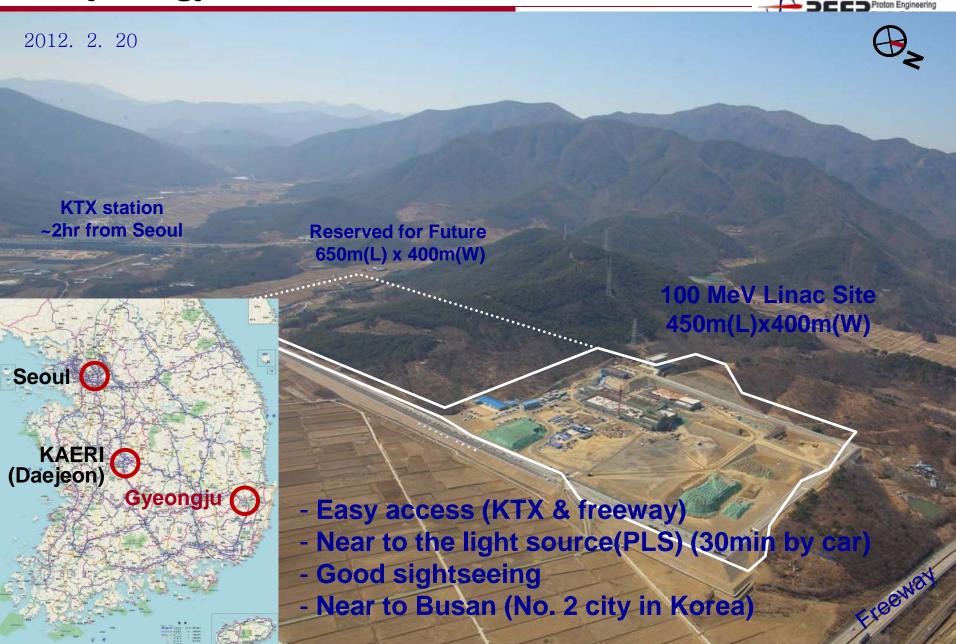
SLAC National Accelerator Lab.

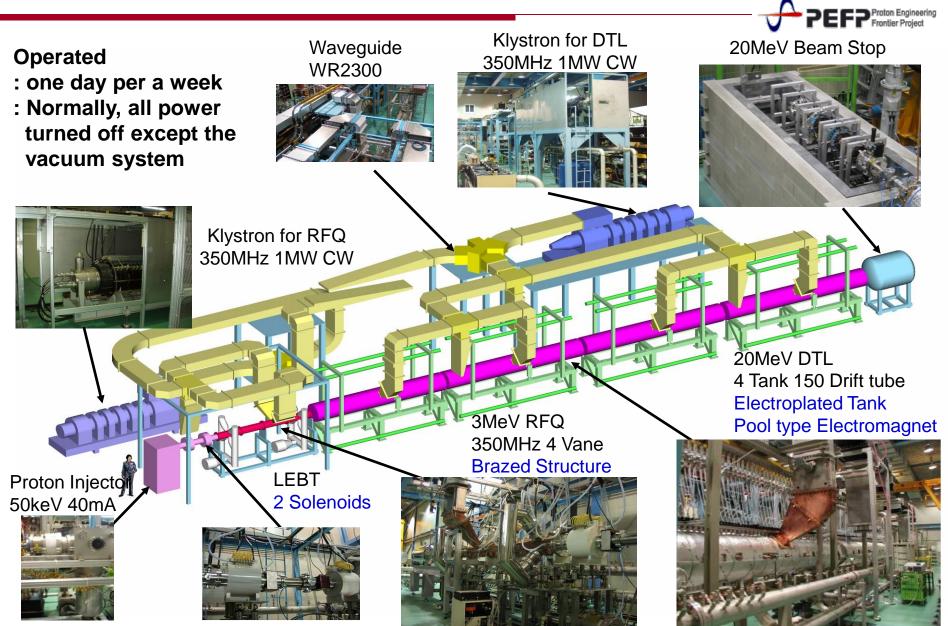
Recovery from the Fire Accident at PEFP

Contents



- **♦** About PEFP
- **♦** Fire Accident
- **♦** Recovery Work for 20MeV Linac
- ◆ Installation Status and Plan of 100MeV Linac
- **♦** Summary


Overview


- Project: Proton Engineering Frontier Project (PEFP)
 - 21C Frontier R&D Program, MEST, Republic of Korea
- Objectives:
 - To develop a High Power Proton Linac (100MeV, 20mA)
 - To develop Beam Utilization & Accelerator Application Technologies
 - To Industrialize Developed Technologies
- Period: July 2002 December 2012

Gyeongju Site

20-MeV Accelerator installed at KAERI site

Fire Accident

There was a fire accident

- : 9th April, 2009
- : A short circuit caused a fire in another lab.
- : The fire was got under control before the flame spread to 20MeV accelerator test room.

The 20MeV accelerator system was contaminated with carbon dust

- : Damaged not by flame but by the carbon dust
- : Electric power was cut OFF, Vacuum pump was ON, UPS was ON
- : Access was permitted after one hour later.

Damaged Part Lists

Equipment	Quantity	Status
DTL QM current lead cooling system	8	Repair
UPS	4	Repair
Klystron	1	Repurchase
DC P/S	7	Repair
Vector Signal Generator	1	Repurchase
Vector Network Analyzer	1	Repurchase
Spectrum Analyzer	1	Repurchase
Oscilloscope	6	Repurchase
Power Meter	1	Repurchase
GPIB Gateway	1	Repurchase
Function Generator	1	Repurchase

Equipment	Quantity	Status
Current Amplifier	1	Repair
ТМР	4	Repair
Ion Pump Controller	3	Repair
Ion Pump	8	Repair
Gauge Controller	1	Repurchase
Scroll Pump	10	Repair
Air Conditioner	4	Repair
VME485	1	Repurchase
Electrometer	1	Repurchase
DAQ	1	Repurchase
PC	19	Repair
Monitor	17	Repair

Considering the period of delivery and the price, the biggest damage is klystron and RF devices.

High Power RF System - Klystron

High Power Klystron

- Removed the carbon dust and checked the vacuum.
- One of 2 klystrons was damaged as vacuum degradation.
- Damaged one was replaced with a spare klystron.
- New one was repurchased according to the manufacturer's opinion by insurance.

Klystron Vacuum test

RF System & Measurement Equipment

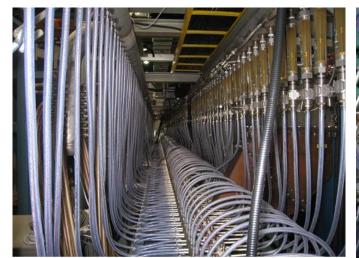
Fans of the RF and measurement equipment were operating during the fire accident because of UPS

- Equipment were contaminated with sticky carbon dust.
- RF system : RF signal generator, network analyzer, oscilloscope
- Measurement equipment : Electrometer, DAQ(PXI)
- => Repurchased through the manufacturer's opinion.

Oscilloscope

Signal Generator

DTL QM current Lead



- QM current lead (Power loss 800 W/QM)
 - Old one: Forced air cooling (Temperature at current lead ~ 100 deg. C)
 - Revised one: Water cooling (Temperature at current lead ~ 80 deg. C)

Air shower and general terminal block

Water cooled terminal block

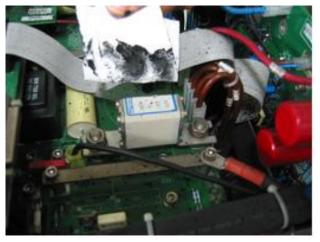
Vacuum System

- All vacuum pumps were working during the fire accident
- Damaged parts were
 - Scroll pump : 10 => Replaced tip seals and bearings
 - TMP controller : 4 => Repurchased
 - Ion pump controller : 7 => Repurchased
 - Vacuum gauge controller : 1 => Repurchased
- Whether inside the DTL was contaminated or not was more significant issue
- No problem with visual inspection
- RF conditioning of the RFQ and DTL were done up to the operating peak power level without any symptom of contamination

Ion pump controller

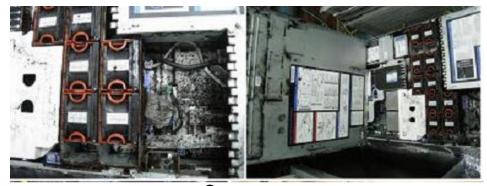
TMP pump controller

Scroll pump

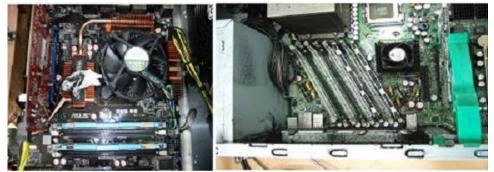

Power Supply

DC power supply

- DC Power supply
- Turned off during the accident
- Cleaning method
 - : by using the brush and alcohol.
- All power supplies were tested before the reinstallation



UPS


- Turned on during the accident
- 6 UPSs were checked and repaired by the manufacturer.
- Damaged PCB boards and batteries were replaced.

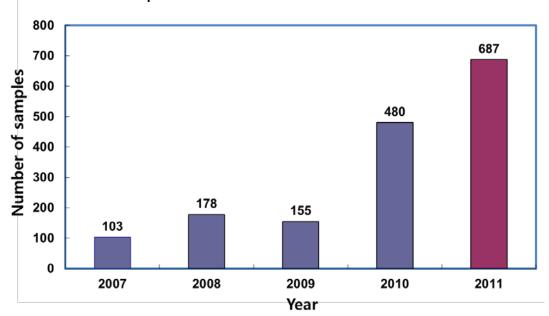
Control System

Server

Workstation

- Server and Workstation
 - Impossible to clean up
 - Under corrosion process.
 - Repurchased according to the manufacturer's opinion.

- Monitors and PCs
 - Monitors and PCs were repaired by the manufacturer.


Monitor

13

Summary of 20MeV Linac Recovery

- 20MeV accelerator system was recovered from the fire accident
 - Most damaged parts were contaminated with the carbon dust
 - 1 klystron was damaged and replaced (New one was purchased by insurance)
 - RFQ and DTL tank were not damaged
 Only QM current lead cooling system was damaged and revised with the water cooling type
 - Other RF devices, control servers and vacuum pumps were purchased by insurance
 - First beam after recovery was 14th November, 2009 (7 months later)
 - Since then, 20MeV linac was operated without trouble until 2011

20MeV Linac Disassembly and Transportation

- 20MeV linac was operated and supplied proton beam to users at KAERI site until November 2011
- Disassembly of 20MeV linac : January 2012
- Installation of 20MeV linac at project site: February 2012

Installation Status and Plan of 100MeV Linac

Accelerator in the tunnel

Magnets in the beamline hall

- Accelerator from ion source to beam dump were installed at March 2012.
- Beamline magnets were installed at May 2012.
- RF systems including klystrons, circulators and modulators were fabricated and got ready to install. Installation for klystron gallery and modulator gallery will start when the building is ready.
- The beam commissioning will start from January 2013.

Summary

- ◆ The fire accident was occurred in another lab. at 9th May, 2009.
- ◆ 20MeV linear accelerator system was damaged not by flame but by the sticky carbon dust.
- ◆ Through the recovery works for 7 months, 20MeV linac was recommissioned and supplied proton beams to users.
- ◆ 20MeV linac was operated until November 2011 and delivered from the KAERI site to Gyeongju site
- ◆ 100MeV linac and beamlines were installed. The beam commissioning will start from the January 2013.
- ♦ We can contribute much more to WAO 2014 on the basis of the commissioning and operation experience for the 100MeV linac and beamlines.

Thank you for your attentions!