
FLASH Operation at DESY

From a Test Accelerator to a User Facility

Michael Bieler FLASH Operation at DESY WAO2012, SLAC, Aug. 8, 2012

DESY: Deutsches Elektronen-Synchrotron, Hamburg, Germany

- TTF: TESLA Test Facility
- TESLA: TeV Energy Superconducting Linear Accelerator
- FLASH: Free Electron Laser in Hamburg

Content

The History of FLASH

TTF as a linear collider testbed

TTF operation

TTF becomes FLASH

FLASH user operation

Difficulties for Operators

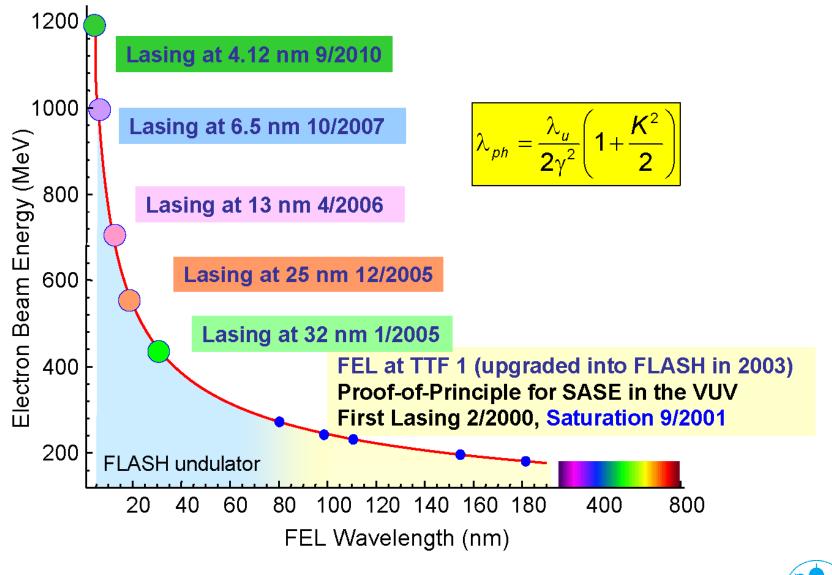
Conclusion

1994: The **TESLA** project requires superconducting rf cavities for a TeV-scale linear collider. **TESLA T**est **F**acility: A 500 MeV testbed for TESLA.

1997: **TTF** reaches 16.7 MeV/m with superconducting cavities

1998: TTF tunnel extended, first undulators in the tunnel

2000: First lasing @110 nm

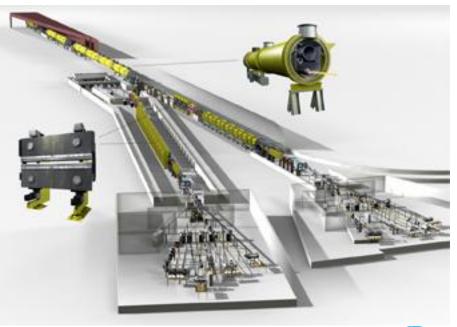

2003: Extension from 100 m to 260 m, TTF becomes **FLASH**

2005: FLASH becomes a user facility, lasing at 25 nm

A test facility becomes a user facility.

The History of FLASH

M. Bieler | FLASH Operation at DESY | Aug. 8, 2012 | Page 5



The Future of FLASH

2012: FLASH running as

- a user facility, 4.1 50 nm
- a testbed for XFEL (component tests, diagnostics,
 - control system, etc.)
- as a testbed for machine studies (Seeding, ...)

2013: FLASH will be upgraded to FLASH II

TTF as a linear collider testbed

TESLA Test Facility was a test facility:

- Components running at their limits
- Components from different vendors or collaborators
- Different kinds of the same component (BPMs, current monitors, klystrons, modulators,...)
- Only the backbone of a control system
- Different integration of components into the control system
- Different levels of application software
- Different levels of documentation

TTF operation

Goals of TTF operation:

- High accelerating gradients
- Component tests for a linear collider

Mode of TTF operation:

- Separate control room
- Separate control system
- Separate operators (scientists and students)

TTF was an ideal testbed for the SASE mechanism

- 200 MeV beam energy
- high current, pulsed, laser driven gun

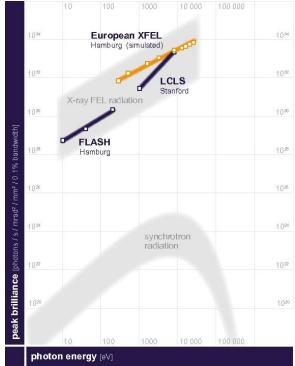
1998: Conversion into a SASE FEL

- Chicanes for bunch compression (no 3rd harmonic cavity)
- More beam energy
- Better diagnostics
- Undulators
- Lots of Research and Development

The TTF VUV SASE FEL was born

(But it took years to get it running)

2000: First lasing @110 nm



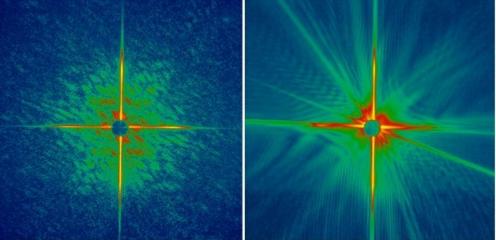
TTF becomes FLASH

2003: Extension from 100 m to 260 m, TTF becomes FLASH

- longer tunnel, space for more accelerating modules
- energy upgrade over the years, 3rd harmonic cavity
- 1200 MeV reached in 2010

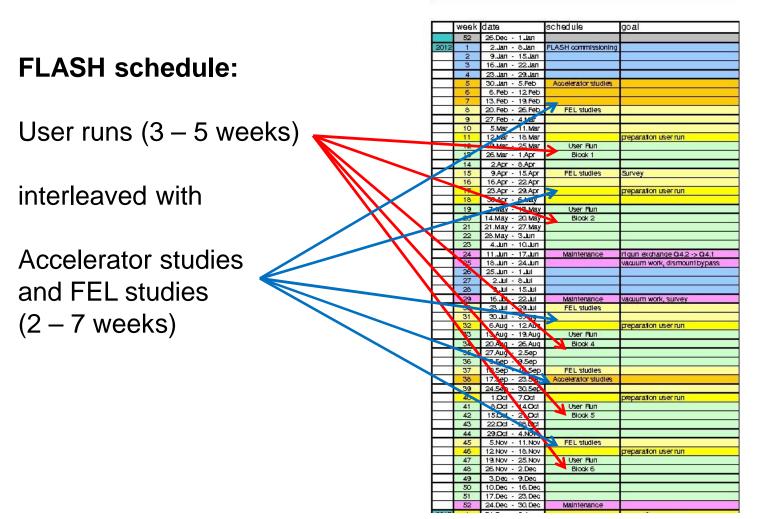
FLASH user operation

2010: 4.12 nm wavelength (well within the 'water window')


- FLASH is used for fundamental research

Original Foil

Reconstruction from the diffraction pattern of one shot



Diffraction pattern of the first shot

Diffraction pattern of the second shot

M. Bieler | FLASH Operation at DESY | Aug. 8, 2012 | Page 11

FLASH user operation

FLASH

Schedule 2012-2013

M. Bieler | FLASH Operation at DESY | Aug. 8, 2012 | Page 12

FLASH accelerator studies and FEL studies:

Performed by experts with a little help from some experienced operators.

FLASH user runs:

Performed by operators with a little help from some experts.

Difficulties for Operators

Questions of a storage ring operator on his first day at an FEL:

First turn steering all day long?

Closed orbit? Closed bumps?

Betatron Tunes? Where are the resonances?

Beam Energy, RF-Phases? Not constant? Not known everywhere?

Dark Current? What's that?

Bunch length? Who cares?

Problems of a storage ring operator at an FEL:

Every slight change at the injector spoils the beam in the undulator section.

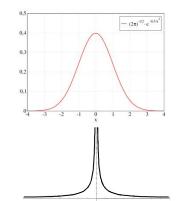
Every change in the energy distribution changes the beam optics.

Every change of RF-phases spoils the bunch length.

Dark current from the gun must not reach the undulator section.

Feedbacks, feedbacks, feedbacks.... Orbit, energy, peak current

Problems of a storage ring operator at an FEL:


Which tuning strategy works today?

Many tuning parameters (like luminosity tuning), but some can totally destroy SASE.

The SASE effect is less robust than luminosity.

Most lumi parameters have a Gaussian distribution,

many SASE parameters are steep peaks.

FLASH had (and in parts still has) a lot of childhood diseases.

Parts of FLASH were never meant to be a user facility.

FLASH was (and in parts still is) a testbed.

The level of automation and feedbacks is not optimal.

Operators were not part of the FLASH crew from the beginning.

(Some) Storage ring operators have a hard time with an FEL.

Operators are performing routine user operation now (but still need help for e.g. wavelength changes).

"FLASH performance is too much operator dependent" (from our funding agency)

Operator Training!

Automation of Procedures!

Feedbacks! (LCLS has 16 feedbacks running)

