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Introduction to Free Electron Lasers

FEL uses a bunch of unbound electrons 
• Amplification of stimulated emission due to a resonance condition
• Resonance condition setup with Electron/Radiation interaction in array of 

undulator magnets

Why use FEL?
• High Power (GW)
• Coherent Beam
• Short pulses(fs)
• High spatial and temporal resolution of Atomic and Molecular Processes

LCLS FEL WOA 2012
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Introduction to Free Electron Lasers

LCLS FEL WOA 2012

• Start with electron bunch entering periodic undulator array

• Electron will emit radiation spontaneously as it traverses the undulator
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Introduction to Free Electron Lasers

LCLS FEL WOA 2012

• Once enough X-Rays 
produced the co-propagating 
photon bunch will micro-bunch 
the electron beam

• Micro-Bunched electron beam 
will then emit radiation 
coherently to amplify and 
produce the FEL

• This process of generating an 
FEL is called Self Amplification 
by Stimulated Emission(SASE)
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Introduction to Free Electron Lasers

LCLS FEL WOA 2012

Poor Temporal 
Coherence(only 
coherent in each spike):

• Hundreds of ~fs spikes make 
up FEL pulse due to SASE

• Intensity builds up along
length of Undulator

Good Transverse 
Coherence:

• Coherence builds up along 
length of the Undulator  



Introduction to LCLS
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Introduction to LCLS: Electron Transport

LCLS FEL WOA 2012
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•120Hz Pulsed Bunches using 2856MHz RF
• RF Gun(6MeV), UV Drive Laser, Photo-Electric Emission

Cu Cathode, 20-350pC, 300-600µm Bunch
• Laser Heater(controlling slice energy spread)
• 1st Bunch Compressor(factor of ~10) BC1
• 2nd Bunch Compressor BC2 

Compress down to 0.5-10+µm(2fs-300fs)
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Introduction to LCLS: Photon Transport

LCLS FEL WOA 2012
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Near Experimental Hall Hutches:
AMO & SXR (Soft X-Rays)
XPP (Hard X-Rays) Far Experimental Hall Hutches:

XCS, CXI & MEC (Hard X-Rays)

6 Total Experiment Sites 



Deliverable X-Ray Parameters
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LCLS User Parameter Space

LCLS FEL WOA 2012

• Photon Energy
480eV to 10.6keV

• Photon Pulse Length
2 to 300+ fs

• Energy Bandwidth
0.2% (narrow) or 2%(wide)

•Normally 2+ Configuration Changes Per 24/hours. 
For now 1 user at a time, switch every 12 hours



Setting up the Machine
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Setting up the Machine

LCLS FEL WOA 2012

Keys to FEL Performance 

• Lowest Electron Transverse Emittance
• Optimal Electron Bunch Length
• Slice Energy Spread Sufficient to Generate SASE
• Optimal Undulator Configuration 
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Setting up the Injector

LCLS FEL WOA 2012

Starting point for good emittance is quality of beam off the 
cathode

• UV Drive Laser Transverse and Temporal Quality
• Scan Cathode to find optimal QE and Emittance spot
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Setting up the Injector

LCLS FEL WOA 2012

• Use injector optics to tune for best transverse emittance
OTR Screens and Wire Scanners for beam size measurements

• Can also examine slice emittance in X plane
Clue about temporal quality of laser
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Setting up the Linac

LCLS FEL WOA 2012

Goal: Preserve Injector Emittance

• Emittance Measurement Points(wires):  After  1st and 2nd bunch compressor , then 
upstream of Undulator
• Steer to Flat Orbit in Linac and Linac to Undulator Region
• Beta and Dispersion Match
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Setting up the Undulator

LCLS FEL WOA 2012

Goal: Keep the Electrons aligned with the X-Rays

• Beam Based Alignment at 4 energies to find flattest trajectory
Uses all 33 Undulator BPM’s and Undulator Quads
Offsets in RF BPM’s drift due to electronics issues 
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Setting up the Undulator

LCLS FEL WOA 2012

Undulator Translation Stage: Moves Horizontally to vary 
magnetic field value in each segment(use for Taper)

Beam 
Entrance 

Pole Faces are tilted 
slightly

Field varies(K value)
Horizontally in position 
along pole face
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Setting up the Undulator

LCLS FEL WOA 2012

Undulator Taper: Needed to match Undulator Field to electron 
bunch that is losing Energy to FEL creation

Linear Taper in 
Exponential  
Gain Section

Quadratic taper in 
post saturation 
regime

Helps maintain 
resonance 
condition after 
saturation
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Measuring the FEL Intensity

LCLS FEL WOA 2012

• Start by measuring Energy Loss of Electron Bunch across Undulator 
Suppress FEL by kicking with first corrector in the Undulator

• Then Calibrate the Gas Detectors measuring the FEL pulse
FEL interacts with GAS emitting photons picked up by PMT’s(minimally invasive) 

• Use FEE Gas Detector display for real time Pulse Energy Information, and 
Tuning



Tuning Methods
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Tuning Methods

LCLS FEL WOA 2012

Capability for Minimally Invasive Tuning

• Many experiments can handle tuning while beam is 
delivered
• Most gains are made in FEL pulse energy in this 
mode
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Tuning Methods

LCLS FEL WOA 2012

Often Design Quad settings do not produce Best FEL

• Start by setting up to design lattice, but sometimes we can double the FEL by
going off design

• Use Beta and Dispersion Matching Quads to tune
Drawback: Reproducibility 

Laser Profile Steering

• Start with uniform transverse profile, altering the profile will change bunch 
profile off  of the Cathode 

Undulator Taper Tweaks

• The better you can match the energy loss profile the more FEL you can produce       
• Has a dependence on charge,  energy, and bunch length
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Tuning Methods

LCLS FEL WOA 2012

Pulse Length in BC1 and BC2

• Can optimize directly on FEL Pulse Energy
Difficulties:

More Compression leads to more Energy Spread, which leads to more Jitter
Pulse lengths of ~10 fs require lower charge which means less FEL power

Closed Bumps in Early Linac Orbit

• Possible transverse wake field effects in the early part of Linac
• Can use feedback setpoints or closed orbit bumps to compensate



FEL Performance
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FEL Pulse Energy vs. FEL Photon Energy

LCLS FEL WOA 2012

Note: Gaps around 3 and 
5.5keV are due to lack of 
statistics
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Sources of Information and Figures

LCLS Physics:
A. Brachmann, W. Colocho, F. J. Decker, D. Dowell, P. Emma, J. Frisch, Z. Huang, R. Iverson,
H. Loos, H.D. Nuhn, J. Turner, J. Welch, J. Wu, F. Zhou

LCLS Control System and Diagnostic GUI’s
D. Fairley, J. Frisch, N. Lipkowitz, H. Loos, L. Piccoli, M. Zelazny

MCC Operations Group: 
S. Alverson, L. Alsberg, T. Birnbaum, C. Blanchette, A. Egger, M. Gibbs, R. Gold, A. Hammond, C. 
Hollosi, S. Kalsi, C. Melton, L. Otts, B. Ripman, B. Sampson, D. Sanzone, A. Saunders, P. Schuh, H. 
Smith, T. Sommer, M. Stanek, E. Tse, J. Warren

LCLS FEL WOA 2012
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Bunch Compression at SLAC

LCLS FEL WOA 2012

Setting Chirp(to create compression in a Chicane) 

The head of the bunch needs lower energy than the tail. So RF phase is 
shifted negative. This will cause the head to take a longer 
path(effectively slow down), and the tail to take a shorter path(effectively 
speed up) through the chicane, leading to longitudinal compression.

Fig 1: Beam in center 
of  DLWG;  RF phase 
= 0 Deg.

Fig 2: Beam in center 
of  DLWG; RF phase = 
-20Deg.

Fig 3: Beam in center 
of  DLWG;  RF phase 
= +20 Deg.

Blue line represents arrival of Bunch in center DLWG. Pulse approximates RF distribution 
in cavity at bunch arrival time. 

Note: Beam arrival time in the DLWG does not change(always on blue line when RF is 
pulsed). The RF phase can shift to align the beam on various parts of the RF pulse.

Horizontal is 
RF Pulse  

Vertical is Z 
position in 
DLWG 
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X-Band Chirp at SLAC

LCLS FEL WOA 2012

X-Band OFF: After BC1 X-Band ON: After BC1
• S-Band DLWG RF at 2.856GHz
• Use X-Band(11.424GHz) for more uniform Chirp
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Bunch Length Optimization

LCLS FEL WOA 2012

Choosing Bunch Length 

• Optimize on FEL Pulse Energy, Stability or Bandwidth

Blue: Bunch Length( A)
Green: FEL Pulse Energy(arb)
X-Axis: Klystron Chirp

FEL Goes to Zero at Max 
Compression
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Injector Laser Heater

LCLS FEL WOA 2012

•Use IR Laser “Heater” to blow up and randomize initial slice energy spread

•Optimize to eliminate Micro-Bunching induced from Bend Magnets in 
Compressors which will suppress SASE effect

• Setup: Use Transverse Cavity to streak Beam in Y Plane, then send beam in X-
Dispersive region to observe uniform slice energy spread increase
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Introduction to LCLS: Undulator Transport

LCLS FEL WOA 2012
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• Undulator Hall(100M)
• 33 total Segments, each containing fixed  magnets
• 6.8mm Vertical Gap, Bend in Horizontal Plane
• ~100 3cm periods per segment



37

Soft X-Ray Operation

LCLS FEL WOA 2012

• Soft X-Rays for LCLS < 2keV
• Emittance Requirements less demanding
• Optimal FEL at Longer Pulse Lengths
• Shorter Gain Length
• Laser Heater has stronger effect
• Energy Jitter in Linac is a problem at shorter pulse 
lengths
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Feedback Displays

LCLS FEL WOA 2012

Longitudinal Feedbacks
Matlab Based, ~5Hz

Energy Setpoints
Pulse Length Control

Transverse Feedbacks
EPICS Based, up to 120Hz

Ex: Injector Launch,
Launch into Undulator
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Feedback Locations

LCLS FEL WOA 2012
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Free Electron Lasers

LCLS FEL WOA 2012

• Setting up resonance condition Undulator

• As electron travels 1 period in the undulator, it slips behind a distance equal to 
one wavelength of the resonant X-Ray emitted

Electron(black dot) 
co-propagating with 
seed pulse
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FEL Spot Size in FEE

LCLS FEL WOA 2012

8.4keV FEL Spot Size


