

Machine Operation and Progresses in SSRF

WAO12 SLAC. USA 2012-08-10 Wenzhi ZHANG Manzhou Zhang Shanghai Synchrotron Radiation Facility

www.sinap.ac.cn

(Income and a set

Contents

- Introduction
- Operation statistics of SSRF
- Progresses in recent two years
- Maintenance

Bird's eye view of SSRF

Introduction -- History

- Dec. 25, 2004 -- Groundbreaking;
- Oct. 2007 --- Commissioning
- May, 2009 ---- Open to users
 - 7 Beamlines -- in the first phase
 - 2 bending magnets; 2 wiggler ; 3 in-vacuum undulators
 - 5 Beamlines are under construction
 - 24 Beamlines are planed to build in next 3 years

Beam Parameters (Operation mode)

Parameter / unit	Design value	Measured value
Beam energy / GeV	3.50	3.50 ± 0.02
Beam current / mA	200~300	210 (operation current) 300 (achievable)
Tune (H, V)	22.22, 11.29	22.220, 11.290 (± 0.002)
Natural emittance / nm.rad	3.89	3.8 ± 0.2
Coupling	1%	0.3%
Natural chromaticity (H, V)	-55.7, -17.9	-55.8, -17.9 (LOCO model) -50, -15 (direct measurement)
Corrected chromaticity (H, V)		1.5, 0.5
RMS energy spread	9.845×10^{-4}	0.001
Energy loss per turn / MeV	1.435	~1.45 (without ID, from RF power)
Momentum compaction factor	4.27×10^{-4}	$(4.2 \pm 0.2) \times 10^{-4}$
RF voltage / MV	4.0	1.51, 1.55, 1.54 (Three cavities)
RF frequency / MHz	499.654	499.654 (depend on machine conditions)
Synchrotron frequency	0.0072 (V _{RF} =4.0MV)	0.0075 ± 0.0002
Natural bunch length / ps	13	14 ± 2
Injection efficiency		>95% (from BS DCCT to SR DCCT)
Beam lifetime / hrs	>10	~17 (0.3% coupling, 210 mA)

中國科学院上海走到物理研究所 Shanghai Institute of Applied Physics, Chinese Academy of Sciences

SINAP

Machine Operation Status

Operation Schedule

Year	User time (hours)
2009(May-Dec.)	2094
2010	3829
2011	4370
2012	4600

2011.9-2012.7

Availability & MTBF during scheduled user time

Hardware faults

Progresses

Top up preparation

Control software panel

Filling pattern control (up: initial, below: 3hours top-up operation

Topup injection

Top up commissioning

During machine shutdown, 4 stepper motors are added to the 4 injection kickers to adjust tilt. After online optimizing, the injection perturbation in vertical plane reduced from 150micron to 10 micron , and +/- 50 micron in horizontal

Lower Emittance Lattice mode

MOGA (Multi-Objective Genetic Algorithm): Is used to find Low ε lattice

国科学院上海应用物理研究所

Lower emittance optimization

Parameter / unit	Ope. Mode	Mode A	Mode B
Tune (H, V)	22.22, 11.29	23.31, 11.23	23.31, 11.23
Natural emittance / nm.rad	3.89	3.51	2.88
Eff. Emitt. in LSS / nm.rad	4.86	4.25	4.00
Eff. Emitt. in SSS / nm.rad	5.17	4.58	4.15
Natural chromaticity (H, V)	-55.7, -17.9	-69.9, -20.5	-74.5, -26.7
Momentum compaction factor	4.27×10^{-4}	4.03×10^{-4}	4.13×10^{-4}
β_x , β_y , η_x at the center of LSS /m	10.00, 6.00, 0.15	10.00, 6.00, 0.13	6.15, 1.71, 0.13
β_x , β_y , η_x at the center of SSS /m	3.60, 2.50, 0.11	3.00, 2.00, 0.087	3.71, 1.90, 0.11

Lower-emittance mode commissioning and calibration

- ♦ LOCO calibration, beta beating~0.40%/0.45%
- Injection efficiency ~60%
- Coupling~0.3%, Beam life time 17 hours@210mA

Main parameters measurement for low emittance

	design	First measure	Second measure
Tune	23.31, 11.23	23.309, 11.238	23.316, 11.235
Beam Emittance	2.88	$\textbf{2.9} \pm \textbf{0.2}$	$\textbf{3.0} \pm \textbf{0.2}$
Natural Chromaticity	-74.5, -26.7	-67, -23	
Corrected Chromaticity		2.0, 3.0	
Injection Efficiency		~50%	60%~70%
Beam Current		210	210
Coupling		0.5%	0.3%
Beam Lifetime		15	17
Alpha 1	4.13e-4	$(4.2 \pm 0.2)e-4$	
Synchrotron tune	0.0075	0.0074 ± 0.0002	
RMS Beta Beating		0.70%, 0.80%	0.40%, 0.45%

Beablines commissioning results

Beam lines	Brightness	Other merit
BL08U	+20%	
BL13W	_	Beam size decreased
		Ionization chamber IO
BL14W	+50%	decreased
BL14B	+8%	Much stable
BL16B	+7%	Scattering background -10%
BL15U	+30%	Energy resolution
BL17U	_	

Maintenance

>Routine maintenance every two weeks

- check hardware according to plan
- RF commissioning 5~6 hours

Summer shutdown

Other problem we meet

VARIAN vacuum gauge

In 2006, some problems had been found with cathode shortcutting

- 2007--2010 , there are 48 filaments which have burned (total 170) at storage ring
- 2010-- 2012 , same case for LINAC and Booster
- The average life time is about 3 years.
- We can not get enough support from VARIAN.

眤图网 www.nipic.com BY; blackmumu

NO:20100906194036007214