DESIGNING OF THE LASER DRIVEN DIELECTRIC ACCELERATOR

小山 和義 A)、松村 陽介 B)、上坂 充 B)、吉田 光宏 A)、夏井 拓也 A)、アイミアディング アイミドラ C) A)KEK, B)東大原子力, C)コッククロフト研

この研究は科研費 (C) 24510120 で行われた。.

K. KOYAMA, et al. The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
Requirements

Electron / X-ray is much easier to make the compact source.

Energy deposition; LET (linear energy transfer) \(e/x < \) ion
\[\text{LET(keV/µm)} < 1 ; > 100 \]

The beam size (irradiation area) is smaller than 1 µm.

The charge is 0.01 fC to 0.1 fC. \(\approx 10^2 - 10^3 \) electrons/µm²

The beam energy is several tens keV to 1 MeV.

The pulse width is sub fs. \((\mu^3\text{-bunch}) \)

The exit of the accelerator and specimen are observed through the transparent window.

A laser-driven dielectric accelerator, i.e. photonic crystal accelerators, makes it possible to realize a tabletop/mobile system.
Structures of PCA

Phase Modulation Masked Structure

Silica, $\lambda=800\text{nm}$, $E_z=830\text{ MV/m}$

Wave Guiding Structures

Silica, $\lambda=1890\text{ nm}$, $E =400\text{ MV/m}$

Silicon, $\lambda=2200\text{nm}$, $E_z=400\text{ MV/m}$

Alternate Direction of the Field is Produced by the Optical Path-difference

Polarization

Laser pulse

Electric field of the laser

E-field on the axis

Fave front

K. KOYAMA, et al. The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
If the initial electron is non-relativistic, the grating constant must be gradually changed from small value to the laser wavelength.

\[
L_G = 2L_P
\]

\[
\frac{H_P}{\lambda_L} = \frac{1}{2(n-1)}
\]

\[
D \leq \frac{2L_P^2}{N\lambda_L}
\]

\[
L_G \leq \lambda_L
\]

\[
\frac{\nu_0}{c} = \frac{L_G}{\lambda_L}
\]
\[L_G = 2L_P \]
\[\frac{H_P}{\lambda_L} = \frac{1}{2(n-1)} \]
\[D \leq \frac{2L_P^2}{N\lambda_L} \]
\[L_G \leq \lambda_L \]
\[\nu_0/c = L_G/\lambda_L \]

If the initial electron is non-relativistic, the grating constant must be gradually changed from small value to the laser wavelength.

In a real situation, the refractive and interference effects deform the field structure. The asymmetry of the field, higher harmonics of the field relaxes the matching condition.

Numerical simulation

K. KOYAMA, et al. The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
FDTD-simulation

FDTD (Finite-Difference Time-Domain method) simulation software package developed at MIT to model electromagnetic systems.

http://ab-initio.mit.edu/wiki/index.php/Meep

Intensity of the laser pulse; \(I_L = 10^{13} \text{W/cm}^2 \) (8.7GV/m) on entrance surfaces of dielectric.
Laser wavelength; \(\lambda_L = 1.55 \text{μm} \).
Channel width; \(D = \lambda/4 = 0.39\text{μm} \).
Pillar height; \((H_p = 0.9\lambda = 1.5\text{μm}) \) varied.

K. KOYAMA, et al. The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
Field strengths in xt-space for different grating constants

\[E_{\text{acc}} = \frac{1}{L} \int_0^L E_x(x, t) \, dx \]
\[x = vt + x_0 \]
Acceleration field along the axis

Field strengths in xt-space for different grating constants

\[E_{acc} = \frac{1}{L} \int_0^L E_x(x, t) \, dx \]

\[x = vt + x_0 \]

very sensitive to the initial phase of the injection

K. KOYAMA, et al. The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
Optimum Pillar Height

$I_{th}=10^{13}$ W/cm2 (1 J/cm @ 100fs) ; $E_{th}= 8.7$ GV/m is assumed.

$\lambda_L = 1.55 \mu$m
$L_G = 1.55 \mu$m

$L_p/L_G = 0.6$
$L_p/L_G = 0.5$
$L_p/L_G = 0.4$

$I_{th} = 10^{13}$ W/cm2 (1 J/cm @ 100fs) ; $E_{th} = 8.7$ GV/m is assumed.

K. KOYAMA, et al. The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
Optimum Pillar Height

$I_{th} = 10^{13} \, \text{W/cm}^2 \, (1 \, \text{J/cm} @ 100\text{fs}) \, ; \, E_{th} = 8.7 \, \text{GV/m} \, \text{is assumed.}$

$Optimum \, parameters \, of \, the \, structure \, are \, L_p/L_G \approx 0.5 \, \text{and} \, H_p/\lambda_L \approx 0.9.$

$\lambda_L = 1.55 \, \mu m \, \text{and} \, L_G = 1.55 \, \mu m$
Acceleration from the low energy in the constant grating period

\[\frac{L_G}{\lambda_L} = 1.0 \]

K. KOYAMA, et al.

The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
Acceleration from the low energy in the constant grating period

Slow electron can be accelerated even if the period is constant.

K. KOYAMA, et al. The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
Acceleration from the low energy in the constant grating period

Slow electron can be accelerated even if the period is constant.

Acceleration field is very sensitive to the injection phase.

K. KOYAMA, et al. The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
Laser intensity = 10^{13} W/cm² ($E = 8.7$ GV/m)
Laser intensity = 10^{13} W/cm2 (E = 8.7 GV/m)

Accel. length to get 1 MeV,
3 mm for $E_0 = 10$ keV
2.2 mm 70 keV
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Expression</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator Length</td>
<td>L_A</td>
<td>3 mm</td>
</tr>
<tr>
<td>Channel width</td>
<td>W</td>
<td>0.1 mm</td>
</tr>
<tr>
<td>Irradiation Area (per side)</td>
<td>$A = W L_A$</td>
<td>$3 \times 10^{-3} \text{cm}^2$</td>
</tr>
<tr>
<td>Laser Intensity (damage threshold)</td>
<td>I_{th}</td>
<td>10^{13} W/cm^2</td>
</tr>
<tr>
<td>Two sides irradiation</td>
<td>Laser Power (total)</td>
<td>$P_L = 2P_{th}A$</td>
</tr>
<tr>
<td></td>
<td>Pulse width</td>
<td>$\tau_L = L_A/v_{eff}$</td>
</tr>
<tr>
<td></td>
<td>Energy (total energy)</td>
<td>$E_L = P_L\tau_L$</td>
</tr>
</tbody>
</table>

K. KOYAMA, et al. The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
In order to decrease the laser energy, the laser pulse must locally irradiate around the electron bunch.
Accelerator and Laser Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator Length</td>
<td>L_A</td>
</tr>
<tr>
<td>Channel width</td>
<td>W</td>
</tr>
<tr>
<td>Irradiation Area (per side)</td>
<td>$A = W \cdot L_A$</td>
</tr>
<tr>
<td>Laser Intensity (damage threshold)</td>
<td>I_{th}</td>
</tr>
<tr>
<td>Laser Power (total)</td>
<td>$P_L = 2P_{th}A$</td>
</tr>
<tr>
<td>Pulse width</td>
<td>$\tau_L = L_A/v_{eff}$</td>
</tr>
<tr>
<td>Energy (total energy)</td>
<td>$E_L = P_L\tau_L$</td>
</tr>
<tr>
<td>Number of Pulses (one side)</td>
<td>N</td>
</tr>
<tr>
<td>Laser Power per Pulse</td>
<td>$P_{L,N} = P_L/N$</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>$\tau_{L,N} = \tau_L/N$</td>
</tr>
<tr>
<td>Energy (total) (per pulse)</td>
<td>$E_{L,N} = E_L/N$</td>
</tr>
<tr>
<td>Laser Power per Pulse</td>
<td>$P_{L,N} = P_L/N$</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>$\tau_{L,N} = \tau_L/N$</td>
</tr>
<tr>
<td>Energy (total) (per pulse)</td>
<td>$E_{p,N} = E_L/2N^2$</td>
</tr>
</tbody>
</table>

- **1 MeV**
 - Accelerator Length: 3 mm
 - Channel width: 0.1 mm
 - Irradiation Area (per side): $3 \times 10^{-3} \text{cm}^2$
 - Laser Intensity (damage threshold): 10^{13} W/cm2
 - Laser Power (total): 60 GW
 - Energy (total): 3 J
 - Number of Pulses (one side): 10
 - Laser Power per Pulse: 3 GW
 - Pulse Width: 50 ps
 - Energy (total) (per pulse): 1.5 mJ
Sketch of a fiber-laser-pumped accelerator

Optical microscope

Oscillator
Phase shifters
Amplifiers

Fiber laser

K. KOYAMA, et al. The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
Sketch of a fiber-laser-pumped accelerator

- Oscillator
- Phase shifters
- Amplifiers
- Fiber laser

Thin window
SiN; 10 - 100 nm thick
Capacity of the dish; < 1 ml

atmospheric pressure
vacuum

K. KOYAMA, et al.
The 10th Annual Meeting of Particle Accelerator Society of Japan, Nagoya University, 3-5, Aug. 2013
1. The deformation of the wavefront in the phase-modulation-masked-type accelerator relaxed the matching condition. The slow electron to be accelerated even under the geometry of $L_G=\lambda_L$.

2. The electron initially at the low energy of 20 keV felt the acceleration field strength of 20 MV/m and gradually felt higher field as the speed was increased. The ultra relativistic electron felt the field strength of 600 MV/m.

3. Restrictions on the laser is relaxed by adopting sequential laser pulses. The required laser power is estimated to be 3 GW/pulse when ten pairs of sequential laser pulse is irradiated.