ニュースバルにおける六極電磁石追加によるビーム寿命改善 INPROVEMENT OF BEAM LIFETIME BY ADDITIONAL SEXTUPOLE FAMILIES AT NEWSUBARU

皆川康幸#,A), 竹村育浩A), 庄司善彦B)

Yasuyuki Minagawa ^{#, A)}, Yasuhiro Takemura^{A)}, Yoshihiko Shoji^{B)} ^{A)} Japan Synchrotron Radiation Research Institute (JASRI) ^{B)} LASTI/NewSUBARU, University of Hyogo

Abstract

The electron storage ring NewSUBARU has been operated with 1.0 GeV top-up mode. Following the request for higher stored beam current, we have adjusted sextupole families at dispersion free sections for the long beam lifetime. As a result, we succeeded to raise the top-up beam current from 250 mA to 300 mA. In this paper, we report results of machine studies for the improvement of beam lifetime in chronological order.

1. はじめに

ニュースバル蓄積リングでは、1.0GeV のトッ プアップ運転での利用運転が行われており、利用時 の蓄積電流値を上げる事が望まれていた。ニュース バルでトップアップ運転のビーム電流値を決めてい るのは、入射電荷量に対する放射線安全上の制限で あり、蓄積電流の維持に必要な入射効率とビーム寿 命の改善が蓄積電流値の増加に繋がる。

これまで入射効率については、入射ビームトラン スポートラインでの Q-scan による入射マッチング等 を行う事で改善はなされており、挿入光源非稼働時

(ID gap open) で入射効率 95%、稼働時(ID gap close) で 80%を達成している。これにより、トップ アップ運転が維持出来るビーム電流値が 2011 年に 220mA であったのが、2012 年に 250mA と上がって きた^[1]。

より高い蓄積電流での安定したトップアップ運転 を維持する為には、長尺アンジュレータ(LU)稼働 によるビーム寿命の短縮と、入射効率劣化の改善が 必要になっている。このために dispersion free section に設置した六極電磁石によってダイナミックアパー チャを改善してビーム寿命を増加させることを試み てきており、本報告ではこの改善の様子を時系列順 で記していく。六極電磁石追加によるダイナミック アパーチャの簡易な計算も行っているので、実際の 結果との比較も示す。

ビーム寿命が伸びた事で 300mA のトップアップ 運転を定常的に行えるようになったことを最後に記 す。

2. 六極電磁石の設置位置

ニュースバルは、6 つの偏向セルを持つレースト ラック型で、長直線部が2箇所、短直線部が4箇所 ある。Dispersion free の短直線部には defocus (S1)、 focus (S2)の六極電磁石が1直線部当たり2台ずつあ り、長直線部には defocus (S3)の六極電磁石のみが1 直線部当たり2台設置されているが、focusing 六極 電磁石は無かった。ただ、長直線部のひとつに設置 した LU の前後には多機能補正電磁石を置き、focus (S_L)の六極磁場を発生する補助コイルを巻いてあっ た^[2]。そこで、2013年春に長直線部の垂直ステアリ ング電磁石を多機能電磁石に交換し、focusing 六極 電磁石 (S4)として機能するようにした。Figure 1 に現在の六極電磁石の設置位置を示す。

Figure 1: Betatron and dispersion functions and locations of sextupole magnets in a quarter of the ring.

3. 六極電磁石の最適化

3.1 S1とS2の最適化

2011 年 10 月時点では、S1 と S3 が共通の電源で 動作しており、dispersion free section の六極電磁石は 2ファミリーだけであった。このとき、ID gap close (LU = 34.8mm、SU = 40.0mm)の状態で、ビーム寿 命が伸びる最適な S1 (S3=S1)と S2 を調査している。 Dispersion section の 2 ファミリーはクロマティシ ティーを決めているので、調整対象にはしない。S1 と S2 のキック値を変化させた時の I τ (蓄積電流と ビーム寿命の積)を等高線表示で示したのが Figure 2 である。従来からの利用運転時の値は S1 = -10.1 と S2 = 5.9 であった。ここで数値の+は focus、-は

[#] minagawa@spring8.or.jp

defocus を表している。

Figure 2 では S1 (S3) = -14.1、S2 = 9.9 に設定する とビーム寿命が最も伸びるが、この状態で入射を行 うと入射効率は利用運転時のときより 5%ほど悪く なってしまった。長寿命の設定と高入射効率の設定 が一致せず、このままではトップアップ運転に使用 出来ないことが分かった。

Figure 2: Contour line plot of $I\tau$ in S1 x S2 plane.

3.2 S3sub による調整

2012 年 1 月、S1 と S3 の電源は共通のままであっ たが、S3 に補助コイルを巻き (S3sub と呼ぶ)、それ を調整してビーム寿命の変化を見てみた。S3sub に 電流を流すと 10A まではビーム寿命が伸びたが、そ れ以上は飽和してビーム寿命は伸びなかった。

そこで S3sub を 10A に固定して、S1 (S3)と S2 の キック値を変化した時の I τ を等高線表示で示した のが Figure 3 である。Figure 3 では S1 (S3) = -16.1、 S2 = 11.9 に設定するとビーム寿命が最も伸びる。こ のまま入射をすると蓄積ビームを削ってしまったが、 入射バンプの調整によってこれを解消し、入射効率 も利用運転時と同程度になった。

Figure 3: Contour line plot of $I\tau$ in S1 (S3) x S2 plane with fixed S3sub=10A.

3.3 S3 を独立させて調整

S3sub の調整から、S3 の電磁石を S1 ファミリー から独立させる有効性が分かったため、2012 年夏に S3 を S1 から切り離して独立で操作出来る電源に接 続した。S3sub の操作でビーム寿命が最も長くなっ た S1 = -16.1、S2 = 11.9 に設定しておき、S3 の最適 値を測定したのが Figure 4 である。S3 = -8.1 の設定 でビーム寿命が最も伸びている。

Figure 4: Optimization of S3 for larger IT.

3.4 S3 を分離して調整

長直線部は2箇所あり、それぞれLUとOptical Klystron (OK)が設置されているが、利用運転はLU のみを稼働させてLU 側とOK 側のリング対称性が崩れた状態で運転している。LU はプラナー型なので、特に垂直方向の対称性の崩れが大きい。これに対応させる為にS3を2ファミリーに分けて、LU 側をS3_LU、OK 側をS3_OK として、各々独立した電源で制御することにした。

最適値を調査する際には、LU 側と OK 側のバラ ンスを調整パラメーターとするように、S3_LU+ S3_OK = -16.0 になる条件を課した。因に、この条 件を外すと、入射効率が劣化または入射が不安定に なった。Figure 5 に S3_LU と S3_OK を個々に調整 したときの結果を示す。

この結果では S3_OK = -12.0、S3_LU = -4.0 のビー ム寿命が最も伸びて、前節で最もビーム寿命が長 かった S3_OK = S3_LU = -8.1 よりも、約 6%伸びた。 利用運転では多機能電磁石の Sextupole 成分 (S_L) も 使用しているので、この調整でも S_L を使用すると ビーム寿命が伸びる組み合わせが変わり、S3_OK = -10.0、S3_LU = -6.0 で最もビーム寿命が伸びた。

Figure 5: Optimization of S3_LU and S3_OK.

この設定で ID gap close の状態での入射効率は S3_OK = S3_LU = -8.1 の時とほぼ同じであったが、 ID gap open の時の入射効率は S3_OK = S3_LU = -8.1 の設定の時の入射効率までは届かなかった。ID gap open ではリング対称性が保たれており、S3 の対称 性を崩すのは逆効果であったと解釈出来る。

3.5 追加した S4 を使用して調整

2013 年 7 月に S4 の最適化を行った。初期設定は 利用運転時の設定とし、S3_OK = -10.0、S3_LU = -6.0 の設定で S_Lも励磁していた。測定結果を Figure 6 に示す。この結果では、S4 を変更してもビーム寿 命は伸びる事はなかった。

S4 と同じ役割の短直線部のS2 と組み合わせ、 ビーム寿命の2次元マップをとった。最適なS4 と S2 に強い相関は見られたが、S4=0の場合と比較し て、有意なビーム寿命の改善は得られなかった。

Figure 6: Optimization of S4 and S2.

4. ダイナミックアパーチャの計算

前の章では実測結果を示したが、各設定でダイナ ミックアパーチャを計算し、実測結果を説明出来る かを検討することにした。

4.1 計算について

ダイナミックアパーチャの計算には Mathematica による手製プログラムを用いた。線形電磁石のみの セクションは Transfer matrix で計算し、6極電磁石 のキックは thin lens 近似とした。これに LU が close 時の垂直集束力を加えた簡易な計算である。Tune は 実際の運転と同様に LU が open の時とほぼ同じ値に なるように四極電磁石の値を調整している。ビーム の初期条件は LU 中心位置の x、y をパラメーターと し、500 回転出来るギリギリをダナミックアパー チャ境界としている。

4.2 S1 と S2 の最適化の計算

3.1 節で行った S1 と S2 の最適値を求める結果に ついて計算を行ってみた。その結果が Figure 7 であ る。実際の測定結果では S1 = -14.1、S2 = 9.9 に設定 すると最もビーム寿命が伸びたが、計算では S1 = -14.1、S2 = 9.9 のダイナミックアパーチャが最も小さ く、実測結果を説明出来なかった。

4.3 S3の最適化の計算

3.3 節で行った S3 の最適値を求める結果について 計算を行ってみた。その結果が Figure 8 である。実 際の測定結果で S3 = -8.1 の方がビーム寿命が伸びて おり、計算結果でもダイナミックアパーチャは広 がっている。簡易な計算ではあるが、リング非対称 性の影響に関しては実際の結果を説明できていると 考えられる。

Figure 7: Calculation of dynamic aperture for two setting parameters of S1 and S2.

Figure 8: Improvement of dynamic aperture by adjusting S3.

4.4 議論

ビーム寿命は、我々が計算した on momentum の ダイナミックアパーチャだけでは評価出来ない。垂 直ビームサイズに対するビーム寿命変化の測定結果 から、1.0GeV 利用運転時にはビーム寿命の 6 割強 が Touscheck 寿命の寄与であると考えられている。 従って、計算による寿命評価には momentum compaction factor の非線形項の変化等も必要となる。長 寿命設定と高入射効率設定の不一致は、この複雑さ の反映と解釈出来る。

より正確な評価には、多くのパラメーターを考慮 したシミュレーションが必要となるが、それは今後 の課題である。

5. ビーム電流値向上

ここまでの結果をもとに利用運転では S3_OK = S3_LU = -8.1 の設定でビームの積み上げを行い、ID gap close 後に S3_OK = -10.0、S3_LU = -6.0 に変更し て運転している。

運転サイクルによって入射効率のばらつきがある が、この運転の採用によって、2012 年夏以降は、常 に蓄積電流 300mA のトップアップ運転を維持出来 るようになった。典型的な利用運転時の蓄積電流を Figure 9 に示す。

Figure 9: Typical stored current during the top-up operation.

6. まとめ

ビーム寿命を伸ばすために dispersion free section に設置された六極電磁石 (S1、S2、S3) 及び新たに 追加された六極電磁石 (S4) の調整を行った。S1、 S2、S3 を最適化することでビーム寿命を約 10%伸 ばすことが出来た。ビーム寿命が伸びた事で 300mA のトップアップ運転を定常的に行えるようになって いる。

また、簡易ではあるが計算によって実際の測定結 果に沿った結果が出ており、実際の調整の方向性を 見いだす為のシミュレーションとして使えそうな結 果が出た。

参考文献

- Y. Minagawa, et al., "第 9 回日本加速器学会年会報告 集", 2012, THPS043, p.987
- [2] Y. Minagawa, et al., "第 8 回日本加速器学会年会報告 集", 2011, TUPS080, p.1076