PASJ2014-SUP027

光陰極直流電子銃無塵化技術の開発

DEVELOPMENT OF A DUST-FREE TECHNIQUE FOR A HIGH-FIELD PHOTOCATHODE DC ELECTRON GUN

永井良治 ^{*A)}、沢村勝 ^{A)}、西森信行 ^{A)}、羽島良一 ^{A)} Ryoji Nagai^{*A)}, Masaru Sawamura^{A)}, Nobuyuki Nishimori^{A)}, Ryoichi Hajima^{A)} ^{A)}Japan Atomic Energy Agency (JAEA)

Abstract

In order to realize a high-brightness and monochromatic light source based on accelerator technologies, increasing of the cathode surface field of an electron gun is mandatory. Dust-free technique is a key technology to realize a high-field electron gun. We propose a new style dust-free technique. In this paper, R&D status and result of the preliminary test of the dust-free technique are reported.

1. はじめに

これまでの加速器技術開発において、電子ビームの 高輝度化、加速器の小型化を目的とした加速器要素の高 電界化が進められてきた。表面に付着したダストが原因 と思われる電界放出が高電界化の障害となっていた。こ の問題を解決するために様々な方法での表面清浄化技術 が試みられてきた。特に超伝導加速器の技術開発では、 高圧純水洗浄などのクリーン技術^[1]の開発により大き な性能向上がなされた。光陰極直流電子銃の開発におい ても、これまでの加速器要素開発と同様に、ダストによ り電子の引き出し電界が制限されるという問題が生じて いる^[2]。真空中の高電圧絶縁性能にダストが関わって いることは一般的に知られている^[3,4]が、ダストに起 因すると思われる現象は、それ自体に不明な点が多く、 十分な対策が講じられていない。

これまでの光陰極直流電子銃の開発では、超伝導加 速器でのクリーン技術を参考に、組み立て前の電子銃 部品の表面を高圧純水洗浄およびガスブローによりダ ストを除去し、組み立てをクラス 100 以下のクリーン ブース中で行うことで、電子銃真空容器中へのダストの 混入を防止するという方法を採用してきた。しかし、組 み立て工程中でのダストの混入を完全に防ぐことがで きず、高電圧 (500 kV 程度以上) かつ高電界 (数 MV/m 以上)でダストの影響が現れ、電子ビームの引き出し電 界が制限されている。この問題を解決し、最先端の電子 ビーム駆動型光源で要求されている電子ビーム性能^[5] を得るには、真空高電圧でのダストの挙動を解明し、ダ ストに起因する問題を解決する必要がある。そこで本報 告では、これまでの無塵化手法の問題点について検討 し、新たな手法の提案をする。また、新たな手法による 無塵化のための予備試験を行ったのでその結果について も報告する

高電界光陰極直流電子銃と無塵化技術

日本原子力研究開発機構 (JAEA) では、電子ビーム駆動型光源用加速器として期待されているエネルギー回収型リニアック (ERL)^[6]の電子源として光陰極直流電子銃の開発を行ってきた^[2,7]。ERL は超伝導加速器を 主加速器とし、高輝度、大電流電子ビームの CW 加速 が可能な加速器である。従って、ERL 用の電子源とし

* nagai.ryoji@jaea.go.jp

ては高輝度、大電流電子ビームを CW で生成可能であ る必要がある。現在の加速器技術でこれを達成する方法 として、半導体光陰極を備えた光陰極直流電子銃を選択 した。光陰極直流電子銃は半導体光陰極から高繰り返し レーザーにより引き出された電子を電極間に印加された 直流電界により加速することで高輝度、大電流電子ビー ムを CW で生成する電子銃である。高輝度の電子ビー ムを得るには、空間電荷力によるエミッタンスの増加を 抑えるために 500 kV 程度以上の加速電界が必要である とされ^[8]、JAEA では、直流高電圧を安定に印可するた めの問題を解決し、光陰極直流電子銃により 500 kV で の電子ビーム生成に成功している^[2]。

この光陰極直流電子銃の開発過程において、高電圧 (500 kV 程度以上)かつ高電界(数 MV/m 以上)でダスト の影響と思われる放電、電荷放出が発生し高電圧印可 が困難になった。そこで、電極間隙を広くし、電極に印 可する電界を低くすることで、この問題を解決した。そ の結果、500 kV を印可した際に得られる光陰極表面の 電界は 5.8 MV/m^[2] に制限された。電子銃で生成される 電子ビームのエミッタンスと陰極表面の電界の間には Fig.1に示すような関係があり^[9]、高輝度の電子ビーム を生成するには陰極表面に高電界を印可し、電子ビーム を引き出す必要がある。電子ビームの熱エネルギーが小 さいことで超低エミッタンス電子ビームを得られるこ とが光陰極直流電子銃の特徴であるが、熱エネルギーが 80 meV 程度であったとしても、バンチ電荷 77 pC を超 える電子ビームで規格化エミッタンス 0.1 mm-mrad 以 下の電子ビームを生成するには 10 MV/m 程度以上の引 き出し電界が必要であることが、この図から分かる。高 電圧かつ高電界で動作する光陰極直流電子銃を実現す るには、電子銃を無塵化することで、ダストに起因する 放電、電界放出の問題を解決する必要がある。

3. 無塵化手法の提案

上述のように、高電界光陰極電子銃を実現するには 真空容器中のダストを完全に除去し、ダストに起因する 放電や電界放出の問題を解決するために、これまでは、 高圧純水洗浄やエアブローにより、無塵化した部品をク リーン環境下で組立てるという手法を採用してきたが、 問題を解決できていない。これまでの無塵化手法の問題 点は大きく2点あると考えている。まず、1点は最終段 階の真空容器組立行程におけるダクトの混入のモニタが

PASJ2014-SUP027

Figure 1: Normarized emittance vs electric field on the cathode surface.

不十分であったことである。もう1点は、最終組立工程 においてはダストの混入を極力防ぐという、考え方で無 塵化を行われてきたために、組立後の真空容器から混入 したダストの除去方法が検討されていないことである。

真空容器中へのダスト混入のモニタについては、ク リーンブース内のダクトをモニタしているのみで、真 空容器への混入の有無のモニタを行っていない。また、 用いているパーティクルカウンタについても、クリーン ルームで用いられている通常のパーティクルカウンタ であり、検出できるダストの最小粒径は0.3 µmであり、 ナノメートルオーダーの微小なダストはモニタ出来て いない。そこで、Fig.2に示すように、組立時の真空容 器にクリーンなガスをフローし、凝縮粒子カウンタ^[10] を用いてナノメートルオーダーのダストも含んだ組立 時のダスト混入をモニタすることを提案する。

Figure 2: Schematic view of the dust monitoring method by a CPC.

組立後の真空容器から混入したダスト除去する方法 としては繰り返し排気を行う方法^[11]や容器内へのガス ブロー^[12]が知られているが、小さなダスト、特にナノ メートルオーダーのダストが帯電して吸着する可能性 があるため、これまでに知られている方法では不十分で ある。また、帯電、吸着したダストの除去方法としては 大気中であれば、イオンガンなどでイオン化したガスを ブローすることでの除電が効果的であるが、通常のイオ ンガンはグロー放電などによりガスをイオン化してい るので、真空中では使用できない。そこで、真空窓を通 して真空容器中に紫外線を照射してガスをイオン化す る紫外線アイオナイザを用いてイオン化ガスのブロー と真空排気を繰り返し行う方法を提案する。

4. 予備試験

ここで提案した無塵化手法が実際に機能するかを段 階的に確認するために、アクリル製の容器を用いて、簡 単な予備試験を行った。アクリル容器に HEPA フィル タを介した清浄な空気をフローしながら、通常のパー ティクルカウンタと凝縮粒子カウンタでダストの様子 をモニタすることで、ガス置換の効果および通常のパー ティクルカウンタと凝縮粒子カウンタの差を確認した。 また、今回の予備試験は大気中で行ったので、イオンガ ンを用いたガスブローの効果についても確認した。

予備試験は Fig. 3 に示すようなセットアップで行っ た。アクリル容器(容積、約5300 cc)に 2 段の HEAP フィルタを介した空気をポンプで流し (5 ℓ/min)、アク リル容器から流れ出る空気の一部を通常型パーティク ルカウンタ (リオン社製、KC-01C)と凝縮粒子カウンタ (TSI 社製、CPC 3776)で計測することでアクリル容器 中のダストをモニタするというものである。空気の出 口にも、逆流によるダストの混入を防ぐために HEPA フィルタを取り付けてある。アクリル容器側面には直径 10 mm 程度のガスブローのための栓を設けてあり、こ こから通常のイオンガンでガスブローした。また、ガス ブローする際のダストの混入防止のためにアクリル容 器近傍にクリーンパーティション (日本エアーテック社 製、ACP-896-AH)を設置した。

Figure 3: Diagram of the setup for the preliminary test.

大気中のダストを含んだ空気をアクリル容器中に導 入するために、清浄な空気を流すためのポンプとクリー ンパーティションを停止して、アクリル容器側面の栓を 約 10 分間開放した。その後に、栓を閉じてポンプを起 動し、アクリル容器中の空気を清浄な空気に置換した。 その結果を Fig. 4 に示す。約 10 分間の置換により、両 方のカウンタの指示はほぼゼロになった。この結果か ら、アクリル容器中の空間に漂っているダストは空気 の置換によりを取り除けることが分かった。また、通常 のパーティクルカウンタと凝縮粒子カウンタでは約 100 倍の差があることから、真空容器中に混入するダストを モニタする場合は凝縮粒子カウンタを用いたナノメー トルオーダーのダストまでのモニタが無塵化のために

Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan

PASJ2014-SUP027

有用であること言える。

Figure 4: Result of the clean air permutation test.

次に、イオン化ガスブローによる壁面に付着したダ ストの除去効果を確認するために、清浄な空気をフロー するポンプ、クリーンパーティションを動作させた状態 で、側面の栓からイオンガンによりイオン化ガスを繰り 返しブローした。1回のブローは約5秒間行った。その 時の凝縮粒子カウンタでのダストのカウント数の変化 の様子を Fig.5 に示す。ピークの高さが交互に変化して いるのは、ブローするたびにダストの付着位置が移動 しているためと推測され、また、ブローを繰り返すこと で付着していたダストが減っていく様子が分かる。この ように、イオン化ガスをブローし、容器内に舞い上がっ たダストを含むガスをサンプルすることで、アクリル 容器の壁面に付着しているダストもモニタ出来ること、 さらに、舞い上がったガスを繰り返し置換することで、 壁面に付着し容器内に滞留しているダストも除去でき ることがこの試験から分かった。

Figure 5: Result of the gas blow test.

5. まとめ

真空中の高電圧絶縁性能にダストが関わっているこ とは一般的に知られているが、ダストに起因すると思 われる現象は、それ自体に不明な点が多く、十分な対策 が講じられていない。これまでは、超伝導加速器のク

リーン技術を参考に、組み立て前の電子銃部品の表面を 高圧純水洗浄およびガスブローによりダストを除去し、 クリーンブース中で組み立てを行うことで、電子銃真空 容器中へのダストの混入を防止してきた。しかし、組み 立て工程中でのナノメートルサイズの微小なダストの 混入を完全に防ぐことができず、電子ビームの引き出し 電界が制限されていたと思われる。そこで、この問題を 解決し、最先端の電子ビーム駆動型光源で必要な電子銃 を実現するために、凝縮粒子カウンタによるナノメート ルオーダーのダストの真空容器組立時のモニタと、イオ ン化ガスブローと繰り返し排気により真空容器からの ダスト除去を提案した。この手法による無塵化の実証の ための予備試験を行い、アクリル容器を用いた予備試験 では提案した方法でダストのモニタおよび無塵化が可 能であるという結果が得られた。今後は電子銃の真空容 器を用いて、無塵化試験を行い、さらに、無塵化により 高電界、高電圧の安定な直流電圧印加が可能になること を実証していく計画である。

参考文献

- [1] Hasan Padamsee, "RF Superconductivity", Wiley-VCH (2009).
- [2] N. Nishimori et al., Appl. Phys. Lett. 102, 234103 (2013).
- [3] R. V. Latham, "High Voltage Vacuum Insulation: Basic Concepts and Technological Practice", Academic Press, London, (1995).
- [4] William T. Diamond, J. Vac. Sci. Technol. A 16, 707-719 (1998).
- [5] "Energy Recovery Linac Conceptual Design Report", KEK Report 2012-4 (2012).
- [6] R. Hajima, et al., Rev. Acc. Sci. and Tech. 3, 121–146 (2010).
- [7] R. Nagai, et al., Rev. Sci. Instr., 81, 033304 (2010), N. Nishimori, et al., Phys. Rev. ST Accel. Beams, 17, 053401 (2014).
- [8] I. V. Bazarov and C. K. Sinclair, Phys. Rev. ST Accel. Beams, 8, 034202 (2005).
- [9] I. V. Bazarov, et al., Phys. Rev. ST Accel. Beams, 11, 040702 (2008).
- [10] http://en.wikipedia.org/wiki/Condensation_particle_counter.
- [11] 前羽良保、他、真空、33、909-915 (1990).
- [12] 前羽良保、他、真空、33、419-423 (1986).