PASJ2014-SUP036

Cバンドディスクロード型加速管の大電力 RF 試験

HIGH POWER RF CONDITIONING OF C-BAND DISK-LOADED TYPE ACCELERATING STRUCTURE.

櫻井辰幸^{#, A,B)}, 稲垣隆宏^{A)}, 安積隆夫^{A,B)}, 惠郷博文^{B)}, 鈴木大輔^{C)}, 三浦禎雄^{C)}, 大竹雄次^{A)}

Tatsuyuki Sakurai^{#, A,B)}, Takahiro Inagaki^{A)}, Takao Asaka^{A,B)}, Hiroyasu Ego^{B)}, Daisuke Suzuki^{C)}, Sadao Miura^{C)},

Yuji Otake^{A)} ^{A)} RIKEN SPring-8 Center

B) JASRI/SPring-8

^{C)} Mitsubishi Heavy Industry CO. LTD

Abstract

In general, an accelerating structure to accommodate both a high-gradient and a high RF pulse repetition rate is necessary in order to increase an opportunity of a user experiment and to lower production costs in XFEL. A C-band disk-loaded type travelling wave structure has been developed to aim at an acceleration gradient higher than 50 MV/m and an RF pulse repetition rate operation of 120 pps. The accelerating structure was designed to be a quasi-constant gradient structure with an RF-mode of TM01- $2\pi/3$. In order to reduce surface electric fields, we employed an ellipsoidal curvature shape around an iris aperture. We performed a high power RF test and conditioning of the manufactured accelerating structure. The acceleration gradient was achieved to be as high as 50.1 MV/m by the conditioning with 107 MW average RF power. Moreover, 120 pps operation was carried out and the structure was operated without any serious trouble.

1. はじめに

X 線自由電子レーザー(XFEL)の新たな将来計画を 考える上で、高電界で高繰り返し運転が可能な加速 管は重要なキーワードとなる。加速管の高電界化は 所定の電子ビームエネルギーを得るために必要な加 速器長の短縮が可能となる。これは加速器を建設す るためのコストを削減することに直結する。

XFEL の加速器は線形加速器なので、一組の実験 ユーザーにしか X 線レーザーを供給できない。利用 ユーザーを増やすためには高品質な電子ビームを複 数のビームラインに振り分ける技術が必要となる。 例えば SACLA では 400m の加速器の下流にパルス電 磁石を設置し、bunch-by-bunch で複数のアンジュ レータラインに電子を振り分け、異なる波長帯の X 線レーザーを複数の実験ユーザーに同時に供給する ことを計画している印。電子ビームの振り分けは ユーザーの利用機会が増えるが、ビームライン当り に供給される X 線レーザーのショット数はビームラ インの数に反比例して少なくなる。これの改善には 加速器の運転繰り返しを高くすることが有効である。 これらのことから、高電界で高繰り返し運転が可能 な加速管は加速器全体の製作コストの削減やユー ザー利用実験の機会の増加に大いに効果がある。

我々は 50 MV/m 以上の高電界・120 pps 高繰り返 し運転に対応し、なおかつ製造コストの削減を目指 した新しい C バンド加速管の開発を行った。この加 速管の設計の詳細と低電力試験用の 9 セル試験空胴 の製作と低電力試験の結果については文献[2,3]に示 す加速器学会等で既に報告している。この報告では 加速管の高電界化・高繰り返し化に向けた構造・熱 設計の結果と試作空胴を用いたシャントインピーダ ンス等の RF 特性の測定を行い、その結果、設計値 とほぼ同程度の値が得られることを確認した。また 本学会においても 1.8m の長さの C バンド加速管の 製作と RF 調整を三菱重工業で行った結果が報告さ れる^[4]。本報告では以上の設計・低電力試験・実 機製作を踏まえて、Cバンド加速管の大電力 RF 投入 時の健全性を調べるために、大電力 RF 試験を行っ た結果について報告する。

2.Cバンドディスクロード型加速管概要

ここで本加速管の設計定数について復習する。 Table 1 に開発した C バンド加速管の RF パラメータ を示す。また Figure 1 に加速管構造の断面模式図を 示す。

加速管は高電界化を目指すために準定勾配ディス クロード型で加速モードを TM01-2π/3 モードとした。 これにより加速管のシャントインピーダンスは 64MΩ/m に達し、設計上において加速管の高電界化 に向けた目処がついた。加速セルには周波数調整を 行うためのチューニング穴が設けられ、全体接合後 に各セルの共振周波数の調整を精密に行うことが出 来た。また加速管の構造をシンプルにしたことで、 製造コストを削減することができた。高電界化に伴 い、空胴内面の表面電界強度が上昇し、放電頻度が 上昇する恐れがある。そのため表面電界強度を下げ るために加速管のアイリスの断面形状を楕円形にし た。これにより一般的な円形断面のアイリスに比べ て約 20%表面電界を下げることが出来ると見込んで いる。また加速管の120ppsRF運転に伴う加速管の発

[#] t-sakura@spring8.or.jp

Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan August 9-11, 2014, Aomori, Japan

PASJ2014-SUP036

熱量増加による空胴の熱変形による周波数変化量を 検討し、120pps 運転にも対応できる冷却構造と最適 な冷却水温を決めた。

Table	1:	Parameter	of	the	C-band	Disk-loaded
Accele	ratin	g Structure				

Operation frequency [MHz]	f	5712
Structure type		Quasi-constant gradient (Quasi-CG)
Accelerating mode		ΤΜ01-2π/3
Total cavity length [m]	L	1.860
Average unloaded Q factor	Q ₀	8800
Average group velocity	v_g/c	0.023
Filling time [nsec]	tF	270
Attenuation constant	τ	0.54
Average shunt impedance [MΩ/m]	r	64
Number of cell	Ν	100
Cross sectional shape of iris		Ellipsoidal curvature

Figure 1: Cut-off view of the C-band accelerating structure.

C バンドディスクロード型加速管の大電 力試験

3.1 大電力 RF 試験の機器構成

製作した C バンド加速管の大電力 RF 試験は SACLA 施設内に新たに設置した大電力 RF テストス タンドで行った。加速管の大電力試験では、1)到 達加速電界、2) 放電頻度、3) コンディショニン グの所要時間、4) 暗電流、5) 120pps 運転時の温 度特性について確認した。 Figure 2 は C バンド加速管試験時の構成を示す。 試験構成は C バンド加速管 1 本、RF パルスコンプ レッサー、クライストロン、それらを接続する導波 管、モジュレータ電源、高精度充電器で構成される。 これらの運転に必要な低電力高周波システムやタイ ミング分配システム、制御装置は SACLA と同じ機 器を使用した。SACLAの運転繰り返しの2倍である 120pps 運転に対応するために、クライストロンやモ ジュレータ電源、高精度充電器は専用のものが製作 された^[5]。

Figure 2: Layout of the high power RF test for the accelerating structure.

3.2 到達加速電界

Figure 3 に本試験での最大加速電界時の RF の典型 的な波形を示す。クライストロンの RF 出力は 32MW でパルス幅 2.5 µsec であった。クライストロ ン出力は RF パルスコンプレッサー (SLED タイプ) で増倍され、ピーク電力 160MW、パルス幅 0.5µsec の RF 電力が得られた。そして加速管を通過し壁面 損失によって減衰した後の RF はピーク電力で 51MW となった。

SLED からの出力電力と導波管での損失および加速管のシャントインピーダンスと減衰係数を用いて、 加速管で発生された加速電界を算出した。RFパワー の測定は SLED 出口に設けた方向性結合器で検波し、 ケーブル損失等を考慮して換算した。Figure 4 に加 速電界の平均入力電力依存性を示す。大電力試験の 結果、到達加速電界は平均入力電力107 MW で 50.1 MV/m (平均) に達した。この試験で加速管の 高電界運転性能が目標を満足することを確認した。

Figure 3: Waveform of the klystron output (black line), SLED output (red line) and though the accelerating structure (blue line).

Figure 4: Accelerating gradient dependent on the average input RF power.

3.3 停止頻度

加速管が高電界で安定して使用できる事を確かめ るために、加速管の放電による停止頻度の測定を 行った。Figure 5 は加速管の放電頻度の加速電界依 存性を示す。測定は運転開始 256 時間後と 370 時間 後に行い、それぞれの時点の加速電界で24時間運転 を行い、その間に起こった放電による停止回数を計 測した。その結果、256 時間の時点で加速電界が 42 MV/m 以下では一度も停止すること無く運転を行う ことが出来た。またコンディショニング時間が長く なるにつれて放電頻度が下がる傾向が見られること から、更なるコンディショニングを行うことで、高 い電界でも安定運転が実現できることが予想される。

Figure 5: Breakdown rate per day dependent on the accelerating gradient.

3.4 大電力運転履歴

加速管のコンディショニングは以下のように行っ た。1) RF パルス幅を 0.1µs と短くし、徐々に RF 電力を増やした 2) RF 電力が最大まで到達したら、 RF パルス幅を広げてコンディショニングを続ける。 3) RF パルス幅が 1.0 µs に到達したら、RF 位相の 反転を行い、RF パルスコンプレッサーによる RF の 圧縮を行う。4) パルス幅を定格の 2.5µs まで広げ る。

トロン近傍・SLED 近傍・加速管の入力カプラー近 傍・出力カプラー近傍の計4ヶ所に設置された真空 計で計測した。加速管のコンディショニングは運転 開始から約 130 時間で定格の RF パルス幅 2.5 µs ま で広げることが出来た。パルス幅を 2.5 µs に広げた 直後は、加速管内の真空悪化が激しく数分に一回の 頻度で放電を起こした。その後 240 時間運転を継続 すると、加速電界 50 MV/m で安定に運転できるよう になった。

Figure 6: Trends in the acceleration gradient and vacuum pressure after 130 hours of the high power RF test start.

PASJ2014-SUP036

Figure 7: Trends in the acceleration gradient and vacuum pressure after 370 hours of the high power RF test start.

3.5 暗電流

加速管の内面から発生する暗電流を測定し、コン ディショニングの経過による電界増倍係数 β の 変化を調べた。暗電流の測定は Figure 2 のように加 速管の下流に設置した Faraday cupを用いた。Faraday cup の直径は 620 mm で加速管との距離は 200 mm で あった。Figure 8 は暗電流量の加速電界依存性を示 す。マーカーはコンディショニング時間の違いを示 す。暗電流量はコンディショニングの経過と共に減 少し、開始から 385 時間後には加速電界 50 MV/m で 暗電流量が 150 pC/pulse となった。

Figure 8: Dark current emissions dependent on the accelerating gradient in the course of the conditioning

Figure 9 は Fowler-Nordheim (F.N.) プロットを示 す。この F.N.プロットから β を算出するには、

で求められる^[6]。ここで*I*は暗電流、*E*台 加速管の表 面電界強度、φは銅の仕事関数=4.5 eVである。加速 管の表面電界は軸上電界の 2.6 倍と仮定した。この 結果、電界増倍係数βは74~79の範囲であった。長 時間運転した常電導の加速管では一般的に、電界増 倍係数は 40~100 程度になると言われている^[7]。現状 の値はこの範囲に入っており、今後長時間運転を行 うことで値が下がっていくことが予想される。

Figure 9: F. N. plot on the downstream side of the accelerating structure, while the conditions of conditioning times are different.

3.6 加速管の発熱量と空胴位相変化

120Hz の高繰り返し運転を行った際の加速管の温 度特性を調べるために、加速管の発熱量の繰り返し 依存性を測定した。発熱量の算出は加速管の冷却水 の入出の水温の差から得られる熱量から求めた。 Figure 10 は加速管の発熱量の運転繰り返し依存性 を示す。各マーカーは測定時の加速電界を示す。そ の結果、加速電界 50 MV/m の時の最大発熱量は 4.8 kW に達した。

Figure 10: Heat dissipation in the accelerating structure as a function of the RF pulse repetition rate.

加速管の表面には温度を測定するための深さ10 mm の穴が空けられている。そこに測温抵抗体を取 り付け、加速管の物温を測定する。そして加速管中 央の物温が一定になるように水温調整ヒーターで水 温を制御している^[8]。加速管のセルの発熱分布に異 常がないことを確認するために、測温抵抗体を加速 管の上流・中央・下流の物温測定箇所、および中央 のセルに設けられたチューニング用の穴(深さ約34 mm)の底に温度計を取り付け、加速管の温度分布 の測定を行った。Figure 11 に各測定点での加速管温 度の繰り返し依存性を示す。空胴中央(黒)を水温 制御により 30℃で安定させた時、加速管上流(紫) と下流(青)は低くなり、120 Hz 運転では約 1℃低 くなる。これは加速管の冷却方式がカウンターフ ロー方式を用いており、予想した上下流の温度が低 くなる傾向と一致する。チューニング穴の奥で測定 した温度(赤)は空胴中央の温度に比べて 120Hz 運 転時で0.5℃高くなった。空胴の設計時に行った熱計 算の結果では 0.5~0.6℃の温度差であったので、測 定結果とよく一致している。

Figure 11: Temperatures of the accelerating structure operating at an acceleration gradient of 50 MV/m.

また運転繰り返しの変更による発熱量の変化によ る加速管入出の位相差の変化を測定した。これは発 熱量の変化によって加速構造の寸法が変化し、周波 数特性が変化することを意味している。Figure 12 に 加速管前後の RF 位相の差の運転繰り返し依存性を 示す。チョークモード型加速管は繰り返しを変更す ると RF 位相が遅れる。120Hz を行った場合この位相 差が 19°遅れると推測される。これを加速電界に直 すと約6%電界が低下することを意味する。これは RF による発熱によって、加速セル内径が広がる方向 に変形し、共振周波数が下がっている事を示唆して いる。ディスクロード型は 120pps 運転を行っても位 相差は 1°以内で収まった。よってディスクロード 型は繰り返しを変更しても加速電界が低下す

ること無く用いることが出来る。またディスクロー ド型は熱による変形が少ないことを意味し、高繰り 返し化に適していることを示している。

Figure 12: Phase shifts between the input and output RF of the accelerating structure depending on the RF pulse repetition rate for the choke-mode type structure and the disk-loaded type structure.

4. まとめ

高電界・高繰り返し運転に対応した C バンドディ スクロード型加速管を開発し、その性能を確かめる ために大電力 RF 試験を行った。その結果、本試験 での到達加速電界は平均入力 RF 電力113MW で 50.1 MV/m に達した。また 256 時間のコンディショニン グ以降、42MV/m 以下の加速電界では 1 度も放電に よる停止は起こらなかった。より高い電界について も、コンディショニングの継続によって、停止頻度 が下がる傾向にあった。これらによりこの加速管の 高電界の性能が問題ないことが確認された。また 120Hz の高繰り返し運転についても、RF の位相シフ トは 1°以内に収まっており、冷却が適切で熱的な 変形なども問題ないことが確認された。

この加速管は SACLA の BL1 ビームライン上流に 設置する長波長 SASE-FEL 用加速器として使用され、 今秋より試験運転を開始する予定である。

参考文献

- [1] T. Hara.et.al., Phys. Rev. ST Accel. Beams 16, 080701 (2013).
- [2] T. Sakurai et. al., Proceeding of LINAC12, (2012).
- [3] T. Sakurai et. al., Proc. of the 10th Particle Accelerator Society of Japan, (2013).
- [4] D. Suzuki et. al., Proc. of the 11th Particle Accelerator Society of Japan, (2014).
- [5] C. Kondo et. al., Proceeding of the 11th Particle Accelerator Society of Japan, (2014).
- [6] G. A. Loew et. al., SLAC-PUB-4647 (1988).
- [7] A. W. Chao et. al., "Handbook of Accelerator Physics and Engineering" World Scientific Pub. (1999).
- [8] T. Hasegawa et. al., Proceeding of IPAC10 (2010).