PASJ2015 THP094

KEK e+/e- Linac 高位置分解能 BPM 読み出しシステム

HIGH POSITION RESOLUTION BPM READOUT SYSTEM FOR KEK E+/E- LINAC

宮原房史^{#, A)}, 一宮亮^{B)}, 早乙女秀樹^{C)}, 佐藤政則^{A)}, 古川和朗^{A)}, 諏訪田剛^{A)}

Fusashi Miyahara^{#, A)}, Ryo Ichimiya^{B)}, Hideki Saotome^{C)}, Masanori Satoh ^{A)}, Kazurou Furukawa ^{A)}, Tsuyoshi Suwada ^{A)}

^{A)} High Energy Accelerator Research Organization (KEK)

^{B)} Japan Atomic Energy Agency (JAEA)

^{C)} Kanto Information Service (KIS)

Abstract

We have developed a VME based BPM readout system with narrow band pass filters and 16-bit, 250 MSa/s ADCs and calibration pulse generators. The new system has wide dynamic range from 0.1 to 10 nC/bunch. The calibration pulse is used for the gain correction and the status monitor of the cable connection. The gain drift and the temperature dependence were measured by using the calibration pulse. The temperature dependence of the gain ratio of opposed electrode is less than 0.02%°C. The system was very stable for the duration of a month.

1. はじめに

KEK 電子陽電子入射器ではこれまでストリップラ イン型 BPM の読み出しにオシロスコープを用いた システムを利用してきた。オシロスコープを使った 読み出しシステムの平均的な位置分解能はσ≈50 µm であるが、SuperKEKB ではエミッタンス制御のため に 10 µm 以下の位置分解能が要求される。そこで、 新たに高位置分解能の BPM 信号処理ボードを開発 した。新しい BPM 信号処理ボードは狭帯域(中心 周波数 180 MHz)のバンドパスフィルター、16-bit. 250 MSa/s ADC で構成される。さらに、ゲインの時 間変動補正、ケーブル接続の緩みなどの異常を検知 するための較正用パルス出力回路を備えている。較 正用パルスはビーム位置測定トリガーから 6 ms、 12 ms 後に x、y 方向の計 2 回の出力、測定をする ように設計した。入射器は SuperKEKB LER、HER、 ダンピングリング、PF、PF-AR の5つのリングに ビームを供給(最大 50 Hz)するため、可変アッテ ネータを用いて 0.1~10 nC/bunch の広いダイナミッ クレンジを確保した。ビーム位置演算と制御は FPGA を用い、50 Hz でビーム位置読み出し、アッ テネータ設定、較正パルス出力が可能である。入射 器、KEKB の制御システムで採用しているイベント システム^[1]と連携して運用するため、VME バスを採 用した。これまでに、信号処理回路ボードの設計と 回路の基礎的な特性の評価を終え、電荷量 0.1 nC/bunch のビームを用いた 3-BPM 法により得た 位置分解能はσ≈3 µm を達成している^[2,3]。現在、入 射器ビームラインに 93 台の BPM の読み出しシステ ムの置き換えを進めている。本システムの詳細、較 正パルスを用いた長期運用試験を報告する。

2. システム概要

BPM 信号読み出しシステムは VME クレート、 CPU ボード (MVME5500) 、VME 監視用の RAS ボード、イベントレシーバ (VME-EVR-230RF) 各1 台、および BPM 信号処理ボード (VME2幅) で構 成される。ストリップライン型 BPM1台につき1台 の信号処理ボードが対応する。入射器クライストロ ンギャラリーに BPM 用に計20台の VME クレート を設置した。連続した BPM 数台の信号を1台のシ ステムで処理する。ビームのタイミング、電荷量は ビームモード (PF 入射、KEKB HER 入射、陽電子 生成・HER 入射など) によって異なる。EVR はイ ベントシステムを通じたビームモードの判断と、 BPM 信号処理ボードへのトリガーを出力する。 BPM 信号処理ボードのアッテネータ設定値、位置演 算パラメータはビームモードごとに VME バスを経 由して設定する。

2.1 BPM 信号処理ボード

BPM 信号処理ボードはストリップライン型 BPM の4つの電極に対応した BPM 信号検出部、サンプ リング周波数 250 MHz の 16-bit ADC、ADC データ 出力用の SUB FPGA と位置演算処理、制御用の MAIN FPGA、較正信号出力部で構成される。位置 演算、ボード制御に必要なパラメータおよび演算結 果は MAIN FPGA のレジスタに記録される。処理回 路と信号検出部の概略を Figure 1 に示す。

BPM の信号は信号検出部で中心周波数 180 MHz の2つのバンドパスフィルター(4 次バターワース, 2次ベッセル)を通過し、幅約 60 ns のバースト信 号に変換され ADC へ入力される。位置はチャンネ ル番号 *i* のゲイン

$$W_{i} = G_{i}G_{i}'\sqrt{\sum_{j} \left(V_{i,j} - V_{i,ped}\right)^{2}}$$
(1)

[#] fusashi.miyahara@kek.jp

PASJ2015 THP094

を用いて、

$$\Delta_H = W_1 - W_2, \Sigma_H = W_1 - W_2$$

$$\Delta_V = W_2 - W_4, \Sigma_H = W_2 - W_4$$
(2)

$$x = A_0 + \sum_{m=0}^{3} \sum_{n=0}^{3} a_{mn} (\Delta_H / \Sigma_H)^n (\Delta_V / \Sigma_V)^n$$
(3)
$$y = B_0 + \sum_{m=0}^{3} \sum_{n=0}^{3} b_{mn} (\Delta_H / \Sigma_H)^n (\Delta_V / \Sigma_V)^n$$

で与える。 $V_{i,j}$ は電極 i の ADC j チャンネルの値、 $V_{i,ped}$ はペデスタルを表し、式(1)の和算はバースト信号を覆う範囲について行う。係数 G、G'はそれぞれ ケーブルロスファクター、ダイナミックゲインファ クターで、ケーブル間の静的なゲイン比(ケーブル ロス、回路間のゲイン差)と時間的な変動を補正す るパラメータである。係数 a_{mn} 、 b_{mn} は BPM 設置前 にワイヤーを用いたマッピング測定から決定した値 を用いる。 A_0 、 B_0 は BPM 設置時のオフセットで ビームを用いて計測される。G、G'および A_0 、 B_0 は アッテネータの設定値(ビーム電荷量)ごとに値を 設定する。

Figure 1: Schematic of the BPM readout board (a) and the signal detector module (b).

較正用パルスはスイッチにより任意の電極へ出力 可能である。ADC 入力前段には信号用可変アッテ ネータが設置されており、ビームの電荷量に応じて 値を決定する。実際の運用では、信号検出部 2 次 ベッセルフィルター後段の可変アッテネータは 20 dB のアンプの飽和を避けるため 9 dB で固定し、入 力用のアッテネータは図中 ATT1、ATT2 を用いて 調整する。較正信号出力後段のアッテネータは ADC の値を指標に信号検出部のアンプ(LNA1)の線形 性(±0.2 dB、位置の絶対値の変化で 10 µm 以下) が保たれる信号レベルとなるように設定する。

2.2 制御

BPM 信号読み出しシステムは VxWorks 5.5.1 上の EPICS IOC で制御する。BPM 信号処理ボード用のデ バイスサポートの開発は完了し、運転用プログラム の開発を継続している。BPM 読み出しシステムはイ ベントシステムのタイミングと同期したトリガーを BPM 信号処理ボードに入力し、トリガー入力後に

- ビームデータ取得
 →パラメータ(較正信号)のレジスタ書込
- X 方向用較正信号出力、データ取得 →パラメータ(較正信号)のレジスタ書込
- 3. Y 方向用較正信号出力、データ取得

→パラメータ (ビーム) のレジスタ書込 の動作を行う。トリガーの間隔は 20 ms であるた め、1台の IOC (VME クレート単位) が受け持つ すべての BPM 処理ボードについて 1.~3.の各処理を 6 ms 以下で行う必要がある。IOC1台あたり最大で 8 台の BPM の測定を行う。Figure 2 に 8 台のボード を使用した際のトリガーから処理 1. 終了までに要 した時間の測定結果を示す。平均的には 0.4 ms 以内 に処理が終了している。約10万回に1回程度の頻 度で1 ms 以上要した事象があるが、6 ms に比べて 十分に短いため、問題はない。通常は入力波形その もののデータ取得は行わないが、ビームまたは較正 パルス波形を覆う ADC の範囲を決めるために、波 形を取得する測定モードを用意した。ADC 1024 ch ×電極4ch のデータ取得には1 ボードあたり、約 3.5 ms 必要なため、波形データを取得するモードで は波形データの収集は指定したボードのみとしてい る。

Figure 2: Elapsed time for data read (X,Y positions, charge, gains) and write (parameters) with 8 BPM signal readout boards.

2.3 較正用信号

電極から ADC 入力までの電極間のゲイン比の補 正とゲインの時間変動、異常検知のため、ビーム測 定と同時に較正信号の出力、測定を行う。較正信号 の波形を Figure 3 に示す。信号の出力タイミング、 幅は FPGA の制御で変更可能である。Figure 4 に BPM 処理ボード Ch1 から出力した較正信号に対す る応答 (ADC) を示す。Ch3、Ch4 は Ch1 の隣接電 極に対応し、較正信号で誘起された大きな信号が現 れている。大きな信号から約 350 ns 後方の信号は反 射に対応する。較正信号の幅は任意に設定可能であ るが、CW にしてしまうと反射が重畳した信号とな り、較正の精度が悪化するため、幅 60 ns のパルス 信号とした。較正は対向電極のゲイン比を基準にす るため、実際の運用では較正パルスはボード Ch1(X+)、 Ch3(Y+)のみから出力する。

Figure 3: Calibration pulse signal. The internal attenuator, ATT(CAL), was 9 dB and 20 dB external attenuator was used.

Figure 4: ADC outputs for the calibration pulse. The calibration pulse was send from Ch1. Ch3 and Ch4 correspond to adjoining electrodes.

3. 性能評価試験

較正パルスを用いて BPM 処理ボードのチャンネ ル間のゲイン比とゲイン変動に関する評価を行った。 ゲイン変動は電荷、ゲイン比の変動は位置の変化に 対応する。ゲインは信号検出部を構成する回路素子 のばらつきを反映する。特にアンプは他の回路素子 に比べ、大きな温度依存性をもつ。そこで、BPM 読 み出しシステムと試験用の BPM、30 m ケーブルー 式を恒温庫内に設置し、較正パルスを用いてゲイン の温度依存性を調べた。

Figure 5 に温度を 20~30 ℃ の範囲で 2 ℃ ごとに 変化させたときの Y 方向のゲインとゲイン比 (W₃/W₄)の変動の様子を示す。読み出しシステム はビームモードごとにアッテネータ値を変えて運用 するため、ここではビーム電荷量 0.5、1、5 nC 相当 の入力アッテネータ設定値 25、31、45 dB について 調べた。入力アッテネータ値が 25 dB の場合、較正 出力パルスを減衰させないと、アンプが線形性を保 つ領域から外れてしまうため較正信号用のアッテ ネータを 9 dB に設定した。図に示したゲインは 500 回の測定で得た平均値で、誤差は 1 ch 未満で十分小 さい。入力アッテネータ 25 dB、較正信号用アッテ ネータ 9 dB の場合、温度一定となった後にもゲイ ンが緩やかに変化し続けている。これは較正出力用 アッテネータが 40 dBm の出力直後にあるため、熱 負荷による影響が大きくなっている事が原因と考え られる。較正信号用アッテネータが 0 dB の場合、 温度変化に対する応答が早く、安定であり、ゲイン の絶対値の温度依存性は -1%/℃ であった。図中の 26、27 ℃ のデータから温度に対する再現性がある ことが確認できる。

Figure 5: Signal gain and gain ratio variation. Temperature is shown in the top. The red and the blue dots represent ch3 and ch4 gain. The green dots show the ratio of the signal gain.

温度設定を変える直前のゲインの安定した約 10 分間のデータからゲイン比の温度変化を評価した。 ゲイン比の温度依存性を Figure 6 に示す。ゲイン比 の傾きは 0.02%/℃ 未満で、位置の変化に換算する と約 1 µm となり、非常に安定している。ゲイン比 の傾きは入力アッテネータの値によらずほぼ同じで あるが、アッテネータの設定により比の絶対値が 1%程度異なる。これは可変アッテネータの設定値か らのズレによるものと考えられる。またゲイン比の 温度に対する傾きが X と Y で異なっている。この 原因はチャンネルごとのアンプのばらつきによるも のと考えられる。ゲイン比が非常に安定しており、 クライストロンギャラリーの気温も 23~26 ℃ 程度 で安定しているため、ゲインの時間変化の補正(ダ

PASJ2015 THP094

イナミックゲインファクター)は行わない方針とした。ケーブルロスファクターは新 BPM 読み出しシ ステム導入直後は入力アッテネータ値に依らずゲイ ン比が1 となるように設定する。より精度の良い ケーブルロスファクターの決定はビームを用いて評 価する予定である。

Figure 6: The gain ratio vs. the environmental temperature.

新しい読み出しシステムをクライストロンギャラ リーに設置し、1 台の BPM に接続して約 1 ヶ月間較 正パルスを用いてゲインの変化を測定した。長期の 変動測定でも温度変化にともなう変化以上の変動や モジュレータによるノイズの影響は現れなかった。

4. まとめと今後の課題

KEK 電子陽電子入射器では SuperKEKB にむけた 低エミッタンスビーム制御のため、BPM の位置分解 能 10 μm 以下が要求される。既設のオシロスコープ を用いた BPM の測定では分解能が約 50 μm である ため、VME ベースの新しい BPM 読み出しシステム を開発した。これまで回路設計、回路素子の選定や 位置分解能の評価を行ってきた。新しいシステムは ゲイン較正用のパルス出力が可能で、今回、較正パ ルスを用いて読み出しシステムのゲインの安定性を 評価し、ゲイン比の温度変化が 0.02%以下で非常に 安定していることが分かった。

ゲイン比の絶対値は ADC への入力アッテネータ の値によって変化するため、導入直後にゲイン比が 一定となるように設定する必要がある。このため、 全ての BPM で簡便に較正を行う手順とプログラム の開発が必要である。 さらにゲイン比の精度を高 めるため、ビームを用いた評価を行う必要がある。 ゲイン比は安定しているため、ゲインの時間変動の 補正は必要ないが、較正パルスを用いた効率のよい 測定システムの開発も必要である。

謝辞

SLAC の Dr. Steve Smith、Dr. Andrew Yang、KEK 飛山 真理教授には開発初期から参考となる情報や 詳細な助言を頂いた。三光社の土屋 文武氏、青山 森繁氏には特に信号検出部の設計、製造を行って頂 いた。FPGA の実装に関してはスカイウェーブの厚 井氏に開発からデバッグまでお世話になった。デジ テックス研究所の山田 恭介氏には開発のほぼすべ ての段階で助言を頂いた。深く感謝します。

参考文献

- [1] http://www.mrf.fi/index.php/timing-system
- [2] R.Ichimiya, et al., "SuperKEKB に向けた高位置分解能 Linac BPM 読み出しシステムの開発", Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan, Aomori, Aug. 9-10, 2014.
- [3] R.Ichimiya, et al., "High Position Resolution and High Dynamic Range Stripline Beam Position Monitor (BPM) Readout System for the KEKB Injector Linac Towards the SuperKEKB", in Proceedings of IBIC2014, Monterey, USA, September 15-19, 2014.