PF リング弧部改造案

LOW EMITTANCE RECONSTRUCTION OF THE ARC SECTION OF THE PHOTON FACTORY

原田健太郎[#], 小林幸則, 中村典雄, 生出勝宣, 阪井寛志 Kentaro Harada[#], Yukinori Kobayashi, Norio Nakamura, Katsunobu Oide, Hiroshi R Sakai Accelerator Laboratory, KEK

Abstract

The present horizontal emittance of the Photon Factory (PF) ring is about 35.4nm·rad. By the reconstruction of the normal cells at the arc section, the emittance can be reduced to about 8nm·rad. The double number of the combined function short bending magnets are adopted and one present normal cell become two new normal cells. Although the lattice of the straight sections are not changed, the optics are optimized to reduce the non-linear effects of the sextupoles of the arc sections. By keeping the phase advance of the straight section as 3π for the horizontal direction and 2.5π for the vertical, the dynamic aperture as large as that of the present ring can be achieved with the magnetic errors. The difference of the optics of the straight sections are so little that the beam injection and the operation of the in-vacuum short-gap undulators can be maintained. The hardware design will be began as the next step for the realization of the plan. In this proceedings, the design, optimization and simulation results for the low emittance lattice are shown.

1. はじめに

1982 年、PF リングがユーザー運転を開始した当 初[1],[2]の水平エミッタンスは約 400nm·rad であった。 その後、1986年の低エミッタンス化[3]で約 130nm·rad に、1997 年の高輝度化[4]で約 37nm·rad に 改善された。高輝度化改造では、偏向電磁石 2 台で 1 セルだった弧部ノーマルセルを、4 極と 6 極の台 数を2倍に増やし、偏向電磁石1台で1セルに改造 することで、大幅なエミッタンスの改善がなされた。 その後、2005年の直線部改造[5]ではエミッタンスは ほぼ維持ながら、長直線部をさらに長く、また、真 空封止短周期挿入光源用に最適化された新しい短直 線部が 4 箇所設置され、現在では全ての直線部が利 用されている。挿入光源の台数は 12 台(うち 2 番 と 16 番直線部には 2 台ずつ設置) あり、第 3 世代 光源と引けを取らない数になっている。ここでは、 PF リングの弧部を改造し、水平エミッタンスを約 8nm·rad まで下げる案について概略を述べる。

2. 改造の概略

2.1 改造範囲と新しいノーマルセル

直線部のラティスは維持し、弧部全体と直線部への接続部分のみを改造する。改造範囲及び内容をFigure 1 に示す。

現在の PF リングの約 1.9m の偏向電磁石は 1982 年の建設当初から使われているものであるが、それを 2 台の機能結合型 (水平分散力あり) の約 65cm の偏向電磁石に置き換える。弧部のみで仮想的なリングを作った場合、水平エミッタンスは現在約41nm·rad になるが、新しいセルの場合、4.6nm·rad まで小さくなる。リングのパラメータを Table 1 に、

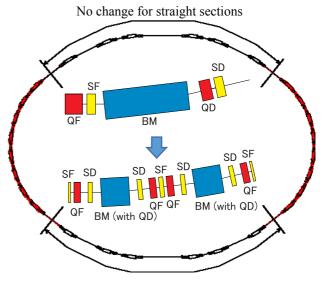


Figure 1: The arc sections for the reconstruction.

新しいオプティクスを Figure 2 に示す。色収差自体は劇的に増加しないが、小さい分散関数など、6 極電磁石設置部分のオプティクスの変化で、現在の 10 倍以上の強さの 6 極電磁石が必要となる。電磁石のパラメータを Table 2 に示す。

2.2 オプティクスの最適化

6 極電磁石に対する対称性を重視してオプティクス設計を行う。直線部端の偏向電磁石 1 台分を含むセルのみを、直線部への接続に使用し、そこに 6 極電磁石は設置しないことにする。弧部は完全に同つな 14 セル (片側) で構成する(Figure 3)。接続部分を含む直線部全体のチューンの進みを、水平方向を3、垂直方向を 2.5 という、整数または半整数とすることで、広いダイナミックアパーチャが確保できる。

[#] kentaro.harada@kek.jp

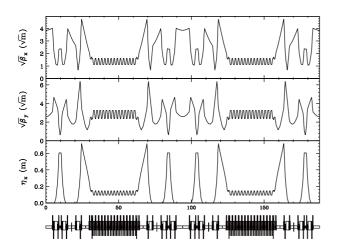


Figure 2: The new optics of the ring.

Table 1: Parameters of the PF Ring

	1 drameters		<u> </u>	
		present new		
Energy	E [GeV]	2.5		
Circumference	C [m]	187.0		
Emittance	ε _o [nm·rad]	35.370	8.073	
Normal cell emittance	$\epsilon_{nc} [nm \cdot rad]$	40.722	4.561	
Energy spread	oe/E	7.29E-04	1.64E-03	
Momentum compaction	α	6.56E-03	4.39E-03	
Betatron tune				
Horizontal	Vx	9.60	12.1	
Vertical	ν_{y}	5.28	6.2	
Chromaticity				
Horizontal	ξx	-13.432	-17.573	
Vertical	ξy	-17.314	-25.117	
Energy loss	U ₀ [MeV/rev.]	0.399	0.513	
Damping time				
Horizontal	τ _x [msec]	7.777	3.040	
Vertical	τ _y [msec]	7.815	6.109	
Longitudinal	τ _z [msec]	3.918	6.171	
Revolution freq.	frev [MHz]	1.60253		
RF frequency	f _{RF} [MHz]	500.100		
Harmonic number	h	312		
RF voltage	V _{RF} [MV]	1.70		
Synchrotron tune	Vs	-0.015	-0.009	
Bunch length	$\sigma_{\!\scriptscriptstyle Z} [mm]$	9.700 10.475		
Bucket height	$(\Delta E/E)_{RF}$	0.012 0.017		

6 極電磁石の強さは、直線部の DBA セルに 6 極を追加すると非常に小さくできるが、ダイナミックアパーチャは劇的に減少する。チューンの進み自体はある程度の範囲で変化しても問題ないが、ダイナミックアパーチャを確保する為には、直線部に 6 極成分があってはならない。

ラティス要素が電磁石と RF 空洞だけである場合 について、電磁石の誤差を考慮したダイナミックア パーチャを計算すると、既存の PF リングと同程度

Table 2: Parameters of the Magnets

	Present			After reconstruction		
		L[m]	B'[T/m]		L[m]	B'[T/m]
Q	Q1	0.4	14.544	Q1	0.4	14.150
	Q2	0.4	-14.434	Q2	0.4	-13.277
	Q3	0.3	-21.062	Q3	0.3	-22.334
	Q4	0.3	23.572	Q4	0.3	24.025
	Q5A	0.4	-15.695	Q5	0.3	-21.010
	Q5B	0.4	-15.578			
	Q6A	0.4	17.773	Q6	0.4	16.496
	Q6B	0.4	17.111			
	Q7A	0.3	9.978	Q7	0.3	14.857
	Q7B	0.3	10.325			
	Q8A	0.4	-19.184	Q8	0.4	-20.256
	Q8B	0.4	-17.656			
	Q9A	0.4	18.499	Q9	0.4	20.493
	Q9B	0.4	18.195			
	QAA	0.4	8.390	QAA	0.4	6.172
	QAB	0.3	7.646			
	QDA	0.25	-19.926	(BMA)		
	QDB	0.25	-17.216			
	QFA	0.4	15.142	QFA1	0.15	-10.448
	QFB	0.4	16.077	QFA2	0.2	29.679
	QD	0.25	-15.973	BMA	0.647	-12.085
	QF	0.4	15.590	QF	0.15	36.788
		L[m]	B"[T/m ²]		L[m]	B"[T/m ²]
S	SF	0.2	327.017	SF	0.1	4124.309
	SD	0.2	-325.444	SD	0.1	-2246.525
		L[m]	B[T]		L[m]	B[T]
В	BM 1.9	1.944	0.962	BMS	1.944	0.962
		1.944	0.902	BMA	0.647	1.445

の電磁石の誤差、すなわち据付誤差 $50\mu m$ 、強さの誤差 0.05%、回転誤差 $100\mu rad$ (最大値はそれぞれの値の 2 倍まで)があっても、現状以上のダイナミックアパーチャを確保することが可能であることが分かった(Figure 4)。入射点の β_x は 10.25m なので、エミッタンス 8.07 $nm \cdot rad$ 、アパーチャ 80σ とすると入射点の実寸アパーチャは 23mm、 60σ で 17mm となる。(現在のラティスでは、誤差無しの場合に約 24mm である。)

入射点や真空封止短周期挿入光源の場所のオプティクスはほとんど変化しない為、入射及び挿入光源の最小ギャップには大きな問題は生じない。リング全体のエミッタンスは約 8nm·rad、エミッタンス減少の効果を計算すると、挿入光源からの光の輝度「向は約7~8倍に向上する(Figure 5)見込みである。

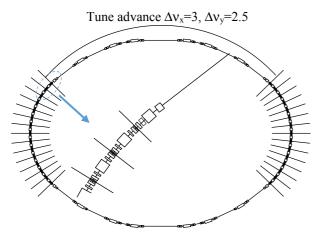


Figure 3: The new lattice of the ring.

2.3 ビームラインの位置

直線部は改造しないので、挿入光源の光源点は変化しない。一方で、弧部の偏向電磁石ラインについては、2.5 度ラインの場合、新しいラティスの 1 台目の偏向電磁石内が光源点となるが、現在のラティスと比較すると光源点が上流側に約 55cm ずれ、光軸がリング内側に約 2cm 平行移動してしまう(Figure 6)。光軸の移動を防ぐ為には、弧部入口の偏向電磁石を約 9cm 下流に(出口側は上流に)ずらし、弧部全体の電子軌道を約 2cm 外側にずらせば(Figure 7)、既存の BL に向けて光を発生させることが可能である。なお、新しい弧部は現在の偏向電磁石の円弧軌道を弦で結ぶようなイメージになり、弧部全体を約 2cm 外側にしても、周長は約 3cm (RF 約+100kHz) 短くなる。

3. 予算と改造期間の非常に粗い推定

必要な予算は、加速器要素だけしか更新できない場合、偏向電磁石も交換するので高くはなるものの、恐らく高輝度化や直線部改造と同程度の規模と思われる。ただし、当時とは PF の老朽化の度合いが大

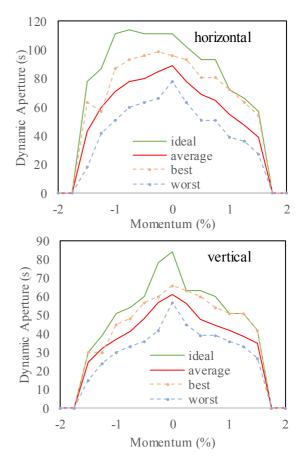


Figure 4: The dynamic aperture of the ring. The average, the worst and the best cases are calculated from 50 samples of random magnetic errors.

きく異なり、雨漏りの修理、冷却水系や空調の修理、 床面や壁面の亀裂や不安定性(振動や日較差)の改善など、同時に老朽化対策が必要なことが明らかである。また、向上する性能を生かすには、加速器側のモニタや補正系の充実、BL側の安定性の向上なども必須であろう。加速器のみの改造に必要な期間は、電磁石や真空、モニタ系の準備に約2年、実際

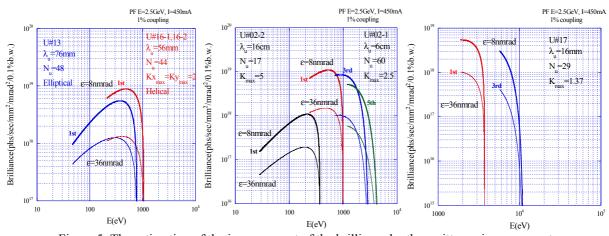


Figure 5: The estimation of the improvement of the brilliance by the emittance improvement.

PASJ2015 WEP019

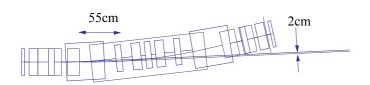


Figure 6: Change of the photon axis without lattice adjustment.

の改造作業は半年程度(直線部増強と同程度)と思われる。ただし、電磁石と真空について、1セル分、 先行して試作することが絶対必要不可欠である。

4. 今後の課題

現在、ラティスとオプティクスに対してシミュレーションを行っただけであり、実現に向けては、ハードウェアの詳細設計が大きな課題となる。特に、高精度の機能結合型偏向電磁石の難しさ、現在の 10 倍以上の強力な 6 極電磁石が必要となること、電磁石間隔が狭くなって、真空・モニタ系の設置や維持が簡単でないこと等が大きな検討課題である。

例えば、cERL で採用した鉄の材質特性に対して、飽和と磁場の関係をいくつかのボア直径を仮定して2次元計算した図を Figure 8 に示す。4 極電磁石の場合、約 40T/m の磁場勾配が必要で、ボア直径は 4cm が最適である。6 極電磁石の場合、約 4500T/m²必要で、やはりボア直径は 4cm 以下にしないと飽和の効果で磁場が出ない。(現在の6 極はボア直径 9cm である。) ダクトの厚さを 2mm としても、内径は3.5cm となる。ベータ関数と分散が絞られているので、ダイナミックアパーチャの方が小さいが、現実的な真空やモニタの設計、光のビームラインを考えた電磁石の設計は簡単ではないだろう。

さらに、直線部のチューンを非線形力に対して調整しているので、直線部に大きな 6 極成分があるとアパーチャが劇的に減少する可能性がある。現在、既にいくつかの挿入光源に非線形磁場成分があることが分かっており、場合によっては補正を検討する必要があるかも知れない。

参考文献

- [1] S. Kamada, Y. Kamiya , M. Kihara, "Lattice of Photon Factory Storage Ring", Proc. of PAC 1979, p3848.
- [2] "PF Ring Design Handbook", 1979.
- [3] 神谷幸秀、木原元央、"PF における低エミッタンスラティスの検討", KEK Internal 85-10, 1985 年 12 月.
- [4] 加藤政博、堀洋一郎編, "PF リング高輝度化計画デザインレポート", KEK Report 92-20, 1993 年 2 月.
- [5] T. Honda, et. al., "Straight-sections Upgrade Project of the Photon Factory Storage Ring", Proc. Of APAC 2004, p383.
- [6] 土屋 公央, private communications.

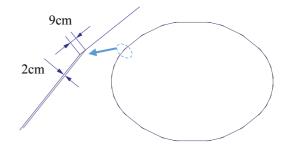
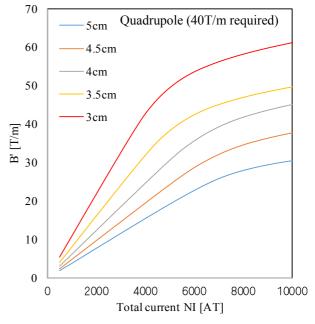



Figure 7: The lattice adjustment to fix the photon axis.

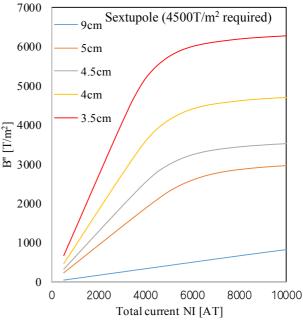


Figure 8: The bore diameter and the saturation.