PASJ2016 WEOM14

# SACLA BL1 における軟 X 線 FEL の発振と調整の状況

# FIRST LASING AND COMMISSIONING STATUS OF THE SOFT X-RAY FEL BEAMLINE AT SACLA

稲垣隆宏<sup>#, A)</sup>, 渡川和晃<sup>A)</sup>, 原徹<sup>A)</sup>, 大和田成起<sup>A)</sup>, 安積隆夫<sup>B)</sup>, 安積則義<sup>B)</sup>, 大島隆<sup>B)</sup>, 大竹雄次<sup>A)</sup>, 木村洋昭<sup>B)</sup>, 金城良太<sup>A)</sup>, 近藤力<sup>B)</sup>, 櫻井辰幸<sup>B)</sup>, 田尻泰之<sup>C)</sup>, 田中信一郎<sup>C)</sup>, 田中隆次<sup>A)</sup>, 富樫格<sup>B)</sup>, 登野健介<sup>B)</sup>, 長谷川照晃<sup>A)</sup>, 備前輝彦<sup>B)</sup>, 細田直康<sup>B)</sup>, 前坂比呂和<sup>A)</sup>, 松井佐久夫<sup>B)</sup>, 松原伸一<sup>B)</sup>, 矢橋牧名<sup>A)</sup>, 田中均<sup>A)</sup>, 石川哲也<sup>A)</sup>

Takahiro Inagaki<sup>#, A)</sup>, Kazuaki Togawa<sup>A)</sup>, Toru Hara<sup>A)</sup>, Shigeki Owada<sup>A)</sup>, Takao Asaka<sup>B)</sup>, Noriyoshi Adumi<sup>B)</sup>,

Takashi Ohshima<sup>B)</sup>, Yuji Otake<sup>A)</sup>, Hiroaki Kimura<sup>B)</sup>, Ryota Kinjo<sup>A)</sup>, Chikara Kondo<sup>B)</sup>, Tatsuyuki Sakurai<sup>B)</sup>,

Yasuyuki Tajiri<sup>C)</sup>, Shinichiro Tanaka<sup>C)</sup>, Takashi Tanaka<sup>A)</sup>, Tadashi Togashi<sup>B)</sup>, Kensuke Tono<sup>B)</sup>, Teruaki Hasegawa<sup>A)</sup>,

Teruhiko Bizen<sup>B)</sup>, Naoyasu Hosoda<sup>B)</sup>, Hirokazu Maesaka<sup>A)</sup>, Sakuo Matsui<sup>B)</sup>, Shinichi Matsubara<sup>B)</sup>, Makina Yabashi<sup>A)</sup>,

Hotoshi Tanaka<sup>A)</sup>, Tetsuya Ishikawa<sup>A)</sup>

A) RIKEN SPring-8 Center

B) JASRI

<sup>C)</sup> SPring-8 Service Co. Ltd.

### Abstract

We have upgraded SACLA-beamline-1 from a "spontaneous radiation" to a "soft x-ray FEL" beamline by relocating the SCSS test accelerator to the SACLA Undulator Hall, and operating the machine as a dedicated electron source being independent of the SACLA main linac. One C-band accelerator unit was added to increase the beam energy from 250 MeV to 500 MeV. We started beam commissioning in September 2015, and successfully observed the first lasing at a photon energy of 40 eV after tuning the electron beam energy, trajectory, envelope, and bunch length compression. Recently the beamline provides FEL light with a wavelength range between 40-60 eV and an average pulse energy of 15  $\mu$ J at a pulse repetition of 60 pps. We commenced user operation in July 2016. In the summer of 2016, we will add two C-band units to enhance the beam energy to 800 MeV for producing shorter wavelength FEL.

## 1. はじめに

自由電子レーザー(Free Electron Laser: FEL)は、従 来の放射光光源に比べて桁違いに高輝度、極短パルス 長、高コヒーレントの硬 X線~軟 X線光源として様々な 実験に用いられ、目覚ましい実験成果を上げている。現 在稼働中の硬 X線 FEL 施設としては、アメリカの LCLS[1]と日本の SACLA[2]、軟 X線~極紫外線域の FEL 施設としてはドイツの FLASH[3]とイタリアの FERMI[4]がある。そしてここ数年、PAL-XFEL[5]、 European XFEL[6]、Swiss FEL[7]、Shanghai-XFEL[8]、 LCLS-II[9]といった FEL 施設が新たに建設されており、 FEL を用いた実験手法が確立しつつある。

SACLA では、供用開始以来、世界最短波長の硬 X 線 FEL を利用して数々の優れた成果が得られてきたが、 軟 X線 FEL を使ったサイエンスを展開したいという内外 からの要望も高まっていた。これらの要望を踏まえて、 平成 26 年度の補正予算によって、SACLA の高度化に 関する予算措置がなされた。これは、SACLA の光源棟 の空きスペースに、SACLA のプロトタイプ機として建設 された SCSS 試験加速器[10,11]を移設し、軟 X線 FEL 専用の加速器として再活用することによって、硬 X線 FEL と軟 X線 FEL を同時に供給する施設を、世界では じめて実現するというものである。 SCSS は、2005 年の建設以来、世界初のコンパクト XFEL コンセプトの検証とともに、FEL 利用の R&D にも 用いられ、250 MeV の電子ビームから波長 60 nm (光子 エネルギー20 eV) 程度の極紫外線 FEL が提供されて きた。SCSS は、所期の目的を十二分に達成し、 SACLA の供用運転開始後の 2013 年に運転を停止した。 今回の高度化[12, 13]は、この SCSS の加速器部分を BL1 振り戻し磁石の上流側に移設し、C バンド主加速器 を追加して電子ビームエネルギーを上げ、SASE (Selfamplified spontaneous emission)型の軟 X線 FEL を生成 するものである。

こうして完成した軟X線FEL専用加速器(通称SCSS+) は、2015年9月より電子ビームの調整を開始し、10月に は40 eV にて、初めてのレーザー増幅を確認した。冬季 停止期間にはアンジュレータを1台増設し、光子エネル ギー40-60 eV、パルスエネルギー15 µJ 程度のFELを発 生できるようになった。そして 2016年7月からはユー ザー実験への供用を開始した。また、今夏の停止期間 には、Cバンド加速器を2台追加して電子ビームエネル ギーを約800 MeV まで上げ、FELの更に短波長化する ことを計画している。

本報告では、まず加速器の構成を説明し、次に現在 の電子ビームの特性とFELの特性についての測定結果 を示す。最後に今後の予定について述べる。

<sup>#</sup> inagaki@spring8.or.jp



Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

Figure 1: Layout of the SCSS+ accelerator and beamline.

Table 1: Typical Operation Parameters: The Parameters after This Summer Shutdown Period Are Also Written in the Parentheses

| Electron  | Beam energy (max.)        | 500 MeV<br>(800 MeV) |
|-----------|---------------------------|----------------------|
|           | Bunch charge              | 300 pC               |
|           | Peak current              | ~200 A               |
|           | Bunch length ( $\sigma$ ) | 0.7 ps               |
|           | Repetition (max.)         | 60 pps               |
| Undulator | Periodic length           | 18 mm                |
|           | K parameter (max.)        | 2.1                  |
|           | Effective length          | 14 m                 |
| Photon    | Photon energy             | 40-60 eV             |
|           |                           | (40-160 eV)          |
|           | Pulse energy              | 15 µJ/pulse          |

## 2. 加速器の構成

SCSS+及びビームラインの構成を Figure 1 に示す。また、典型的な現在の運転パラメータを Table 1 に示す。 SCSS[11]はSACLAのプロトタイプ機であり、高安定な熱カソード電子銃と多段バンチ圧縮システム、高電界の C バンド加速器、短周期アンジュレータなどの基本構成は SACLA[2]と同様である。上流から概要を説明する。

電子銃[14]では、CeB<sub>6</sub>単結晶カソードを約 1500℃に 熱し、500 kV、3 µs の高電圧パルスを印加して1 A の低 エミッタンス電子ビームを取り出す。電子ビームはビーム チョッパーで1 ns の幅に切り出された後、238 MHz プリ バンチャー空洞(SHB)と 476 MHz ブースター空洞 (Booster)、にてバンチ長を圧縮しながら加速される。後 続の S バンド APS 型加速管(S-APS)および S バンド進 行波型加速管(S-TWA)では、約 15°のオフクレスト位相にて 48 MeV まで加速され、バンチの先頭と後尾でエネルギー差がつけられる。そしてバンチ圧縮部(BC1)を通過することによりバンチ長は約 1.5 ps に圧縮され、ピーク電流が約 200 A に高められる。BC1 の手前には、バンチ圧縮過程の線形化によりピーク電流を高めるための C バンド補正加速管(C-CORR)を、将来に設置できるスペースが確保されている。

圧縮後の電子ビームは、C バンド加速器(C-TWA)に よって、FEL に必要なエネルギーまで加速される。BL1 では、限られた台数の加速器でエネルギーを高め短波 長の FEL を発振させるため、SACLA よりも更に高電界 で運転可能な C バンド・ディスクロード進行波型加速管 [15]を開発し使用している。現在は、3 台の C バンド加速 器(1.8 m 長の加速管 6 本)を 42 MV/m の平均電場勾 配で運転し、電子ビームを 500 MeV まで加速している。 今夏の停止期間には、C バンド加速器を BC2 の下流に 2 台追加し、電子ビームのエネルギーを 800 MeV まで上 げることを予定している。また、この下流から SACLA との 合流部までの間には、C バンド加速器を更に 7 台追加で きるスペースがあり、将来に拡張することも可能である。

加速された電子ビームは、SACLAからの入射ラインと 合流し、3台の真空封止型水平アンジュレータに導かれ る。3台のアンジュレータのうち最上流の1台は、SACLA と同じタイプのアンジュレータ(磁石列長 5 m)であり、残 りの2台は、SCSSで使用していた試作型アンジュレータ (磁石列長 4.6 m)のフレームを利用し、磁石列だけを SACLAと同じものに交換したものである。いずれもネオ ジム磁石とパーメンジュールを組み合わせたハイブリッド 型の磁石列を用い、周期長は18 mm、最大 K値は2.1 (磁極ギャップ約 3.8 mm)である。ここに 500 MeV の電 子ビームが入射すると、FEL の発振波長は30 nm(光子 エネルギー41 eV)となる。これよりも短波長の FEL が必 要な時はK値を下げ、逆に長波長の FEL が必要な時は 電子ビームのエネルギーを下げることで、必要な波長の FEL を供給することができる。

## PASJ2016 WEOM14

FELを発振させた後の電子ビームはダンプに捨てられ る。FEL は、真空パイプを通って隣接する SACLA 実験 研究棟に導かれ、実験に提供される。また、実験研究棟 内には、FEL の強度を測定するガス強度モニタや空間 分布を測定するスクリーンモニタ、波長分布を測定する スペクトロメータなどが設置され、FEL の発振状態をモニ タしている。

## 3. 加速器の調整と電子ビームの状況

#### 3.1 調整項目と手順

SCSS+の電子ビーム調整では、電子ビームの軌道や 空間プロファイル、エネルギー、バンチ長などの条件が 最適となるよう、加速空洞や電磁石、アンジュレータ等の 調整を行っている。調整は基本的に上流から順に、以下 の手順で行っている。

- 1) 電子銃~入射部の軌道調整
- 2) 入射部加速空洞による速度バンチ圧縮の調整
- S バンド加速器とBC1 の軌道による磁気バンチ圧 縮の調整
- 4) C-TWA 加速器によるエネルギー調整

5) アンジュレータ部の軌道、集束、K 値の調整 このうち、2)、3)のバンチ圧縮の調整と5)のアンジュ

レータ部の調整について、詳細を記す。

#### 3.2 238 MHz-SHB の調整

SHB により、1 ns の電子バンチに約±200 kV のエネ ルギー変調をかけ、速度差によって圧縮を行う。最適な バンチ長を得るために、下流に位置する2 台の電流モニ タ(Current Transformer: CT)の信号を高速オシロスコー プで観測し、パルス幅が短くなるように調整した。Figure 2 に、測定した波形を示す。



Figure 2: Temporal profiles of the electron beam, measured with the two current transformers (CTs).

#### 3.3 476 MHz-Booster の調整

Booster の RF により、速度バンチ圧縮による集群位置 を調整する。圧縮後の相対的なバンチ長を知るため、ス クリーンモニタにて発生するコヒーレント遷移放射 (Coherent Transition Radiation: CTR)を測定した。CTR の 信号は導波管型の周波数フィルター[11]を通過すること で 3.75 GHz 以上の成分が残るので、これを検波し測定 した。Figure 3 に、S-APS を OFF にした状態でビームを 通し、S-APS の入口と出口にある2カ所のスクリーンモニ タでの CTR を測定したものを示す。Booster の位相を- 40°にすると S-APS の入口でバンチが最も圧縮され、 0°にすると S-APS の出口でバンチが最も圧縮される。 我々は、S-APS の中央でバンチが最適に圧縮されるよう、 この中間である-20°に設定した。



Figure 3: Normalized CTR signal intensity, as a function of the RF phase of the 476-Booster cavity.

3.4 ゼロ位相法によるバンチ長の測定

電子ビームは S-APS と S-TWA でエネルギーチャー プを付けられ、BC1 にて圧縮される。圧縮後のバンチ長 を、以下の2種類の方法で測定した。

一つ目のゼロ位相法による測定[16]は、C-TWA のう ち最下流の1台を、+90°あるいは-90°の位相に置き、 バンチ内でついたエネルギー差を BC2 シケイン中間の プロファイルモニタで測定し、時間に換算する方法であ る。Figure 4 に、測定結果を示す。C-TWA の位相を +90°にした場合と-90°にした場合とでは、得られた分 布は少し異なる。この理由としては、C-TWA 入射時点で のエネルギー分布が足されることと、C-TWA の RF によ りバンチの空間広がりが変化することがある。また、ビー ムの持つ空間広がりは、この測定を鈍らせるため、実際 のバンチ長は、ここで測定された 1.5 ps(FWHM)よりも短 く、ピーク電流も 160 A よりも高いと推測される。



Figure 4: Temporal profiles of the electron bunch, measured by the RF zero-phasing method (see text).

3.5 ストリークカメラによるバンチ長の測定

もうひとつの方法は、BC2 出口に設置したスクリーンモ ニタにて発生する遷移放射光(Optical Transition Radiation: OTR)を、高速ストリークカメラにて時間掃引し、 バンチの時間分布を測定する方法である。Figure 5 には、 この方法で測定した時間分布を示す。OTR 光の強度が 弱いので、この図の測定では 30 ショットの分布を積算し ている。ストリークカメラ内の時間ジッタによって像の位置 が上下に変動するため、ショット毎に光分布の重心を計 算してそれを合わせるように時間軸を規格化して積算し ている。ただし、これらの時間調整誤差によってバンチ幅 の測定値が実際よりも広めに見えている可能性がある。

両測定ともに、1.5~1.6 ps (FWHM)のバンチ長を示しており、この測定と、BC2下流のCTで測定したビーム電荷量(~300 pC)から、電子ビームのピーク電流は約200Aと見積もられる。ただし両測定とも測定誤差が大きいため、実際のピーク電流は更に高い可能性がある。



Figure 5: Temporal profile (vertical axis) of the electron bunch, measured using the streak camera at the exit of BC2. This profile is the sum of 30 shots (see text).



Figure 6: FEL intensity changes measured with the gas intensity monitor (see section 7), as functions of the magnet gap and height of the 3<sup>rd</sup> undulator, the horizontal steering magnet current, and the Q-magnet current.

#### 3.6 アンジュレータの調整

アンジュレータ部にて、効率的に FEL を発振させるためには、電子ビームの軌道やエンベロップ、およびアンジュレータの K 値や磁極の水平、垂直位置を精密に調整する必要がある。我々はまず、アンジュレータ内の軌道について、電子ビームのエネルギーを変えた時の軌道変位を無くすよう Q 磁石の位置やステアリング磁石を調整する Beam based alignment (BBA)[17]を実施した。

アンジュレータの磁極ギャップ(K 値)や高さ、および Q 磁石の電流については、FEL の強度が最大となるように 微調整した。Figure 6 に、これらのパラメータを振った時 の FEL 強度の変化の例を示す。

## 4. ビームラインおよび FEL の特性

## 4.1 ビームラインの構成

BL1 ビームラインの構成を Figure 7 に示す。アンジュ レータホールの最下流部(フロントエンド部)には、余分 な光をカットする Front-end (FE)スリット、メインビーム シャッター (MBS)、および FEL を測定するスクリーンモ ニタ、フォトダイオードなどが設置されている。その下流 は厚さ2.7 mのコンクリート遮蔽壁を隔てて光学ハッチが あり、光強度を調節するアテネータ(AT)やガスアテネー タ(GAT)、平面ミラー(M)、ガス強度モニタ(GM)などが 置かれている。更に下流の実験ホール内には、波長ス ペクトルを測定するグレーティング型スペクトロメータ、お よび ユーザーが照射実験を行う実験ハッチが用意され ている。本章では、これらビームラインの光診断機器で 測定した現在の FEL の特性を記す。



 $\label{eq:attenuator} \begin{array}{l} AT: foil attenuator, GAT: gas attenuator, M: plane mirror (C coating/Si substrate) \\ GM: gas monitor, VLS: varied line spacing grating \end{array}$ 

Figure 7: Layout of BL1 photon beamline.

### 4.2 空間分布

FELの空間分布は、YAGの発光をCCDカメラで測定 するプロファイルモニタによって測定される。アンジュ レータホール最下流での、FELの空間分布の例を Figure 8に示す。長波長のFELは発散角が大きいので、 光の空間分布はダクト全体に広がっている。光学ハッチ にあるガス強度モニタ(GM)やガスアテネータ(GAT)の 前後にある差動排気部では、オリフィスが φ 6 mm (Figure 7にて赤点線で図示)と狭いため、42 eVのFEL に対しては半分以上がエンドステーションに届くまでに 失われてしまう。一方、波長が短い時には、通過率は向 上する。例えば 62 eV(K=1.5)のFEL に対しては、通過 率は 70~80%になる。



Figure 8: Spatial profile of the FEL at 42 eV (K=2.1).

#### PASJ2016 WEOM14

#### 4.3 強度

FEL の強度(パルスエネルギー)の測定は、低強度で 使用するフォトダイオードと大強度で使用するガス強度 モニタ(GM)とを使いわけている。ガス強度モニタは、薄 いアルゴンガス中を FEL が通過した時の電離電子を電 子増倍管(EM 管)によって収集し測定している。必要な 信号の線形性が得られるように、ガス濃度や EM 管の印 加電圧を変えて感度を調整している。また、パルスエネ ルギーの絶対校正については、カロリーメータ[18]を用 いた測定を行い、ガス強度モニタの信号強度と比較して 校正を行っている。

Figure 9 には、加速器の調整 12 時間の間の FEL 強度 (パルスエネルギー)の推移を示す。運転の繰り返しは 60 pps で、FEL の波長は 42 eV である。オレンジ色の点 はシングルショットでの強度 (30ショットごとに1 点をプロッ ト)で、少し色の濃い茶色の点は、100ショットの強度の平 均である。調整の間じゅう、FEL のパルスエネルギーは 15  $\mu$ J 程度を維持できている。ショット毎の強度変動は、 現状では約 30%( $\sigma$ )であり、SACLA の変動幅(~10%) に比べて変動が大きい。この理由としては、SACLA に比 べてピーク電流が低く、アンジュレータの台数も少ないの で、SASE-FEL が完全な飽和に達していないためと思わ れる。



Figure 9: Trend graph of the FEL pulse energy.

#### 4.4 スペクトル

FEL のスペクトルは、回折格子を用いたスペクトロメー タによって測定される。Figure 10 に、典型的なスペクトル を示す。左は100ショットを積算した分布で、スペクトルの 幅は FWHM で約1 eV である。右はシングルショットにて 測定した分布の一例である。スペクトルの中心波長は、 毎ショットとも安定しており、電子ビームのエネルギーが



Figure 10: Spectra of FEL light (K=2.1). The left figure shows the average values of 100 shots, and the right figure is an example of the single-shot spectrum.

十分に安定していることを示している。

## 5. まとめと今後の予定

極紫外線(EUV)~軟 X 線領域への FEL 利用の拡大 のため、我々は SACLA の BL1 に SCSS を移設し整備 した。2015 年の9月より電子ビームを用いた調整運転を 開始し、10月には初めての FEL 発振を観測することに 成功した。12月にはアンジュレータを1台追加し、その 後も調整を進めた結果、現在では光子エネルギー42 eV にて、15 $\mu$ J 程度の FEL を常時発生させることができてい る。そして我々は7月からはユーザーの供用実験を開始 している。

しかしながら、現状ではバンチ圧縮シケインが BC1 の ひとつしかないため、圧縮後のバンチ長は 1.5 ps (FWHM)とSACLA等に比べると10倍以上長く、ピーク 電流も200 A 程度である。そのため FEL はまだ完全に 飽和に至っておらず、ショット毎の強度変動(~30%)が 大きいのが課題である。この夏の停止期間に我々は、C バンド加速器を2台増設し、エネルギーを800 MeV まで 上げるとともに、電子ビーム条件の最適化を行い、FEL の短波長化と高強度化を行う予定である。

#### 参考文献

- [1] P. Emma et al., Nature Photonics 4, 641 (2010).
- [2] T. Ishikawa et al., Nature Photonics 6, 540 (2012).
- [3] W. Ackermann et al., Nature Photonics 1, 336 (2007).
- [4] E. Allaria et al., Nature Photonics 6, 699 (2012).
- [5] J. Han *et al.*, "Beam commissioning of PAL-XFEL", Proc. of IPAC 2016, (2016).
- [6] F. Brinker *et al.*, "Commissioning of the European XFEL injector", Proc. of IPAC 2016, (2016).
- [7] R. Ganter (ed.) "SwissFEL conceptual design report", PSI V20 (2012).
- [8] D. Wang *et al.*, "Soft X-ray free-electron laser at SINAP", Proc. of IPAC 2016, (2016).
- [9] The LCLS-II collaboration "The LCLS-II conceptual design report", (2013).
- [10] T. Shintake et al., Nature Photonics 2, 555 (2008).
- [11] T. Shintake et al., PRST-AB 12, 070701 (2009).
- [12] Y. Otake, "Relocation and improvement status of the SCSS test accelerator to provide dual FEL drivers at SACLA", Proc. of IPAC 2015, (2015).
- [13] T. Sakurai *et al.*, "Commissioning status of the extremeultraviolet FEL facility at SACLA", Proc. of IPAC 2016, (2016)
- [14] K. Togawa et al., PRST-AB 10, 020703 (2007).
- [15] T. Sakurai *et al.*, "Design of the C-band disk-load type accelerating structure for a higher pulse repetition rate in the SACLA accelerator", Proc. of LINAC'12, (2012).
- [16] D. X. Wang et al., Phys. Rev. E 57, 2283-2286, (1998).
- [17]山本龍 ほか、"SACLA アンジュレータビームラインの Beam Based Alignment"、第8回日本加速器学会年会 つ くば (2011).
- [18] T. Tanaka et al., Rev. of Sci. Instrum., 86, 093104 (2015).