PASJ2018 FSP026

HIMAC 加速器の現状報告 (2018) PRESENT STATUS OF HIMAC (2018)

片桐 健,^{A)} 稲庭 拓,^{A)} 岩田 佳之,^{A)} 早乙女 直也,^{A)} 佐藤 眞二,^{A)} 皿谷 有一,^{A)} 高田 栄一,^{A)} 丹正 亮平,^{A)} 野田悦夫,^{A)} 原 洋介,^{A)} 古川 卓司,^{A)} 村松 正幸,^{A)} 水島 康太,^{A)} 白井 敏之,^{A)} 鈴木 太久,^{B)} 高橋 勝之,^{B)} 川島 祐洋,^{B)} 勝間田 匡,^{B)} 小林 千広,^{B)} 若勇 充司 ^{B)} ^{A)} 量子科学技術研究開発機構 放射線医学総合研究所,^{B)} 加速器エンジニアリング株式会社 Ken KATAGIRI,^{*A)} Taku INANIWA,^{A)} Yoshiyuki IWATA,^{A)} Naoya SAOTOME,^{A)} Shinji SATO,^{A)} Yuichi Saraya,^{A)} Eiichi TAKADA,^{A)} Rhohei TANSHO,^{A)} Etsuo NODA,^{A)} Yousuke HARA,^{A)} Takuji FURUKAWA,^{A)} Masayuki MURAMATSU,^{A)} Kota MIZUSHIMA,^{A)} Toshiyuki SHIRAI,^{A)} Taku Suzuki,^{B)} Katsuyuki Takahashi,^{B)} Masahiro Kawashima,^{B)} Masashi Katsumata,^{B)} Chihiro Kobayashi,^{B)} Mitsuji Wakaisami^{B)} ^{A)}QST/NIRS, ^{B)}Accelerator Engineering Corporation, Ltd. (AEC)

Abstract

Heavy ion cancer therapy with the Heavy ion Medical Accelerator synchrotron in Chiba (HIMAC) has been administered to more than 10,000 patients since 1994. We started the heavy-ion cancer therapy using a 3D scanning irradiation system in May 2011, at New Particle Therapy Research Facility in NIRS. To enhance the treatment quality by achieving a precise dose control, we have continued some R&Ds on HIMAC and its irradiation system including a superconductingrotating gantry. Since 2016, we have started developments of a compact superconducting rotating gantry and a compact superconducting synchrotron to be applied for a newly started project of a "quantum scalpel" that is a next generation of the heavy-ion cancer therapy machine. We also started R&Ds for the intensity modulated multi-ion therapy that is applied to improve outcomes of the refractory cancer treatment. This paper outlines those R&Ds as well as the present status of HIMAC accelerator facility.

1. はじめに

放射線医学総合研究所(放医研)でのHIMAC加速器 による重粒子線がん治療は、1994年の開始から今年で 22年目を迎え、11000人以上もの患者に治療が適用さ れてきた[1,2]。これまでの拡大ビーム法による治療に 加えて、複雑な腫瘍形状や治療期間中における腫瘍患部 の形状・大きさの変化に合わせた照射が可能となる、3 次元スキャニング照射法 [3] による治療が新治療研究棟 (Fig. 1) にて 2011 年 5 月より開始された。さらなる照射 精度の向上を目指して、2015 年度までに、高速エネル ギースキャニング照射法の開発 [4,5]、呼吸位相に合わせ て腫瘍に重ね塗りを行う呼吸同期スキャニング照射法の 開発、超伝導ガントリーの開発/建設 [6] が進められてき た。超伝導ガントリーは、2016 年度にコミッショニング が行われ、2017 年 5 月より治療利用が開始された。

2016 年度に量研機構にて新たに開始された"量子メス"プロジェクト [7] は、治療施設の普及のために、重粒子線治療装置のさらなる小型化を目指すものである。こ

Figure 1: HIMAC accelerator and the new particle therapy research facility.

Figure 2: Quantum scalpel including a laser injector a compact superconducting synchrotron and a compact superconducting gantry.

^{*} katagiri.ken@qst.go.jp

PASJ2018 FSP026

の"量子メス"(Fig. 2)は、超小型超伝導ガントリー、超 小型超伝導シンクロトロン、レーザー加速を用いた入射 器もしくはコンパクト ECR イオン源と小型線形加速器 から構成される。昨年度より、これらの"量子メス"関連 研究の開発が本格的に開始された。また、炭素線だけで なくヘリウム線、酸素線、ネオン線を組み合わせて照射 を行うことで、正常組織への線量付与を低減し尚かつ腫 瘍への治療効果をこれまで以上に高める強度変調マルチ イオン照射法 [8]のために、様々なイオンを素早く切り 替え入射・加速・取り出しを行うシンクロトロン運転技 術、ECR イオン源のイオン種切り替え技術に関する研究 も開始されている。

本発表では、現在量研機構/放医研で行われている、超 伝導ガントリー、量子メス、強度変調マルチイオン照射 法に関連した研究開発について紹介する。

2. 研究開発

2.1 回転ガントリーのためのビームアライメント手法 とその検証 [9]

三次元スキャニング照射法ではビーム位置のずれが照 射野のずれを引き起こすため、治療室内の基準点とビー ムの位置を合わせることが重要である。加えて、2015 年よりビームコミッショニングを開始した、回転ガント リー照射装置においては、複数のガントリー角度におい て治療室内の基準点とビームの位置を合わせることが 求められる。コミッショニング時のビームの位置合わせ と、治療運用開始後の定期的なビームの位置合わせを円 滑に行うため、我々は簡便なビームのアライメント手法 を開発した。加速器から取り出されたビームは、輸送ラ イン中に設置された蛍光膜モニターの中心を通るよう に、位置合わせが行われているが、電磁石の据え付け誤 差などにより、ビーム位置と磁石の中心にはずれが生じ る。加えて、ガントリーを回転させた際の構造体の歪み によって、回転角度毎にビーム位置と磁石の中心にずれ が生じる。治療室内の基準点は、予め金属球を内部に配 置したファントムによって定義されており、治療室に設 置された蛍光膜モニターにより、基準点とビーム位置の

Figure 3: Measurement results of the beam misalignment along the horizontal axis.

Figure 4: Operation test of multi-ion acceleration switching ion species of injection beams between ${}^{12}C^{6+}$ and ${}^{20}Ne^{10+}$.

ずれが測定される。本手法では、基準点におけるビーム 位置のずれから上流のビーム位置のずれを算出しステア リング電磁石により補正を行う (Fig. 3)。本手法を適用 することで、ビームの位置精度を損なうことなく、全て の角度からの照射が可能になり、2017 年より治療を開始 している。本講演では、開発した手法とその結果につい て報告を行う。

2.2 次世代重粒子線治療に向けた量子メス治療装置の 設計 [7]

重粒子線治療は、高い QOL を維持でき、放射線抵抗 性のがんに対しても高い腫瘍制御を実現するなど、優れ た成果を出しており、量研機構だけでも 10,000 人以上の 治療実績がある。量研機構では、この重粒子線治療の治 療費を低減し、腫瘍制御をさらに向上させた次世代の重 粒子線治療装置の開発を開始しており、量子メス (Fig. 2) 量子メスは、1台のイオン源でフルス と呼んでいる。 トリップに近い複数のイオン(He, C, O, Ne)を生成す る、多価・多核種・コンパクト ECR イオン源と小型線形 加速器、またはレーザー駆動イオン加速器を入射器とし て用いる。シンクロトロンは、4T Combined Function 超 伝導電磁石を用い、10m角の部屋に設置可能であるとと もに、高速にイオン種・ビームエネルギーを変化させる ことができる。そして回転ガントリーは、超伝導電磁石 でビームを輸送し、複数のイオン種を組み合わせて治療 用照射野を形成する。本発表では、この量子メスの全体 設計の現状について報告する。

2.3 強度変調マルチイオン照射のためのシンクロトロ ン運転の検討 [10]

放医研ではこれまでに、シンクロトロンによる高速な 可変ビームエネルギー制御方法と照射ビームの高速ス キャン装置を開発し、現在はそれらを組み合わせた高速 三次元スキャニング照射システムを用いて治療を行って いる。2017 年度からは回転ガントリー照射装置を用い

Figure 5: Charge state distributions of argon. Comparison between single heating (10.31 GHz) and two heating (10.31 + 15.0 GHz).

た治療も開始され、360度の範囲から任意の照射角度を 選択できるようになり、より良い治療成果が期待される。 現在放医研では、さらなる治療効果の向上を目指し、複 数のイオン種を用いたマルチイオン照射法の研究が進め られている。この照射法では、強度変調した複数種のイ オンビームで三次元線量分布を形成することで、照射領 域の生物効果をこれまで以上に制御することが可能とな る。マルチイオン照射法の実現に向けて、加速器システ ムでは、治療照射の中で供給するイオン種とエネルギー の素早い切り替えを実現する運転制御 (Fig. 4) を目指し ている。本発表では、そのような目的のもと検討したシ ンクロトロンの運転制御方法と、HIMAC で行ったビー ム試験結果について報告する。

小型 ECR イオン源におけるマイクロ波2重加熱試験 [11]

現在、世界的に粒子線治療施設の建設が予定されてい る。それらの計画の中では炭素以外のイオンを加速し、 研究などに用いることが計画されている。これらの要求 を達成するために、様々なイオンの供給を行える ECR イオン源(Kei3)の開発を行なっている。Kei3は、既存 の炭素線がん治療装置用の小型 ECR イオン源と同様の 閉じ込め磁場を採用しているため、C⁴⁺ に近いイオンを 生成することが可能となる。Kei3 ではこれまでに、バ イアスディスク法、ガスミキシング法などを用いて、多 種イオンの生成試験を行ってきた。 Kei3 のマイクロ波 源には、周波数帯域が 8-10 GHz、最大出力が 350 W の xicom 社製の進行波管アンプ(TWTA)が使用されてい る。マイクロ波は、WR-90の矩形導波管により、イオン 源内に軸方向から導入される。今回は TWTA をもう1 台追加し、マイクロ波2重加熱試験を行った。追加した TWTAの周波数帯域は 10-18 GHz で、最大出力は 250 W である。こちらは WR-75 の矩形導波管を用いてお り、WR-90と同様に軸方向から導入される。ビーム試験 の結果、TWTA が1台の時の Ar⁷⁺ の電流値は16.5 µA

Figure 6: Gas-pulsing system for multi-ion production.

となり、2 重加熱とすると 23.5 μA となった (Fig. 5)。こ の時のマイクロ波の周波数は、10.33 GHz(既存 TWTA) と 14.4 GHz(追加 TWTA) である。

2.5 レーザー加速イオンの超伝導シンクロトロンへの 直接入射の検討 [12]

量子メスプロジェクトの一環として、レーザー加速イ オンのシンクロトロンへの直接入射に関するフィージビ リティスタディをすすめている。前回、その第一ステッ プとして、現状の普及型シンクロトロンを対象とした検 討を行い、目標とする 1×10⁹ 個以上の粒子を蓄積できる 可能性があることを報告した。今回は、本プロジェクト で現在検討されている超伝導シンクロトロンを入射対象 とし、前回無視したベンディング効果を考慮に入れて、 1照射あたりに入射可能な粒子数を調べた。さらに、プ ラズマ生成点からシンクロトロンの入射点までの Beam Transport についても簡単な検討を行った。検討の結果 以下のことが分かった。加速イオンを約1.6m飛行さ せ、4 MeV/u±6% のエネルギーの粒子を切り出し、位 相回転により約1/10にエネルギー圧縮を行う。その後、 ビームを成形してシンクロトロンに入射する。1照射あ たりシンクロトロンに入射される粒子数は空間電荷効 果、イオンのエネルギー広がり、レーザーによる生成粒 子のバラツキを考慮した結果、平均 2×10⁸ 個、このう ち、垂直方向のエミッタンスが治療に使える値となるの は、約 1×10⁸ 個であった。これにより、10 Hz のレー ザーで 20 回の多重回入射を行うことで 1×10⁹ 個以上の 粒子を蓄積できると考えられる。

2.6 マルチイオン照射のためのガスパルシング法を用 いたイオン種の切替 [13]

NIRS では数種類のイオンを標的に照射することで理 想的な LET および線量分布を形成するマルチイオン照 射を推進している。想定されるイオン種は He、C、O、 Ne の 4 種類で、複数のイオン源を専有すれば比較的容 易に切替可能となるが、今後の普及展開を見据えて ECR イオン源 1 台でのイオン種切替を検討した。4 種類のイ オンを生成するため、イオン源に導入するガスは He、 CO₂、Ne の 3 種類とした。また、イオン源で生成するイ

PASJ2018 FSP026

オンは質量電荷比が重ならず、かつビーム電流を確保で きる He²⁺、C²⁺、O³⁺、Ne⁴⁺とし、ビーム電流の目標 値はそれぞれ 500 e μ A、150 e μ A、230 e μ A、300 e μ A と した。試験は NIRS-HEC を用い、まず He ガスと CO₂ ガスをミキシングして He²⁺、C²⁺、O³⁺のビーム試験 を行った。次にガスパルシング法、ガス配管への電磁弁 追加など不要なガスの混在を防ぐ工夫を行った上でガス 切替試験を行い (Fig. 6)、目的のビーム電流が安定する までの時間を測定した。結果、ガスパルシング法により イオン種切替時間の短縮に成功した。ここではガス配管 構成の検討や試験結果について報告する。

3. まとめ

超伝導ガントリーは、2016 年度にコミッショニング が行われ、本年度には治療利用が開始された。治療施設 の普及のために、重粒子線治療装置のさらなる小型化を 目指して、"量子メス"プロジェクトが開始された。この プロジェクトの一環として、小型超伝導ガントリー、小 型超伝導シンクロトロン、コンパクトな多価イオン源の 開発が開始されている。さらに、強度変調マルチイオン 照射法のために、マルチイオン供給のためのシンクロト ロン運転技術、ECR イオン源のイオン種切り替え技術に 関する研究も開始されている。

参考文献

- [1] K. Noda et al., Nucl. Instr. And Meth. B 331 (2014) 6.
- [2] E. Takada, Nucl. Phys. A 834 (2010) 730c.
- [3] T. Furukawa et al., Med. Phys. 37 (2010) 5672.
- [4] T. Furukawa et al., Med. Phys. 34 (2007) 1085.
- [5] K. Mizushima *et al.*, Nucl. Instr. And Meth. B 331 (2014) 243.
- [6] Y. Iwata *et al.*, IEEE trans. appl. supercond. 24 (2014) 4400505.
- [7] T. Shirai *et al.*, "次世代重粒子線治療に向けた量子メス治 療装置の設計", in these proceedings (WEP131).
- [8] T. Inaniwa, N. Kanematsu, K. Noda, T. Kamada, Phys. Med. Biol. 62, (2017) 5180–5197.
- [9] Y. Saraya *et al.*, "回転ガントリーのためのビームアライメ ント手法とその検証", in these proceedings (WEP125).
- [10] K. Mizushima et al., "強度変調マルチイオン照射の ためのシンクロトロン運転の検討", in these proceedings (THP125).
- [11] M. Muramatsu *et al.*, "小型 ECR イオン源におけるマイク ロ波2重加熱試験", in these proceedings (THP037).
- [12] E. Noda et al., "レーザー加速イオンの超伝導シンクロトロンへの直接入射の検討", in these proceedings (THP126).
- [13] K. Takahashi et al., "マルチイオン照射のためのガスパ ルシング法を用いたイオン種の切替", in these proceedings (WEP043).