PASJ2020 THPP35

1.7kV-SiC-MOSFET を搭載した ILC 用 MARX モジュレータの開発 DEVELOPMET OF MARX MODULATOR FOR ILC USING 1.7KV-SIC-MOSFET

澤村陽^{#, A)}, 徳地明^{A)}, 生駒直弥^{A)}, 明本光生^{B)}, 中島啓光^{B)}, 川村真人^{B)}, 夏井拓也^{B)}

Yo Sawamura^{#, A)}, Akira Tokuchi^{A)}, Naoya Ikoma^{A)}, Mitsuo Akemoto^{B)}, Hiromitsu Nakajima^{B)}, Masato Kawamura^{B)},

Takuya Natsui^{B)}

^{A)} Pulsed Power Japan Laboratory Ltd.

^{B)} High Energy Accelerator Research Organization (KEK)

Abstract

The ILC (International Linear Collider) is a linear accelerator with a total length of about 30 km, and will carry out electron-positron collision experiments at the highest energy that can be achieved at present. A multi-beam klystron system will be installed in the main Linac of the ILC project. RF power for generating an accelerating electric field in the superconducting accelerating cavity is composed of a multi-beam klystron and a klystron power source for driving the multi-beam klystron. The klystron power supply is called a Marx modulator and generates a pulse voltage of 120kV 140A 1.9ms and supplies it to the cathode of the multi-beam klystron. Small size, low cost and high reliability are required. The MARX modulator of the prototype power supply requires a withstand voltage of 2.4kV for the SiC MOS-FET and SiC diode, and is configured by connecting two elements with a withstand voltage of 1.2kV in series. In this research, we have developed a MARX modulator for ILC equipped with a 1.7kV-SiC-MOSFET with a high device breakdown voltage of 40% or more in order to further improve reliability. We will also evaluate the device temperature in continuous operation and report the evaluation test of the MARX modulator for ILC.

1. はじめに

ILC(国際リニアコライダー)は、計画は、全長約 30km の直線加速器で、現在達成しうる最高エネルギーで電 子と陽電子の衝突実験を行う計画。

ILC 計画の主線形加速器にはマルチビームクライスト ロンシステムが搭載される。超伝導加速空洞に加速電場 を生成するためのRF電力は、マルチビームクライストロ ンとそれを駆動するクライストロン電源で構成される。

クライストロン電源はマルクス変調器と呼ばれ、120kV 140A 1.9ms のパルス電圧を発生し、マルチビームクライ ストロンのカソードに供給する。小型、低コスト、高信頼 性が要求される。試作電源の MARX モジュレータは SiC MOS-FET と SiC ダイオードは 2.4kV の耐圧が必要 であり、1.2kV の耐圧の 2 つの素子を直列に接続して構 成している。

本研究ではさらに信頼性を向上させるため、40%以 上デバイス耐圧が高い 1.7kV-SiC-MOSFET を使用した 開発を行った。連続運転でのデバイス温度評価も実施し、 ILC 用 MARX モジュレータの評価試験について報告す る。

2. ILC 用 MARX モジュレータの構成と特長

MARX 電源は複数の MARX ユニットを並列に充電し、 直列に放電することにより MARX ユニット数に比例して 高いパルス電圧を発生することができる。

MARX ユニットは MARX 回路を採用することで、並列 にコンデンサに充電し、直列に放電することにより、 MARX 回路段数に比例して高いパルス電圧を発生する。 一般的な MARX 電源の構成を Fig. 1 に示す。

Figure 1: Typical MARX power supply configuration.

本開発の MARX 回路はパルス出力回路に高周波 チョッパー回路を使用することで、出力パルス電圧の波 高値を調整することができる。

4 枚の MARX 基板に位相をずらして動作させることで、 出力電圧のリップルを低減する。又、チョッパーデュー ティーを時間とともに変化させることでドループの低減も 合わせて行う。

[#] sawamura@myppj.com

Proceedings of the 17th Annual Meeting of Particle Accelerator Society of Japan September 2 - 4, 2020, Online

PASJ2020 THPP35

3. 開発した MARX モジュレータと試験結果

3.1 ILC 用 MARX モジュレータの仕様と MARX 基板 写真

ILC 用 MARX モジュレータの仕様を Table 1、MARX 基板の写真を Fig. 2 に示す。

Table 1: MARX Modulator Specifications

充電電圧	-2kV
MARX 段数	4段
出力パルス電圧	-1.6kVp×4=-6.4kVp
出力パルス電流	140Ap
出力パルス幅	1.9ms
繰り返し	5Hz
チョッパー周波数	50kHz 以上
出力電圧リップル	6%以下
回路方式	チョッパー型 MARX 回路
トリガ入力信号	光トリガ
制御電源入力	DC24V

Figure 2: MARX board photo.

3.2 本開発の目的

MARX 基板に実装している SiC-MOSFET の耐圧を 1.2kV から 1.7kV のものに変更し、信頼性の向上をはか ることを目的とする。

3.3 PWM デュティの変化と各 MARX 基板の出力電圧

PWM デュティを変化させ MARX モジュレータ出力と 各 MARX 基板の出力電圧の測定を行った。

(※各段の電圧を測定する差動プローブの耐圧制限 により充電電圧は-1kV とした)

PWM デュティを可変した試験結果を Fig. 3 に示す。 Figure 3 の実測結果より PWM デュティ 45%、70%付

Figure 3: Output voltage of MARX board with variable PWM duty.

近でユニット出力には表れないが MARX 基板には 1.5kVを超えるような大きなスパイクが発生している。

3.4 PWM デュティの変化のシミュレーション確認

Figure 4 に示すシミュレーション回路により PWM デュ ティ変化時の各 MARX 基板の出力電圧の確認を行った。

PASJ2020 THPP35

Figure 4: Simulation circuit of PWM duty change.

シミュレーションでは三角波比較法で PWM 波形を生成し位相を 90° ずらして各ゲートに入力を行った。

Figure 5: Simulation results.

Figure 5 に示すシミュレーションにおいても PWM デュ ティ 45%、70%付近でユニット出力には表れないが MARX 基板には 1.5kV を超えるような大きなスパイクが 発生していることが確認できた。

3.5 Soft-start 時の測定結果と実測結果のまとめ

実際の使用時は Fig. 6 に示すように電源出力 ON 時 (立下り時)に PWM デュティー波形ずつ変化させユニッ ト出力電圧にリンギングが発生しない Soft-start を用いて いる。

• 実測(40-60-70-79-81~97%:soft-start)

Figure 6: Measured output waveform at soft start.

Figure 6 赤〇 の、Soft-start の部分でユニット出力には 表れないが MARX 基板には 1.5kV を超えるような大き なスパイクが発生している。

また、各基板の出力電圧波形を時間軸は異なるが横軸 duty として Fig. 7 にプロットした。

Figure 7 より、いずれの場合も,約 45 %、70 %の特定

Figure 7: Output voltage waveform of each board (horizontal axis duty).

PASJ2020 THPP35

の duty で大きなスパイクが生じていることが分かる。

3.6 スパイク発生の原因

複数の基板が同時に ON しており、1 つの基板が OFF すると、出力電流が減少し、コイルの L di/dt より、他の ON 状態の基板出力にスパイクが生じる。

3.7 考察

構成的に生じるスパイクは現状の 1.2kV 耐圧の MOSFET では仕様を超えており故障する可能性がある が、1.7kV 耐圧の MOSFET では仕様の範囲内に収まっ ていると言える。

3.8 定格連続運転の結果

単発~定格繰返し5Hzまで各周波数で、4ヶ所のヒートシンク温度をファイバ温度計で計測、併せて、ファン入口付近の気温も、T熱電対で計測した。

温度が飽和するまで連続運転し,運転終了時点での ヒートシンク温度-気温から,温度上昇ΔTを求めFig.8 に示す。

Figure 8: Repetition frequency and heat sink temperature.

※温度測定箇所
HS1 → 4 段目 放電 FET1
HS2 → 4 段目 放電 FET2
HS4 → 4 段目 チョッパーダイオード
HS5 → 1 段目 充電ダイオード

主回路デバイスを 1.7kV-SiC-MOSFET に変更したが、 温度上昇は周波数にほぼ比例して増加、定格出力で繰 返し周波数 5Hz の定格連続運転でも 10℃以下の温度 上昇に収まった。

今回採用した 1.7kV-SiC-MOSFET は本研究の信頼 性を向上させることを達成し、ILC 用 MARX モジュレー タに搭載可能なことが確認できた。

4. 今後の展開

今後の展開として現在高エネルギー加速器研究機構 に設置されている ILC MARX 電源(ILC 用 MARX モ ジュレータ 20 ユニット)の回路デバイスを 1.7kV-SiC-MOSFET に置換えていくことも視野に入れる。 また 1.7kV-SiC-MOSFET を他の製品の開発にも採用を 試み、使用実績を重ねていく。