PASJ2020 WEPP51

J-PARC MR アップグレードのための速い取り出し用新高磁場セプタム電磁石 (2) THE NEW HIGH-FIELD SEPTUM MAGNET FOR UPGRADING OF FAST EXTRACTION IN MR J-PARC(2)

芝田達伸 *A)、石井恒次 A)、杉本拓也 A)、岩田宗磨 A)、松本教之 A)、松本浩 A)、Fan Kuanjun^{B)} Tatsunobu Shibata*A), Koji Ishii^{A)}, Takuya Sugimoto^{A)}, Soma Iwata^{A)}, Noriyuki Matsumoto^{A)}, Hiroshi Matsumoto^{A)}, Kuanjun Fan^{B)}
A)High Energy Accelerator Research Organization(KEK)
B)Huazhong University of Science and Technology (HUST)

Abstract

Upgrading the beam-power of the J-PARC Main Ring to 750 kW is underway by reducing the cycle from 2.48 s to 1.3 s. Required upgrade of the four High Field (HF) Septa will be completed in 2021. The first operation test for one of them, new HF SM30, was conducted in 2018, leaving several issues with the magnetic field to be resolved. One was a discrepancy of the gap field between the neutrino and beam abort line. The second was an asymmetric structure of transverse distribution in the leakage field. Investigations have shown that the origin of the former was a negative offset-voltage of the Hall sensor used. It was shown in the field measurement done in 2019 that the two gap-field are in good agreement after the negative offset-voltage is subtracted. No asymmetric structure was observed in the leakage field in this time. We produced the field clamps to reduce the end-fringe field. The end-fringe field was greatly reduced with the field clamps. The two large flanges to the new SM30 were weld without problem in Jan. 2020, and the construction of the new SM30 was finished.

1. J-PARC

大強度陽子加速器施設 J-PARC は 400 MeV-LINAC、 3 GeV-Rapid Cycling Synchrotron (RCS) と 50 GeV-Main Ring (MR) の3基の加速器と物質・生命科学実験施設 (MLF)、ニュートリノ実験施設 (NU)、ハドロン実験施 設 (HD) の 3 つの実験施設で構成されている [1]。MR は RCSから8バケットの3GeV陽子ビームを受け取り、 30 GeV に加速した後 NU または HD に出射する陽子シ ンクロトロンである。現在の NU 運転時の MR の繰り 返し周期は 2.48 s である。NU 運転の場合 MR から NU へ8バケットを約5 µs の間に出射する。これを速い取 り出し (Fast eXtraction:FX) と呼ぶ。NU への最大供給 ビームパワーは現在約 510 kW である。 ビームパワーの 設計値である 750 kW [2] を達成するために 2022 年度か ら繰り返し周期を 1.3 s に短縮した運転を開始する予定 である [3,4](1 Hz 化と呼ぶ)。更に次期目標の 1.3 MW 出力達成のために繰り返し周期を 1.16 s に短縮する計 画である。MR 入射用電磁石と FX 用電磁石も 1 Hz 化 と 1.3 MW 対応のためにアップグレードを進めている。 全てのアップグレードは 2021 年度末に完了する計画で ある。FX 用電磁石は NU1 次ビーム (NU) ラインまたは ビームアボート (ABT) ラインにビームを振り分ける電 磁石である [5]。これらのアップグレードの内容はキッ カー電磁石用電源の改修と低磁場、高磁場セプタム電磁 石の交換である。以下 FX 用高磁場 (High-Field;HF) セ プタム電磁石について記述する。

2. FX 用高磁場セプタム電磁石

FX 用 HF セプタムは 4 セットあり全てが約 1 T の 磁場を発生させる大気中で使用する常伝導電磁石であ る。ビーム上流方向からそれぞれ SM30、SM31、SM32、 SM33 と呼んでいる (Fig. 1)。SM30 と SM31 は両極性 型セプタム電磁石である。両極性型は1つのコアの中 に左右対称に設置した2つのコイルを使用してお互い 逆向きの磁場を作る。両極性型は磁場の影響を与えない 周回ビームと取り出し方向が逆向きの2つの取り出し ビームが近い距離に位置する場合に有効である。2つの 取り出しラインは片方が NU 用、もう片方が ABT 用で ある。SM32 と SM33 は分岐が十分にできた位置にある ため片極性型セプタム電磁石であり、それぞれ NU と ABT への取り出し用に2台を1セットして使用してい る。電磁石用電源からの出力電流はパターン電流であ る [6]。現在の主なパターン波形は全幅約 1.5 s、FB か ら FT までの立ち上がり時間は MR のビーム加速時間 と同じ 1.4 s である。HF セプタム電磁石の交換理由は 次の3点である。1点目はビーム上流部に設置されてい る四重極電磁石 (QM)の大型化に伴う HF セプタムビー ムライン長の短縮化が必要である事。2 点目は高繰り返 しによって取り出し用ビームダクト表面に発生する渦 電流による発熱量が増加する事への対策としてビームダ クトの素材を現在の SUS 製からセラミックス製に変更 する事。3 点目は大強度ビームのハロー部のビームロス による放射化を軽減するため周回ビームダクトのアパー チャーを拡大する事である¹。以上の理由から交換が必

¹周回ビームラインのアパーチャーが大きくなるのは SM30 と SM31 である。また取り出しラインについては全て垂直方向の ビームアパーチャーが大きくなる。

^{*} tatsunobu.shibata@j-parc.jp

要な SM30、SM31、SM32 の新規製作及び現行機との 交換を決定した。SM33 については新規製作はせず現行 SM32 と SM33 を組み合わせた再利用品を構築する予定 である。電磁石用電源は全て現行機を再利用する予定で ある。HF セプタムのアップグレードの内容や現行機と の比較についての詳細は Ref. [6] を参照されたい。

Present FX High-Field Septa

Current Pattern of FX-Septa

Figure 1: The photographs of the present FX HF-Septa, and their output current patterns.

3. 2018年の新 SM30 試験運転

新 SM30 は 2015 年に製作された。そして 2018 年 9 月~10月に初めて新 SM30の試験運転を行い高繰り返 し試験と磁場測定を行った [6]。供給電源は行機の SM30 用の電源を使用した。高繰り返し試験においては繰り返 し周期は最短で 1.16 s まで試験をし、電源側にも電磁 石側にも問題がなく、1.3 MW 出力のための運転が十分 可能である事が確認できた。一方、磁場測定には幾つか 問題が残った。NU 側の磁極間磁場を測定した結果、印 加電流値に対して発生磁場は飽和する事もなく充分良い 線形性を示したが、磁極間距離と電流値から計算される 予想値に比べて 0.4% 程低い値になっている事が分かっ た。更に NU 側と ABT 側の取り出しビームダクト中心 の磁極間磁場を比較した結果、約40 Gauss の差異があっ た。試験運転終了後の原因調査によって測定に使用した ガウスメータの出力信号電圧に僅かな負極性のオフセッ ト電圧が含まれている事が判明した。オフセット電圧は 約-2 mV 程度であるが磁場に換算すると約-20 Gauss で あるため、お互い逆極性の NU 側と ABT 側の磁場の相 対的な差は約 40 Gauss になる。よって NU 側と ABT 側 の不一致の主な原因は負極性のオフセット電圧である と特定した。他の問題は周回ライン上への漏れ磁場であ る。周回ライン中心に対して水平方向に沿った ±9 mm の位置で漏れ磁場の大きさを比較した結果、磁極端部付 近で約2倍の差異が見られた。また磁極端部の漏れ磁場 の大きさはシミュレーションで予想された数値と同程度 であり充分小さい値であったが更に軽減できる可能性が あると判断し、漏れ磁場軽減対策として追加シールドの 導入を決定した。

4. 2019年の新SM30再試験

2018年の磁場測定で判明した問題点改善の確認も含め、漏れ磁場軽減試験を目的に2019年の10月再び磁場 測定を行った。通電試験のセットアップは2018年と同 じである。磁場測定に用いる磁場センサーも2018年の 測定と同じホール素子を用いたガウスメータである。そ

のため負極性のオフセット電圧の差っ引きが必要である が、オフセット電圧は測定状況や時間によって変化する 可能性があるため測定前後で測定し、その平均値を差し 引く事にした。Figure 2 に新 SM30 と電源の基本構造と スペックを示す。出力電流パターンのフラットボトム電 流は 370 A、立ち上げ時間は 0.7 s または 1.4 s、フラッ トトップ電流は 50 ms 長の 2,930 A で設定した。2018 年の試験運転では最大 3,754 A であったので 820 A 低い 電流値で運転した。ビーム運転時のフラットトップ時間 は 20 ms であるが、磁場センサーの信号に見られる交流 成分のノイズに対し十分な精度の平均値を取るために長 めの時間を設定した。この設定変更は 2018 年の試験に はない。本試験では高繰り返し試験は行わないため繰り 返し周期は 2.48 s で行った。

4.1 NU 側と ABT 側の磁極内磁場測定

Figure 3: The time variation of the temperature which is mounted in the Hall sensor (left), and the gap field of NU and ABT line (right).

磁極内磁場測定の目的は NU 側と ABT 側の磁場の比較と積分磁場 (BL)の水平方向に沿った一様性の測定である。磁場測定は 2018 年と同じ装置を使用した。ビーム軸に沿った 2 m の範囲でマッピング測定が可能になるようにビームダクト内にレールを敷き、そのレール上にビーム中心と同じ高さに位置する磁場センサーを取り付けた台車が移動する仕組みになっている。台車の位置は±0.5 mmの測定精度を持つポータブルレーザー距離計を使って測定した。2018 年の試験では磁極内磁場を測定する装置が一式しかなく磁場測定を NU 側から ABT 側に切り替える際には通電を一度停止し装置を入れ替え、通電を再開する手順を取っていた。その場合出力電流のわずかな変化等不確定な要素が生まれ厳密な比較

PASJ2020 WEPP51

ができない可能性があったため、磁極内磁場の測定装置 をもう一式製作し、通電を止めずに磁場センサーのみ入 れ替える方法で NU 側と ABT 側の比較データを取得で きるようにした。負極性のオフセット電圧は全ての測定 前後で記録した結果、ほぼ-24 Gauss であった。Figure 3 に1日の間で測定された磁極内磁場と磁場センサー部に 内蔵された温度センサーが示す温度の時間変動を示す。 2.48 秒周期で連続通電を行い、その間3回のNU側の測 定と1回の ABT 側の測定を交互に行い、磁場の変動を 測定した。但し、1回目と2回目の NU 側の測定には 90 分の停止時間が存在する。磁場の値は負極性オフセット 電圧を引いた数値である。温度を同時に記録した理由は 通電中磁極内の空気の温度が数°C 上昇するため磁場セ ンサーの温度特性が影響するためである。表示されてい る磁場はショット番号 600 付近から表示しているがこ れより以前の信号電圧が非常に不安定になっており安 定な信号が得られるまで時間を要したからである。信号 電圧が不安定になった原因は不明である。測定の結果と してまず温度変化について記述する。通電により温度は 約 27 °C から最大 33 °C 程度まで上昇した。30°C を基 準にすると約 2~3 °C の上昇であった。一方磁場は NU **側、ABT 側で両方ともに 5~7 Gauss 程の減少が見られ** た。使用したガウスメータの温度係数は-0.06 Gauss/°C であるため測定された温度上昇から計算される磁場の変 動量は 0.2 Gauss 以下である。従って磁場の減少はホー ル素子の温度係数では説明が付かないが、温度に対する 応答性の問題であると考えている。そのためホール素子 の温度特性を独自に測定する計画である。次に NU 側と ABT 側の磁場の比較結果について記述する。まず注目 すべき点は 1st-NU、3rd-NU と 1st-ABT の磁場が一致し ているという点である。温度による磁場の減少も一致し ており、NU 側と ABT 側の磁場に 2018 年の測定結果の ような不一致な点は見られなかった。一方 2nd-NU につ いては他の3セットとは一致せず、全体的に約7 Gauss 程度低かった。この不一致の原因はまだ判明していない が候補として磁場センサーのゲインの変動が考えられ る。ショット番号 600 以前の磁場センサーの信号電圧が 安定しなかったと同様の現象が起こった可能性がある。 今後同じ現象が発生した場合に備え、測定前後で別に用 意した DC 磁場を測定してゲインの相対的な校正を行う 事を考えている。

Figure 4: The view of the new SM30 from beam downstream (left), and the transverse distribution of the BL in the NU line (right).

Figure 4 に NU 側で測定した BL の水平方向分布を示 す。測定した水平方向の範囲は水平方向のアパーチャー ±49 mm に対して ±37 mm である。測定範囲の限界は 磁場センサーとセンサーの固定治具に依る結果である。 BL は明らかにセプタムコイル側で低く、リターンコイ ル側で大きくなる構造を持っている。その高低差は約 0.27 % であり曲げ角度にして ~0.03 mrad である。印加 電流は 2,930 A であったが、ビーム運転時の印加電流値 は 2018 年の測定結果から 3,754 A である事が分かって いるので、ビーム運転時の高低差は ~0.04 mrad である。 この値は NU への取り出しビーム軌道の微調整の最小単 位程度である。充分小さいというわけでないが現段階で 大きな問題にはならないと考えている。

4.2 周回ライン内の漏れ磁場測定

Figure 5: The longitudinal distribution of the leakage field (upper), and the time-dependent BL (lower). The data sets are compared with simulations.

周回ライン内をビーム方向に沿って磁場の位置分布を 測定した。2018年の測定結果の再現性を確認するため に測定ラインは 2018 年の測定と同じ周回ビーム中心位 置 (中心ライン) と中心ラインから水平方向に ±9 mm の 位置を選んだ (±9 mm ライン)。また新たに周回ダクト の内面から中心方向に 15 mm の距離のライン (15 mm ライン)を測定した。周回ダクトの形状は上下流部の水 平方向の内寸がそれぞれ 59 mm、86 mm のテーパー型 になっているため 15 mm ラインはビーム軸方向に対 して平行ではなく、上下流部でそれぞれ約±14.7 mm、 ±28 mm に位置する。5 つのライン上で測定された磁場 分布と比較のために OPERA-3D-TOSCA [7] を用いて計 算された漏れ磁場分布、そして BL の時間波形の結果を Fig. 5 に示す。シミュレーションは中心ラインと ±9 mm ラインのみである。最も漏れ磁場の高い上流端部の値 は測定結果とシミュレーション結果で良く合っている 事が分かる。また重要な点は 2018 年の結果に見られた ±9 mm ラインに見られた非対称な構造が見られず対称 な構造をしている事である。この対称構造は 15 mm ラ インにも見られるため周回ライン内での水平方向の分布

PASJ2020 WEPP51

は中心軸に対して対称な構造になっている事が確認でき る。2018年の結果が再現していない点については測定 位置の間違い、磁極内磁場測定でも問題の原因として挙 げたホール素子のゲイン変動等が考えられる。一方下流 方向はシミュレーションと測定結果が一致しておらず測 定値の方が大きい。そして全ての測定ラインで左右対称 になっていない事が確認できる。BL の時間波形の特徴 は時間波形が印加されたパターン電流の形状をしている 点である。つまり漏れ磁場の主成分はパターン電流であ り、二次的な渦電流ではない事を示している。また時間 波形がおおよそ左右対称の構造をしている事が分かる。 僅かに左右非対称の構造になっているのはビーム下流部 の非対称構造の影響が出ている事が原因である。測定の 範囲内での BL の最大値はビーム取り出し時間のフラッ トトップ時で15mm ラインの~6 Gauss×m であった、 磁極内磁場の BL に対して 0.06 % の漏れ磁場である。 現行機では ±20 mm の範囲で磁極内磁場の 0.1~0.65% の漏れ磁場が確認されているので既に現行機よりも漏れ 磁場が小さくなっている事が確認できた。

磁極端部の漏れ磁場の原因は端部のコイルである。こ の漏れ磁場を更に軽減するため端部コイルを完全に覆い 隠す強磁性体を用いたフィールドクランプ (FC)を製作 した。FC の材質は純鉄製で板厚は 15 mm である。FC を用いた漏れ磁場軽減能力についてもシミュレーション で見積もった。Figure 6 に 2019 年 10 月に新 SM30 に装 着された FC とシミュレーションで見積もられた漏れ磁 場の位置分布図を示す。

Figure.7にFCを装着した状態での漏れ磁場測定結 果を示す。Figure 5と比較すると端部の磁場と BL が飛 躍的に軽減した。磁極内領域には-0.5 Gauss 程度の磁場 が存在している。この磁場は FC の導入位置とは関係な いため以前から既に存在しており、その源はセプタム板 表面上で生成される渦電流であると推定される。測定結 果、FC が有効である事が確認でき、FC をビーム運転時 にも使用する事が決まった。ところで磁極端部から外側 の領域で磁極から離れてもなお上昇する磁場が確認でき る。この成分は電磁石に供給している戻り側の出力電流 ケーブルが電磁石下流部付近の床にソレノイドコイルの ような形状で設置されている事から、ケーブルが作る電 流磁場である。またビーム上流部にも測定ラインの下に 行き用の出力電流ケーブルを渡しており、その位置は磁 場のピークを示した 1.75 m 付近である事から、このケー ブルが作る同心円上の磁場が原因である事が分かった。 Figure 8 にビーム下流方向、上流方向からみた出力電流 ケーブルの配置写真を示す。最終的には電線は使用せず 銅ブスバーを使用する。銅ブスバーを流れる電流が作る 空間磁場を相殺するために行と戻り用のブスバーは平行 して電磁石の下を潜るように設置される最終的な配置で の空間磁場をシミュレーションで見積もった結果、最大 値で約 0.5 Gauss 程度である事を確認した。

5. 真空フランジの溶接

2020年1月、3本の真空ダクトを真空フランジに溶接 する作業を行った。溶接する真空フランジは上流側と下 流側それぞれに1個ずつあり、上流側は直径450mm、 下流側は直径510mmである(Fig.9)。下流側は溶接べ

Figure 6: The installation of the field clamps (upper), and the simulation of the leakage longitudinal distribution with the field clamps (lower).

ローズ付きのフランジであり、新 SM31 の上流側真空 フランジと直接接続する構造となっている。フランジの 素材は両方純チタン製である。溶接する前にレーザート ラッカーを用いてフランジ面の傾きを測定した。測定の 結果上流側のフランジは約0.08 度傾いている事が確認 された。下流側はそれよりも傾きが小さかった。傾きは あるが真空ダクトとの溶接面には隙間はなく溶接には 問題がない事を確認した。溶接完了後真空リーク試験を 行った。リーク量は 3~4×10⁻¹¹ Pa·m³/s 程度であり問 題はなく、スローリークも確認されなかった。真空リー ク試験の終了後再びフランジ面の傾きと位置測定を行っ た。上流側フランジの傾きは 0.08 度であり溶接前と同 程度であった。また周回ダクトの中心位置に対してフラ ンジの中心は水平方向には約 0.05 mm 程度であったが 垂直方向には約 0.24 mm 程のずれがある事も確認した。 下流側フランジの傾きは 0.02 度であり上流側よりも小 さい事を確認した。周回ダクトの中心位置に対するフ ランジの中心位置のずれは水平垂直共に 0.1mm 以下で あった。

Proceedings of the 17th Annual Meeting of Particle Accelerator Society of Japan September 2 - 4, 2020, Online

PASJ2020 WEPP51

Figure 7: The longitudinal distribution of the leakage field (upper) and the time-dependent BL (lower) with the field clamps.

6. 今後の予定

2020 年度は新 SM31 の試験運転を行い高繰り返し運転の試験と磁場測定を行い、その後真空フランジ溶接を計画している。2021 年度は長期メンテナンス期間を予定している。この期間に現行機の全 HF セプタム電磁石の撤去を行い、新 SM30、SM31、SM32 のインストールを行う。また現行の SM32 の ABT 側と SM33 の ABT 側を使って新 SM33 の構築を行いインストールを行う。 2021 年度末までに全ての HF セプタムに対してのアップグレードを完了する予定である。

7. まとめ

J-PARC の MR では FX 用ビームパワーを増強するた め FX 用 HF セプタム電磁石のアップグレードが進行中 である。2019 年に新 SM30 の磁場測定を行った結果、 NU 側と ABT 側で矛盾のない磁場を得る事ができた。 また磁極端部に新規導入したフィールドクランプによっ て漏れ磁場の更なる軽減に成功し、新 SM30 の漏れ磁場 は現行機よりも小さい漏れ磁場を実現した。2020 年 1 月には電磁石の 3 本の真空ダクトに真空フランジを溶接

Figure 8: The location of the power cables.

Figure 9: The large vacuum flanges for the new SM31.

する作業が行われ、新 SM30 の電磁石構築は終了した。 他の高磁場セプタム電磁石も含めて MR へのインストー ルは 2021 年度を予定している。

謝辞

J-PARC MR の真空グループの方々に新しい特注のブ ランクフランジ等の真空部品の設計と製作して頂き、真 空リーク試験も行って頂きました。感謝致します。

参考文献

- [1] http://j-parc.jp/
- [2] KEK Report 99-4 and JAERI-Tech 99-056 (1999).
- [3] T.Koseki et al., Prog. Theor. Exp. Phys., 2012, 02B004.
- [4] M.Kinsho et al., Proc. of IPAC, 2016, p999-1003.
- [5] T.Shibata et al., Proc. of PASJ, 2018, p499-503.
- [6] T.Shibata et al., Proc. of PASJ, 2019, p85-89.
- [7] https://operafea.com/opera-3d-staticelectromagnetics-module/