銅合金を用いたSuperKEKB陽電子源 用フラックスコンセントレータ

榎本 嘉範, 阿部 慶子, 岡田 尚起, 高富 俊和(KEK)

目次

- SuperKEKBの陽電子源
 材料評価
 製作方法
 発熱評価
- 設置、ビームスタディー
- まとめ

		КЕКВ	SuperKEKB	
衝突点 Belle II 測定器		Ring		
	E	3.5 GeV	4.0 GeV	
	I	1.6 A	3.6 A	
電子リング 電子リング	Life time	150 min	6 min	
	Loss rate	0.18 mA/s	10 mA/s	
日本 日		Linac		
	Bunch charge	1 nC	4 nC	
陽電子リング しての の ての れの	Repetition	25 Hz	25 Hz	
電子・陽電子入射器	No. of bunch	2 bunch	2 bunch	
	Inj. Current	50 nA	200 nA	
	Linac to Ring			
	Inj. Efficiency	0.5	0.5	
陽電子ダンピングリング	Rep. rate	10 ⁵	10 ⁵	
電子銃	Max. increase current rate	2.5 mA/s	10 mA/s	
	duty	0.07	1	

Positron target and capture section A1-Gun AT-Gun from DAMPING to DAMPING R Sector B Sector Sector RING H RING PF-BT/AR-BT -AS-Gun D Sector 3 Sector #3 Switch Yard **5** Sector C Sector **1 Sector** 2 Sector **4 Sector**

-AR-Ring

to KEKB

前店

FC head + BC + target = FC assembly

大きな放電後...

slit幅は0.2 mm 設計電流値12 kAを流した 場合、slit間には約1 kVの 電圧がかかる。電場にす ると約5 MV/m 放電部の様子をみるとslit幅が狭くなっている

FC磁場のSlit幅依存性

Bz max @ x = 2 mm

Slit幅を広げると磁場が下がる(0.1 mm広げると1.08 T)

New material for FC head

放電を避ける →slit間の電場を下げる →slitの距離を管理する →変形を避ける

材料の耐力を上げる

- 加工硬化処理をテスト
 - SLACで以前行われていた方法
 - 明らかな改善は見られなかった
- 材料自体を変更することに

FC head 材料に要求されること

- ロウ付け生が良い
- ロウ付け後も耐力が高い
- 電気、熱伝導率が高い

Yield Strength, MPa

Positions of various copper alloy systems in conductivity-strength map

)

14

ロウ付け性の評価

SH-2

SH-1

P:パラジウムロウ C1020

SH-1	Cu-Cr
SH-2	Cu-Zr
C1020	Cu
NC50	Cu-Ni-Si

銀ロウ、パラジウムロウの2種類 のロウ材をワイヤーで固定し真空 炉で加熱。濡れ性を評価した。

NC50はC1020と同等の良好なロ ウ付け性を示した。 一方他の合金はロウの流れが悪 く成分の析出による(?)変色が見 られた。

応力ひずみ線図

17

応力ひずみ線図

応力ひずみ線図

応力ひずみ線図

耐力

各材料の機械的性質

Material	Cu (C1020)		Cu-Cr (SH-1)		Cu-Zr (SH-2)		Cu-Si-Ni (NC50)		
Thermal cycle		After brazing		After blazing		After blazing		After blazing	After aging
conductivity %IACS	102.2	102.1	90.8	76.0	81.1	68.5	50.3	25.1	48.8
Hardness	87.4	30.4	71.6	60.0	45.9	55.8	95.3	61.2	95.4
Tensile strength Mpa	327.4	232.1	402.6	237.2	443.1	238.3	648.7	323.7	658.8
Elongation %	21.6	54.4	36.8	56.8	32.6	51.4	14.8	46.6	10.6
Yield strength Mpa	322.3	12.9	293.6	57.9	348.2	40.8	551.8	109.7	513.1

製作

- 外形加工
- 真空炉でパイプロウ付け
 - 溶体化処理
- 導電率測定
- 真空炉で時効硬化処理
- 導電率測定
- ワイヤーカット
- 真空フランジ上へ組み立て
- 静的試験(リーク、水圧等)
- 組み込み
- 通電試験

赤字はKEK内作業、それ以外は外注 製作期間約6ヶ月/台(材料手配含まず)

ワイヤーカット中の様子

導電率測定による時効硬化処理の評価

加工前

ロウ付け後(溶体化処理)

時効硬化処理後

渦電流で表面抵抗を図る測定器(Ether NDE, Sigma check)で抵抗を測定 溶体化後は 25%IACS, 時効硬化処理後は50%IACSになっていれば良い。

材料変更に伴う懸念事項

- 材料変更に伴い抵抗が無酸素銅(C1020)の2
 倍になる。
 - 発熱
 - 磁場

Conduction current distribution in FC

Jx : conduction current density in x direction

パルス電流なので表皮効果に より電流は表面のみを流れる。 ・テーパー内面を流れる電流が 磁場を作る ・Slit側面を流れる電流は両サイ ドで打ち消し合う

 $\delta = \sqrt{\frac{2\rho}{\omega\mu}}$

 ρ : electrical resistivity ω : angular frequency μ : permeability

Pulse width dependence

抵抗率(ρ)が2倍 = 表皮深さ(δ)が $\sqrt{2}$ 倍 = パルス幅が2倍と同じ効果 若干ピーク磁場が下がる(黒→黄緑)

Bz (T) FC center

27

矢印部にインピーダンスアナライザ (keysight, E4990B)を接続して測定

全発熱量はRに比例するが、 銅パイプ部はどちらも無酸素銅なので、R は2倍にはならない

Frequency	R_C1020	R_NC50	R_NC50/R_C1020
kHz	mΩ	mΩ	
1	3.24	3.78	1.17
10	12.8	15.1	1.18
100	65.0	86.3	1.33
1000	268	392	1.46

発熱分布の計算と測定

新FCの 設置

- 2020夏のメンテナンス期間に
 - 新FC
 - ソレノイド内BPM
 - ソレノイド内steering磁石
 を設置

Remove old positron source

Install new positron source

陽電子電荷量 history

	design	2020ab (operation)	2020ab	2020c	2021a	2021b
Study date		2020/7/1	2020/7/2	2020/10/12	2021/2/12	2021/7/6
Energy (e-)*	3.46 GeV	3.01 GeV	3.01 GeV	2.87 GeV	2.89 GeV	2.92 GeV
Bunch charge (e-)	10 nC	8.2 nC	8.3 nC	8.1 nC	8 nC	9.0 nC
e+/e- @ SP_16_5	0.58	0.23	0.38	0.51	0.55	0.59
e+ @ SP_16_5	5.8 nC	1.9 nC	3.2 nC	4.1 nC	4.4 nC	5.3 nC
e+@SP_28_4	-	1.6 nC	2.4 nC	2.5 nC	3.2 nC	3.5 nC
e+ @ SP_DC_4	-	1.3 nC	1.9 nC	2.1 nC	2.5 nC	3.0 nC
e+ @ SP_58_4	4 nC	1.3 nC	1.9 nC	2.1 nC	2.5 nC	3.0 nC
e+ @ QMF8P_K**	4 nC				2.77 nC	2.95 nC

新FCインストール

*LIiOP:AC_13_4:GAINSUM:KBP **BTpBPM:QMF8P_K_1:NC_1Hz × CGpBPM:QMF8P_K:FQ (0.475575)

まとめ

- 銅合金(NC50)を用いたFCを製作
 - 放電問題を克服し、定格電流(12 kA)で安定運転を達成
 - 電子陽電子変換効率は設計値0.59を達成
 - 抵抗率増大(OFCの2倍)による磁場の変化、発熱増加 は許容範囲内

NC50はロウ付けが必要で、かつ高い機械的特性が求められる用途に 無酸素銅の代替品として適用できる可能性がある。