PASJ2021 THP056

京都大学自由電子レーザ施設の現状

PRESENT STATUS OF FREE ELECTRON LASER FACILITY AT KYOTO UNIVERSITY

全炳俊^{#, A)}, 紀井俊輝^{A)}, 大垣英明^{A)} Heishun Zen^{#, A)}, Toshiteru Kii^{A)}, Hideaki Ohgaki^{A)} ^{A)} Institute of Advanced Energy, Kyoto University

Abstract

An oscillator-type mid-infrared Free Electron Laser (FEL) named KU-FEL has been developed at the Institute of Advanced Energy, Kyoto University for energy related researches. Recently, a THz coherent undulator radiation source driven by a compact-accelerator using a photocathode RF gun has been developed. In this paper, the present status of the facility is reported.

1. はじめに

京都大学エネルギー理工学研究所では、エネルギー 関連研究への応用を目指し、中赤外自由電子レーザ装 置(Kyoto University Free Electron Laser, KU-FEL)を開 発してきた[1-3]。これまでに、波長 3.4~26 μm での発 振に成功しており[3]、固体試料や薄膜のポンプ・プロー ブ分光[4-8]、生物試料への照射[9-12]等、幅広い応用 実験に供されている。

KU-FEL 装置は周波数 2856 MHz のマイクロ波で駆動する 4.5 空胴高周波電子銃と3 m 加速管、ビーム輸送部、アンジュレータ、光共振器により構成されている [1,2]。Figure 1 に 2021 年 8 月現在の FEL 装置概略図を示す。

Figure 1: Layout of MIR-FEL and THz-CUR source in August 2021.

中赤外 FEL の開発に加えて、近年は光陰極高周波 電子銃で発生させた電子バンチをバンチ圧縮器で圧縮 し、1 ps 程度の短バンチにした後に、アンジュレータに 入射する事で強い準単色 THz 光を発生させるコヒーレ ントアンジュレータ放射(Coherent Undulator Radiation: CUR)光源の開発も行っている[13-19]。THz-CUR 光源 の概略図も Fig. 1 に示した。THz-CUR 光源は専用の 光陰極高周波電子銃を持つが、高周波源と光陰極駆動 用レーザを KU-FEL 用電子銃と共有している。2015 年 4 月に光陰極高周波電子銃からの電子ビーム発生に成 功した。その後、2016 年 3 月にバンチ圧縮器の設置を 完了、2016 年 4 月にコヒーレント遷移放射を用いたバ ンチ圧縮条件の確認を行った。そして、2016 年 7 月に アンジュレータの設置を完了し、2016 年 8 月にコヒーレ ントアンジュレータ放射の発生を確認した。最近は ECC-RF Gun[20]を用いた高強度化[21]や低減衰偏光可変性 付与光学系の開発[22]などを外部利用者との共同研究 で進めている。

Figure 2: Macro-pulse energy of KU-FEL under the thermionic operation available at the user station 1.

2. 京都大学中赤外自由電子レーザの性能

KU-FEL の 2021 年 8 月現在の性能を Table 1 に示 す。4.5 空胴高周波電子銃内に設置された LaB₆ 陰極を 熱陰極として利用した際には、最短波長 3.4 μ m、最長 波長 26 μ m での発振が確認されている。ユーザー利用 ステーションにおける各波長でのマクロパルスエネル ギーを Fig. 2 に示す。近年、発振可能再短波長よりも短 い波長を利用したいという内部ユーザーの希望があり、 中赤外用非線形結晶(ZnGeP₂, θ =48.8 deg. ϕ =0 deg., 3 Photon 社製)を用いた二次高調波発生も行っている [23]。これまでの実績としては、波長 6.3 μ m の二次高調 波発生で 3.15 μ m を発生した際に、約 1.5 mJ のマクロ パルスエネルギーが、波長 5.0 μ m の二次高調波発生 で 2.5 μ m を発生した際に、約 6 mJ のマクロパルスエネ ルギーが得られている。

[#] zen@iae.kyoto-u.ac.jp

RF Gun Operation Mode	Thermionic	Photocathode
Wavelength Range	$3.4-26\mu m$	To be determined
Max. Macro-pulse Energy*	41.8 mJ @4.9 μm	4.5 mJ @11 μm
Typ. Macro-pulse Duration	2 μs	3.5 µs
Micro-pulse Repetition Rate	2856 MHz	29.75 MHz
Max. Micro-pulse Energy*	7.3 μJ @4.9 μm	~40 µJ @11 µm
Micro-pulse Duration*	~0.3 ps @11 µm	~0.2 ps @11 µm
Typ. Bandwidth*	3%-FWHM	~6%-FWHM
Max. Extraction Efficiency	5.5% @11.6 µm [24]	9.4% @11 μm [25]

Table 1: Performance of KU-FEL

*Observed at user station 1 (after 12 m transport).

2019 年度には FEL の引き出し効率測定を行い、熱 陰極運転においては波長 11.6 µm にて最大 5.5%の引 き出し効率が得られている事を確認した。これは常伝導 加速器を用いた共振器型 FEL では最高の引き出し効 率であり、動的バンチ位相変調を導入することで、高い 引き出し効率が得られていることが明らかとなっている [24]。2020 年度に実施したミクロパルス長計測により、波 長 11 µm において半値幅約 0.3 ps のミクロパルス長が 得られていることが明らかとなった。

2020 年 8 月現在、本装置は波長可変範囲および ユーザーステーションで利用可能な最大マクロパルスエ ネルギーにおいて、中赤外自由電子レーザとして国内 最高性能を有すると共に、引き出し効率において現在稼 働中の共振器型 FEL として世界最高性能を有する。

高周波電子銃内に設置された LaB₆ 陰極に外部から 波長 266 nm のマルチパルスピコ秒レーザを照射し、光 陰極動作させた際の性能も Table 1 に示した。波長可変 域はまだ調査できていないが、電子バンチ電荷量の増 大により、FEL ゲインが増加しており、熱陰極運転時より も幅広い波長可変域が得られると考えられる。ミクロパル ス繰り返し周波数が熱陰極運転と比べて約 1/100 と低い ため、マクロパルスエネルギーは低下するが、より高いミ クロパルス当たりのエネルギー得られる。これは熱的な影 響を低減して非線形効果を得るのに適した条件と考えら れる。FEL の引き出し効率は 9.4%と熱陰極運転と比べ て増大し[25]、それに伴い、ミクロパルス長は波長 11 µm

Figure 3: Operation time of KU-FEL facility in FY2020. The adjustment of accelerator, machine tuning for FEL lasing, study of the driver linac and FEL parameter measurements are included in "Others".

において半値幅約 0.2 ps と短くなっている。

3. KU-FEL 稼働状況

Figure 3 に KU-FEL 駆動用電子線形加速器の 2020 年度における稼働状況を示す。総運転時間は 433.2 時 間であった。放射線管理上の年間最大運転可能時間 (960 時間)の約 45%であり、まだマシンタイムに余裕があ る。2020 年度は秋から冬にかけて COVID-19 の感染拡 大が予測されることから、6 月末に全ユーザーに対して マシンタイム意向調査を行い、7-10 月に一通り外部ユー ザー利用実験を実施することとした。その甲斐もあり、先 方都合で実施できなかった1件を除く全ての外部ユー ザー利用実験を実施することができた。また、1-3 月には 主に内部ユーザー利用実験を実施した。

Figure 4 に 2009 年度以降の総運転時間とユーザー 利用時間及びユーザー利用時間が総運転時間に占め る割合の履歴を示す。2010 年度までは加速器の R&D がメインであったが、2011 年度から 2013 年度にかけて ユーザー利用実験が増加した。2020 年度には、総運転 時間の約 84%がユーザー利用実験に供された。2015 年度以降、総運転時間は徐々に右肩上がりに増加して いたが、2020 年度は 2019 年度に比べて 2 割減となっ た。ユーザー数は 2019 年度の 15 件に比べて 2020 年 度は 16 件と微増しているにもかかわらず、総運転時間 が減少したのはコロナ禍の影響であると考えられる。

2021 年度は所外共同利用・共同研究の件数が 2020

Figure 4: History of total operation time and user experiment time of KU-FEL since 2009. The maximum operation time per year is 960 hours, which is limited by radiation restriction.

年度の16件(海外2件含む)と同じ16件と維持している。 本年度も昨年度同様、11月までに外部ユーザー利用実験を シンタイムの意向調査を行い、6月頭からユーザー利用実験を開始したため、昨年度よりも余裕をもってスケジュールを組めている。

4. トラブルおよび問題点

KU-FEL では2台のクライストロンを用いて、電子銃と進行波加速管を個別に駆動している。電子銃用モジュレータは1997年購入、加速管用モジュレータは2003年購入であり、どちらも15年以上継続して使用しており、老朽化問題が顕在化している。

電子銃用モジュレータは PFN 用高圧コンデンサの不 良が 2014 年度より発生し、20 本の全交換を 2017 年度 に完了していた[26]。2019 年度は加速管用モジュレータ の PFN 用高圧コンデンサの不良が発生した。そこで、 2019 年度はまず新しいコンデンサを 10 本調達し、交換 した。残りの 10 本は不良の発生状況を見ながら、調達・ 交換を行っていく予定である。

モジュレータの放電スイッチとして用いられているサイ ラトロンの経年劣化も進んでおり、これまで既報のとおり、 電子銃用モジュレータの放電時のノイズが増加すると共 に、パルス毎のノイズの強度が不安定になるという現象 が生じている。このサイラトロンについては 10 年以上前 に購入された予備品があったため、2020年4月に交換 した。現在、様子を見ながら継続して使用している。一方、 2020 年 7 月から加速管用モジュレータにおいてサイラト ロンの点弧不良が発生する様になった。初期の点弧不 良はリザーバ電圧・ヒーター電圧を調整することで解消し た。その後、リザーバー電圧を上げながら騙し騙し使っ ていたが、2021年3月末に寿命を迎えた。2021年3月 末に 2020 年夏に KEK 入射器系より譲り受けていた使 用済みサイラトロンへの交換を実施した。交換後の写真 を Fig. 5 に示す。元のサイラトロンが Triton 社の F-168 と小型だったのに対し、譲り受けたサイラトロンが e2V 社

Figure 5: Thyratron in a klystron modulator for the klystron driving a traveling wave tube in KU-FEL after replacement.

の CX2411 とサイズの大きなものであったため、モジュ レータ内部の部品配置等の変更も伴う大がかりな改修と なった。サイラトロンパルサーは幸いにも F-168 用の物を 流用可能であったが、プリパルス用の分岐回路等を用意 する必要があった。交換・調整後、本サイラトロンは問題 なく動作しており、2021 年 4 月 21 日の段階で FEL の 発振も問題なく行えることを確認した。寿命を迎えてから 約 1 ヶ月で復旧することができたのは KEK の明本光生 氏の適切な助言と日大の境武志氏の回路部品に関する 情報共有に依る所が大きい。また、モジュレータ製作業 者である日新パルス電子との事前協議及び準備もダウ ンタイム短縮に重要であった。

他方、根本的な老朽化対策として、上記クライストロン モジュレータ2台の更新を考えており、大学本部への予 算要求を行っている。

5. 施設整備状況

更により多くのユーザーに利用して頂ける様、加速器 及び利用環境の整備を引き続き行っている。以下に案 件毎に整理して述べる。

5.1 光陰極高周波電子銃を用いた THz 光源開発

2009 年度に KEK の大学等連携支援事業の下、1.6 空胴高周波電子銃(改良型 BNL Type Gun-IV)を製作し たのに端を発し、これまで、継続して光陰極高周波電子 銃を用いた THz コヒーレントアンジュレータ放射(THz-CUR)の開発を継続して行ってきた[13-19]。2019 年度は 既設の 1.6 空胴高周波電子銃を東京大学の坂上氏が 開発した ECC-RF Gun[20]と交換し、THz 発生実験を 行った。電子ビームエネルギーが低下しているにも関わ らず、より高周波な THz 波の発生を確認した[21]。バン チあたり電荷量 40 pC でミクロパルスエネルギー145 nJ の THz 波が得られている。変換効率 0.1%であり、バン チ長を保ったまま、電荷量を更に 10 倍に増強できれば、 1%の変換効率且つ 15 µJ 程度のミクロパルスエネル ギーが期待できる。また、東北大学の柏木氏との共同研 究で、偏光可変技術の開発も行っており、強度の減衰が ほとんどないワイヤーグリッド偏光子を使った光学系を用 いて、左右円偏光の容易なスイッチングに成功している [22]。

5.2 光陰極運転による KU-FEL の高ピークパワー化

2018 年度から光・量子飛躍フラグシッププログラム(Q-LEAP)、基礎基盤研究課題として、中赤外自由電子 レーザ(FEL)で駆動する高繰り返し高次高調波発生 (HHG)アト秒光源(FEL-HHG)の実現を目指し、量研、日 大、KEK、京大エネ研のチームで研究開発を開始した。 本プロジェクトでは、共振器型中赤外自由電子レーザで 発生させた高強度数サイクル中赤外光を希ガスに集光 し、HHG を行い、アト秒 X 線発生を行う予定である。研 究プロジェクトの構想や概要については、プロジェクト リーダーである量研の羽島氏が過去の加速器学会で報 告しているので、そちらを参照されたい[27]。KU-FEL で は、既設の KU-FEL 施設をアップグレードする事で HHG 駆動に必要な高強度数サイクル中赤外光の発生 を目指して研究を進めている。2018 年度には光陰極運

PASJ2021 THP056

転用陰極励起用レーザシステムのアップグレードを行っ た[28]。2019 年度は中赤外 FEL のパルス長測定系の 構築を進めると共に、アップグレードした光陰極励起用 レーザシステムを用いた実験を行い、バンチ電荷量 190 pC、マクロパルス長7 us の電子ビームを発生させ、FEL 発振を行うことで、引き出し効率 9.4%という共振器型 FEL の引き出し効率として、世界最高記録を達成した [25]。また、更なるバンチ電荷量の増大による引き出し効 率向上とピークパワー増大に向けて、新光陰極高周波 電子銃の導入する予定であり、2020 年度には KEK 工 作室の支援を受けて専用 1.6 空胴光陰極高周波電子銃 を製作した[29]。現在、電子銃用ソレノイド電磁石を製作 中であり、2022 年度以降の本格導入に向けて架台や真 空コンポーネント等、準備を進めている。

まとめ 6.

京都大学中赤外自由電子レーザは現在、当初の目標 波長領域(5~20 µm)を超える 3.4~26 µm での発振が可 能となっている。中赤外用非線形結晶(ZnGeP2)を用いた 二次高調波発生も開始し、波長 2.5 µm および 3.15 µm でそれぞれマクロパルスエネルギー約 6 mJ および 1.5 mJを達成可能である事が確認されている。従来の熱 陰極運転のみならず、光陰極運転も実施可能となって おり、より熱的影響が少なく非線形効果の表れやすい条 件が得られる様になっている。

2020 年度の総稼働時間は 433.2 時間でその内の約 84%がユーザー利用実験に供された。クライストロンモ ジュレータの老朽化が深刻化し、安定なユーザー利用 に支障が出始めているが、サイラトロンを交換することで 一先ずの延命に成功した。

一方、光陰極励起用レーザの整備が進み、光陰極高 周波電子銃を用いた THz 光源開発や中赤外 FEL の性 能向上などの開発が進められている。今後、これらの開 発が進むことで、より幅広い応用実験に利用可能な施設 となる事が期待される。

謝辞

サイラトロンの交換に関し、KEK の明本光生氏にはサ イラトロンの譲渡に始まり、駆動回路系に関する助言など、 多くのご支援を頂いた。日大の境武志氏にはサイラトロ ンプリパルス分岐用回路について、日大で使用している 素子について情報を提供して頂いた。ここに感謝の意を 表したい。

参考文献

- [1] H. Zen et al., "Development of IR-FEL Facility for Energy Science in Kyoto University", Infrared Physics & Technology, 51, 2008, pp. 382-385; https://www.sciencedirect.com/science/article/pii/S13504 49507001077
- [2] H. Zen et al., "Present Status and Perspectives of Long Wavelength Free Electron Lasers at Kyoto University", Physics Procedia, 84, 2016, pp. 47-53; https://www.sciencedirect.com/science/article/pii/S18753 89216303042
- [3] H. Zen et al., "Present Status of Infrared FEL Facility at Kyoto University", Proceedings of FEL2017, 2018, pp. 162-165;

http://accelconf.web.cern.ch/AccelConf/fel2017/papers/m op050.pdf

- [4] K. Yoshida et al., "Experimental Demonstration of Mode-Selective Phonon Excitation of 6H-SiC by a Mid-Infrared Free Electron Laser with Anti-Stokes Raman Scattering Spectroscopy", Applied Physics Letters, 103, 2013, 182103; https://aip.scitation.org/doi/10.1063/1.4827253
- [5] E. Ageev et al., "Time-resolved detection of structural change in polyethylene films using mid-infrared laser pulses", Applied Physics Letters, 107, 2015, 041904; https://aip.scitation.org/doi/full/10.1063/1.4927666
- M. Kagaya et al., "Mode-Selective Phonon Excitation in [6] Gallium Nitride Using Mid-Infrared Free Electron Laser", Japanese Journal of Applied Physics, 56, 2017, 022701; http://iopscience.iop.org/article/10.7567/JJAP.56.022701/ meta
- [7] M. Kitaura et al., "Visualizing Hidden Electron Trap Levels in Gd₃Al₂Ga₃O₁₂:Ce Crystals Using a Mid-Infrared Free Electron Laser", Applied Physics Letters, 112, 2018, 031112:

- https://aip.scitation.org/doi/full/10.1063/1.5008632
 [8] O. Sato *et al.*, "Two-photon Selective Excitation of Phonon-mode in Diamond Using Mid-Infrared Free-Electron Laser", Physics Letters A 384, 2020, 126223; https://www.sciencedirect.com/science/article/pii/S03759 6011931165X
- [9] F. Shishikura et al., "ザリガニの眼は中赤外線が見えるの か", 日大医誌, 75, 2016, pp. 140-141; https://www.jstage.jst.go.jp/article/numa/75/3/75_140/_a rticle/-char/ja/ [10] T. Kawasaki et al., "Photo-Modification of Melanin by a
- Mid-Infrared Free-Electron Laser", Photochemictry and Photobiology, 95, 2019, pp.946-950; https://onlinelibrary.wiley.com/doi/full/10.1111/php.1307 q
- [11]T. Kawasaki et al., "Cellulose Degradation by Infrared Free Electron Laser", Energy & Fuels 34, 2020, pp.9064-9068; https://pubs.acs.org/doi/10.1021/acs.energyfuels.0c0106
- [12] T. Kawasaki et al., "Application of Mid-Infrared Free Electron Laser for Structural Analysis of Biological Materials", Journal of Synchrotron Radiation, 28, 28-35 (2021);

https://doi.org/10.1107/S160057752001406X

- [13] S. Suphakul et al., "Generation of Short Bunch Electron Beam from Compact Accelerator for Terahertz Radiation", Proceedings of IPAC2016, 2016, pp.1757-1759; http://accelconf.web.cern.ch/AccelConf/ipac2016/papers/t upow008.pdf
- [14] S. Suphakul et al., "Beam Dynamics Investigation for the Compact Seeded THz-FEL Amplifier", Energy Procedia, 89, 2016, pp.373-381; http://www.sciencedirect.com/science/article/pii/S187661 0216300571
- [15] S. Suphakul et al., "Measurement of Coherent Undulator Radiation of Compact Terahertz Radiation Source at Kyoto University", International Journal of Magnetics and Electromagnetism 3, 2017, IJME-3-008; https://www.vibgyorpublishers.org/content/internationaljournal-of-magnetics-and-electromagnetism/ijme-3-008.pdf
- [16] S. Krainara et al., "Development of Compact THz Coherent Undulator Radiation Source at Kyoto University", Proceedings of FEL2017, 2018, pp. 158-161; http://accelconf.web.cern.ch/AccelConf/fel2017/papers/m op049.pdf
- [17] S. Krainara et al., "Manipulation of Laser Distribution to Mitigate the Space-Charge Effect for Improving the

9

Performance of a THz Coherent Undulator Radiation Source", Particles 1, 2018, pp.238-252; https://www.mdpi.com/2571-712X/1/1/18

- [18] S. Suphakul *et al.*, "Investigation of Bunch Compressor and Compressed Electron Beam Characteristics by Coherent Transition Radiation", Particles 2, 2019, pp.32-43; https://www.mdpi.com/2571-712X/1/1/18
- [19] S. Krainara et al., "Properties of THz Coherent Undulator Radiation Generated from a Compact Accelerator Source at Kyoto University", Review of Scientific Instruments 90, 2019, 103307;
- https://aip.scitation.org/doi/10.1063/1.5110342
- [20] K. Sakaue *et al.*, "Ultrashort Electron Bunch Generation by an Energy Chirping Cell Attached RF Gun", Physical Review ST Accelerators and Beams 17, 2014, 023401; https://journals.aps.org/prab/abstract/10.1103/PhysRevST AB.17.023401
- [21] K. Sakaue et al., "エネルギー変調によって圧縮した電子 バンチによるコヒーレントアンジュレータ放射," Proceedings of the 17th Annual Meeting of Particle Accelerator Society of Japan, 2020, pp.638-640; https://www.pasj.jp/web_publish/pasj2020/proceedings/P DF/THPP/THPP60.pdf
- [22] S. Kashiwagi *et al.*, "Demonstration of Variable Polarized Coherent Terahertz Source", Infrared Physics & Technology 106, 103274 (2020); https://www.sciencedirect.com/science/article/pii/S13504 49519310254
- [23] H. Zen *et al.*, "Present Status of Free Electron Laser Facility at Kyoto University", Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan, Kyoto Japan, Jul. 31-Aug. 3, 2019; https://www.negi.in/wwb.mk/ich/created/neg//0

https://www.pasj.jp/web_publish/pasj2019/proceedings/PDF/FSPI/FSPI004.pdf

- [24] H. Zen et al., "High Extraction Efficiency Operation of a Midinfrared Free Electron Laser Enabled by Dynamic Cavity Desynchronization", Physical Review Accelerators and Beams, 23, 2020, 070701; https://journals.aps.org/prab/abstract/10.1103/PhysRevA ccelBeams.23.070701
- [25] H. Zen et al., "Record High Extraction Efficiency of Electron Laser Oscillator", Applied Physics Express 13, 102007 (2020);

https://doi.org/10.35848/1882-0786/abb690

[26] H. Zen *et al.*, "Present Status of Free Electron Laser Facility at Kyoto University", Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan, 2017, pp. 1347-1350;

https://www.pasj.jp/web_publish/pasj2017/proceedings/P DF/FSP0/FSP011.pdf

- [27] R. Hajima *et al.*, "自由電子レーザーで駆動する高繰り返 しアト秒 X 線光源", Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan, Kyoto, Japan, Jul. 31-Aug. 3, 2019, pp. 742-746; https://www.pasj.jp/web_publish/pasj2019/proceedings/P DF/THPI/THPI011.pdf
- [28] H. Zen et al., "京都大学中赤外自由電子レーザの長マクロ パルス光陰極運転に向けた光陰極励起用レーザシステム のアップグレード", Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan, Kyoto, Japan, Jul. 31-Aug. 3, 2019, pp. 786-788; https://www.pasj.jp/web_publish/pasj2019/proceedings/P DF/THPI/THPI024.pdf
- [29] T. Miyajima *et al.*, "高効率極短 FEL パルス生成のための 1.6 セル高周波電子銃の開発", WEP004 in these proceedings.