PASJ2021 TUP026

熊取 FFAG における短パルスビーム取出し SHORT PULSED BEAM EXTRACTION IN KURNS FFAG

上杉智教 *A)、石禎浩 A)、栗山靖敏 A)、森善治 A)

Tomonori uesugi^{* A)}, Yoshihiro Ishi^{A)}, Yasutoshi Kuriyama^{A)}, Yoshiharu Mori^{A)}

^{A)}Institute for Integrated Radiation and Nuclear Science, Kyoto University (KURNS)

Abstract

Short pulsed proton beams of 8 ns has been extracted from FFAG accelerator in KURNS. Bunch rotation after adiabatic debunching was used at highest energy orbit.

1. はじめに

京都大学複合原子力科学研究所(旧原子炉実験所) における FFAG 加速器の研究開発は、文部科学省の エネルギー対策特別会計委託事業の課題「FFAG 加速 器を用いた加速器駆動未臨界炉に関する技術開発」 として2002 年度より開始された。当初はそれぞれ低 中高エネルギー領域を担う三機の FFAG 加速器の複 合系として開発され[1]、2008 年には 100 MeV まで のビーム加速に成功、翌年には京都大学臨界集合体 (KUCA) ヘビームを供給し、世界初の加速器駆動未 臨界システム(ADS)実験を実施した[2]。2011 年に は新たに 11 MeV の線形加速器から FFAG 主リング へ直接ビーム入射する方式に変更し[3]、これによっ てビーム強度が 1 nA(20 Hz 運転時)に増強され、以 降は ADS 実験のみならず各種の照射実験のために ビームを供給している。[4,5]。

2019 年度より、ADS(=Accelerator Driven System) のための核データ取得実験が開始され、そこでは ToF による二次粒子の弁別を行うため、陽子ビーム のパルス長は 10 ns 程度の短いものであることが要 求された。これを実現するために、主リングの最終 エネルギー軌道でバンチローテーションを行うこと で、短バンチを生成してから速いキッカーで取り出 すことにした。本稿では、短バンチ生成実験の結果 を報告する。

2. 短パルス生成法

バンチローテーションは、高周波加速を採用して いる円形加速器において、急激に高周波電圧を変更 することで意図的にバケツ不整合を生じさせ、縦方 向位相空間で粒子集団を回転させてバンチ長(また はエネルギー広がり)を圧縮する方法である。小さ なバンチ長を得るためには、事前にエネルギー広が りの小さな粒子分布を実現させ、その後に急激に大 きな電圧を加えることが効果的である。

3. 予備実験・シミュレーション

事前に多粒子シミュレーションを用いてバンチ ローテーションの効果を見積もった。

3.1 再捕獲

加速終了直後、粒子は有限の同期位相 ϕ_s を持った 加速バケツに整合して分布していると考えられる。 その後の断熱デバンチングは一定の周波数にて行う ので、断熱デバンチに移行する際に高周波の位相を $-\phi_s$ だけジャンプさせる必要がある。このジャンプ 量を最適化するために予備実験を行なった。

Figure 1 は、加速終了直後に高周波位相をジャンプ させ、その後は電圧一定の定常バケツで再捕獲させ、 バンチモニタのマウンテンプロット表示したもので ある。位相ジャンプ –20°のときは、再捕獲(時刻 0)以降シンクロトロン振動が観測されている。位相 ジャンプ量を0°から350°まで10°刻みで変えて同 様の測定をした結果、–30°のとき(Fig. 1 右)最も シンクロトロン振動の振幅が小さくなった。ここか ら、加速バケツの同期位相は30°であったと推定さ れる。加速スピードから逆算すると、加速中の高周 波電圧振幅は約2.7 kV となる。

Figure 1: Synchrotron oscillations after recapture with $\Delta \phi = -20^{\circ}$ (left) and -30° (right).

^{*} uesugi.tomonori.2n@kyoto-u.ac.jp

PASJ2021 TUP026

3.2 断熱デバンチング

断熱デバンチは、再捕獲後に周波数一定の高周波 電圧を徐々に低下させることで、エミッタンスを保 存したままエネルギー広がりを圧縮するものであ る。この過程でのエミッタンス増大を抑制するため には、高周波電圧の変化がシンクロトロン振動より 十分遅い必要がある。断熱パラメータを、シンクロ トロン振動の周期の時間変化である無次元量

$$\epsilon = \left| \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\omega_s} \right|$$

で定義すると、例えば電圧 V を 1 ms かけて電圧 を 2.7 kV から 0 まで低下させる場合、開始時点で $\epsilon = 0.102$ となる。

デバンチにかける時間 T を変えて、エネルギーの rms 広がりがどれくらい圧縮されるか調べるシミュ レーションを行なった。粒子の初期分布は、定常バケ ツに整合した時間広がり 30 ns の分布とした。Fig. 2 はその結果である。破線は電圧 V を一定速度で減少 させた場合、実線は二次関数的に、すなわち

$$V(t) = V(0) \left(1 - \frac{t}{T}\right)^2$$

で減少させた場合である。T が長いほど圧縮の効果 は大きく、また同じTで比較した場合、二次関数的に 電圧を低下させた方が効果が大きいことがわかる。

Figure 2: Energy spread during adiabatic debunching.

3.3 バンチローテーション

前節の、1 ms かけて断熱デバンチを行なった結果 を初期分布として、そこからバンチローテーション のシミュレーションを行なった。

Figure 3-4 は、それぞれ正弦波と鋸歯状波の高周波 を用いた結果で、rms バンチ長がもっとも短くなった タイミングでの粒子分布を示している。電圧振幅の 最大値が同じ条件で比較したので、バケツ高は正弦 波の方が高いものの、フィラメンテーションによる 広がりの影響で最終的なバンチ長は鋸歯状波を用い た方が短くなることが見て取れる。バンチ長が最短 になるタイミングはほぼシンクロトロン振動の 1/4 周期に一致し、正弦波の場合で 63 μs、鋸歯状波の場 合で 75 μs であった。

Figure 3: Longitudinal phase distribution after 1/4 synchrotron oscillation with sinusoidal rf.

Figure 4: Longitudinal phase distribution after 1/4 synchrotron oscillation with sawtooth rf.

4. 実証実験

前節までの結果を踏まえ、Fig. 5 に示す高周波電圧 パターンを用いて短バンチ生成実験を行なった。は じめの 25 ms が 100 MeV までの加速、次の 0~1.0 ms が断熱デバンチ、最後の 1.0~0.5 ms がバンチロー テーションを行うセグメントである。加速からデバ ンチの間に –30°の位相ジャンプを挟んでおり、断 熱デバンチでは電圧振幅を時間の二次関数で低下さ せている。バンチローテーションでは、正弦波の高 周波を用いたが、将来は擬似鋸歯状波をためす予定 である。

Figure 6 は、その時のバンチモニタの出力である。 1.0 ms からバンチローテーションによるエンベロー プ振動が観測され、バンチローレーション開始から 60 µ s のタイミング(図中 B)でもっともピーク密度 が大きくなっている。ここでのバンチ波形を拡大し たものが Fig. 7 である。比較のため、加速終了直後 (図中 A) でのバンチ波形も重ねてプロットしてい る。rms バンチ長は、A で 30 ns、B で 8 ns であり(図 中の一点鎖線)、短パルス化の効果は明らかである。

また、このビームをキッカーで取り出したものを、 ビームライン中の静電型バンチモニタで観測した結 果(Fig. 8)、こちらも 8 ns のバンチ長であることが 確認された。

Figure 6: Circulating bunch monitor.

原子力システム研究開発事業「FFAG 陽子加速器 を用いた ADS 用核データの実験的研究」

Figure 7: Circulating beam before (black) and after (red) bunch rotation.

謝辞

本研究は、令和元年度原子力システム研究開発事業「FFAG 陽子加速器を用いた ADS 用核データの実験的研究」において行われた。

参考文献

- T. Uesugi *et al.*, "FFAGS FOR THE ERIT AND ADS PROJECT AT KURRI", Proc. of EPAC08, Genova, 2008, p.1013.
- [2] C. H. Pyeon *et al.*, "First Injection of Spallation Neutrons Generated by High-Energy Protons into the Kyoto University Critical Assembly", J. Nucl. Sci Tech, Vol. 46 (2009), No. 12, p. 1091.
- [3] K. Okabe *et al.*, "Development of H- Injection of Proton-FFAG at KURRI", Proc. of IPAC10, Kyoto, 2010, p.3897.
- [4] Y. Ishi et al., "Status Report on KURRI FFAG", Proc. of PASJ17, Sapporo, 2017, p.1351.
- [5] T. Uesugi *et al.*, "Status Report on Fixed Field Alternating Gradient Accelerators in KURNS", Proc. of PASJ18, Nagaoka, 2018, p.209.