PASJ2024 FROA03

半導体スイッチを用いた加速器用高電圧パルス電源の系統的研究 SYSTEMATIC STUDY OF HIGH-VOLTAGE PULSED POWER SUPPLIES FOR ACCELERATORS USING SOLID-STATE SWITCHES

生駒直弥 *,A), 徳地明 A)

Naoya Ikoma ^{*,A)}, Akira Tokuchi ^{A)}

^{A)} Pulsed Power Japan Laboratory Ltd.

Abstract

High-voltage pulsed power supplies are used in particle accelerators for particle sources, high-power RF sources, and pulsed electromagnets. In such power supplies, thyratrons have conventionally been used as switching devices. Thyratrons, however, have a short life and require periodic adjustment and replacement. On the other hand, power semiconductor devices have become popular recently, and various circuit schemes have also appeared. In this study, a high-voltage pulse power supply for accelerators using semiconductor switches is divided into three elements (main circuit, waveform control, and power feeding), and the optimal combination of each element is investigated.

1. はじめに

加速器では、粒子源、高周波源そして電磁石を筆頭 に、多数の高電圧パルス電源が用いられる。そのような 電源では、従来はスイッチングデバイスとして、放電 管の一種であるサイラトロンが用いられてきたが、サ イラトロンは、日々の調整が必要であったり、寿命が 短く定期的な交換があるといった問題点があった。

一方で、近年、パワー半導体デバイスの開発が進ん でおり、中でも SiC は高耐圧、低損失、高速動作と、高 圧パルス電源に適した特性を有している。さらに、半導 体デバイスを活用した種々の回路方式も登場している。

そこで本研究では、半導体スイッチを用いた加速器 用高電圧パルス電源について、主回路、波形制御、給電 の3要素に分けて系統的にまとめ、それぞれの最適な 組み合わせについて検討する。

2. 主回路方式

半導体スイッチの定格電圧は、高耐圧が特徴の SiC-MOSFET でさえ、市販品では最大 3.3 kV であり、サイ ラトロンのそれには遠く及ばない。サイラトロンに匹 敵する高電圧を出力するには、複数の素子を直列に接 続して使用する必要があるが、その方式として、Fig. 1 に示す direct、MARX、LTD の 3 つの方式がある。

Figure 1: Three types of main circuits.

2.1 Direct

例えば 10 kV のスイッチが必要な場合、耐圧 1 kV の スイッチを 10 個直列にするという方式で、回路とし ては最もシンプルであり、放電中も常時充電が可能で あるため、高 duty (~数 10%) 用途では必須の方式で ある。

一方で、各スイッチの電圧分担を常に均一に保たな ければ故障するおそれがあるため、全てのスイッチは 同時に ON/OFF する必要があり、波形制御を行うこと は困難である。さらに、たとえ全てのスイッチを同時 に ON/OFF させても、実際には対地間の浮遊容量など が各スイッチに並列に入っており、しかもそれらの静 電容量が段によって異なることで、容量分圧により過 渡的な電圧分担のアンバランスが生じやすく、技術的 には最も難しい方式である。トランスを使用しない場 合、コアの飽和による制約を受けないため、長いパル ス幅にも対応可能である。

Direct 方式を用いたクライストロンモジュレータの 写真とその出力波形を Fig. 2 および 3 に示す。コンデ ンサおよび 6 直列の IGBT で構成される「HV ユニッ ト」を、8 ユニット並列で使用し、-4 kV、3.9 kA のパ ルスを出力する。これをパルストランスで昇圧するこ とで、-147 kV、107 A の出力を得る。上記のようなモ ジュール構成となっているため、HV ユニットの並列数 およびパルストランスの昇圧比を変更することで、マ グネトロンモジュレータを含む様々な出力電圧・電流 の仕様に対応可能である。

2.2 MARX

1924 年に Erwin Marx によって発明された回路であ り、複数のコンデンサを並列に充電し、スイッチによっ てそれらを直列に繋ぎ替えることで、充電電圧×コン デンサの段数倍の高電圧パルスを出力するという、昇 圧機能を持った回路である。充電スイッチ等が必要で あるため、direct 方式に比べると素子数は多くなってし まうものの、電圧分担のアンバランスが原理的に生じ ず、むしろ、各段に異なるトリガを入力することで、出 力波形を柔軟に変化させられるメリットがある。

一方で、充電と放電を交互に行うため、高 duty では

^{*} ikoma@myppj.com

短時間で充電を行わなければならず、充電器に対する 要求が厳しくなるため、低 duty 向きの方式と言える。 また、トランスを使用しない場合、ロングパルスを出 力可能である。

Figure 4 および 5 は、産業用加速器向けの可搬型マ グネトロンモジューレタの写真とその出力波形であ る [1]。充電電圧-4 kV の MARX 基板を 10 段スタックす ることで、最大-40 kV、80 A を出力可能である。MARX 方式を採用することで、トランスレスで小型・軽量であ るだけでなく、各段の出力に遅延をかけることで、マ グネトロンに応じて電圧上昇率を調整することも可能 である。さらに、MARX の途中段から電子銃用の出力 を取り出すこともでき、本電源 1 台でマグネトロン、電 子銃の両方を駆動することが可能で、小型化が求めら れる産業用加速器システムの簡略化に寄与できる。

Figure 6 および 7 は、充電電圧-1.2kV×9 段の MARX とパルストランスとのハイブリッド方式により、-145 kV、120 A を出力するクライストロンモジュレータ の写真とその出力波形である [2]。MARX によってトラ ンスの 1 次電圧を-10 kV と高くすることで、トランス の昇圧比を下げることができ、トランスを小型化でき るだけでなく、巻き数が減ることでトランスの漏れイ ンダクタンスも下がり、高速な立上り時間を得ること ができる。また、波形制御を行うことも可能である。

2.3 LTD

LTD は linear transformer driver の略であり、コンデン サとスイッチで構成される「単位パルス回路」の出力を 複数重畳するという意味では MARX と近いが、大きく 異なる点は、各段がトロイダルコアを有しており、い わば1:1のトランスの2次側で電圧を重畳している点 である。このため、各段の回路は接地電位に置くこと

Figure 2: Picture of a direct-type klystron modulator.

Figure 3: Output waveform of a direct-type klystron modulator.

ができ、制御電力やトリガを地上から直接入力するこ とができる。その動作原理から、誘導加速リニアック の電子回路版と考えることもできる。トランスと書い たが、実際には1次巻線と2次巻線に相当する部分が 共通のオートトランスであるため、漏れインダクタン スは原理的にゼロであり、コアを使用しているにも関 わらず、高速の立上りを実現できる。また、MARX と

Figure 4: Picture of a MARX-type magnetron modulator.

Figure 5: Output waveform of a MARX-type magnetron modulator.

Figure 6: Picture of a MARX-type klystron modulator.

Figure 7: Output waveform of a MARX-type klystron modulator.

PASJ2024 FROA03

同様に、出力波形を柔軟に変化させることができる。

一方で、コアの飽和を避けるためには、磁束(出力 電圧 V の時間積分)は、コアの断面積 S と飽和磁束密 度 B_{sat} の積より小さくなければならない(Eq. (1))。

$$\int V dt < SB_{sat} \tag{1}$$

これはすなわち、パルス幅に制限があることを意味しており、ロングパルスには適さない回路方式となっている。

LTD の特筆すべき点は、外部トリガが入力されてか ら高電圧パルスが出力されるまでの遅延を、極めて小 さくできる点である。Direct や MARX では、各段は高 電圧に浮くため、外部トリガ(電気信号)を一旦光信号 に変換し、光ファイバによって各段に送信し、電気信号 に戻して半導体スイッチを駆動している。しかし、LTD では、地上から各段に直接電気トリガを入力できるの で、電気-光-電気の変換に伴なう遅延を削減できる。

Figure 8 は、充電電圧 800V×23 段の LTD 方式のキッ カー電源である。Figure 9 に示す通り、外部トリガから 出力までの遅延時間として 59ns を達成している [3]。

キッカー電源の特定の用途では、外部トリガから出 力までの遅延をなるべく小さくしたいという要求があ り、LTD 方式は、その様な用途に最適の方式と言える。

3. 波形制御方式

MARX と LTD では、柔軟に出力波形を変化させることができると述べたが、その方式として、補正回路方式と、PWM 方式がある。

Figure 8: Picture of a LTD-type kicker power supply.

Figure 9: Output waveform of a LTD-type kicker power supply.

3.1 補正回路

多チャンネルトリガ発生器により、各段に遅延やパ ルス幅の異なるトリガを入力し、その結果得られる出 力波形を重畳することで、任意の出力波形を得る方式 である。これは、droop 補正などに利用することがで きる。

補正回路による波形制御付きの LTD 方式キッカー 電源の写真と出力波形を Fig. 10 および 11 に示す [4]。 1.25 kV で充電した主回路 32 段を同時に放電すること で、40 kV のパルスを出力する。その出力波形に生じた droop に対し、補正回路から出力される右上がりの波形 を重畳することで、1.2 μ s という短いパルス幅の中を平 坦度 ± 1% 以下に補正できている。

MARX 方式においても同様な波形制御を行うことが できる。補正回路による波形制御付きの MARX 方式 クライストロンモジュレータの写真を Fig. 12 に示す。 Figure 13 に示した通り、パルス幅 830 μ s の出力電圧波 形に対し、平坦度を \pm 1% 以下に補正できている [5]。

3.2 PWM

Figure 14 に示した降圧チョッパ回路において、スイッチを一定の周期でオン/オフさせ、そのオン時間、すな

Figure 10: Picture of a LTD-type kicker power supply with droop compensation board.

Figure 11: Output waveform of a LTD-type kicker power supply with droop compensation board.

わち duty を変化させることで、入力電圧を、duty に応じた電圧に降圧して出力することができる(Eq. (2))。

$$V_{out} = DV_{in} \tag{2}$$

ここで、 V_{out} 、 V_{in} はそれぞれ出力電圧、入力電圧である。Dは duty であり、スイッチング周期をT、オン時間を T_{on} とすると、 $D = T_{on}/T$ と書ける。このような方式を PWM (pulse width modulation) と呼ぶ。ここで、例えば duty を 0~100 % まで変化させると、右上がり出力波形が得られ、波形制御に利用できる。

PWM による波形制御付きの MARX 方式クライスト ロンモジュレータを Fig. 15 に示す [6]。本電源は基本的 には 80 段の MARX 回路であるが、各 MARX 基板が、 単純なコンデンサとスイッチではなく、降圧チョッパ 回路となっている。コンデンサがフルに充電されてい るパルス波頭部においては、あえて duty を下げて低い 電圧を出力し、波尾に向かって、コンデンサの電荷が 抜けるのを補償するように duty を上げていくことで、 1.7 ms もの非常に長いパルス幅全体にわたって、±1% 以下の平坦度を実現できる (Fig. 16)。さらに、リプル を低減するために、各 MARX 基板は位相をずらしてス イッチングを行っている。

なお、スイッチング周波数は 50 kHz、すなわち周期 は 20 µs に設計されている。ここで、例えばパルス幅が 100 µs の場合、その間に 5 回しかスイッチングが行わ れないことになり、高分解能で波形制御を行うことが 難しい。一方でスイッチング損失の観点から、スイッ チング周波数を大幅に上げる事も難しく、PWM は、ロ ングパルス向きの波形制御方式と言える。

Figure 12: Picture of a MARX-type klystron modulator with droop compensation unit.

Figure 13: Output waveform of a MARX-type klystron modulator with droop compensation unit.

4. 給電方式

Direct や MARX では、高電圧に浮いた各段の回路に 対し、ゲート駆動電力を供給する必要がある。通常は、 絶縁トランスを用いて地上から給電を行うが、電圧が 高くなるとコロナ放電などの問題が生じる。そこで、各 段に印加されている高電圧から、数 V 程度の制御電圧 を作り、自分自身を駆動する「自己給電」が有効であ る。自己給電には、主に 3 通りの方式が存在する(Fig. 17)。

4.1 リニアレギュレータ

余剰な電力を熱として消費する方式であり、損失は 大きいが、電圧分担のアンバランスは生じにくい [7]。

4.2 スイッチングレギュレータ

高効率なスイッチングレギュレータ方式を採用する ことで、損失を小さくできる。一方で、出力電圧が一 定になるよう、各段が個々にスイッチングを行った結 果、あるタイミングでの各段の消費電力、すなわちイ ンピーダンスが異なり、自己給電回路と並列に接続さ

Figure 14: Schematic of a buck convertor.

Figure 15: Picture of a MARX-type klystron modulator with PWM droop compensation.

Figure 16: Output waveform of a MARX-type klystron modulator with PWM droop compensation.

Proceedings of the 21th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2024, Yamagata

PASJ2024 FROA03

用途	クライストロン/マグネトロンモジュレータ			電子銃電源	キッカー電源
特徴	高 duty	長パルス	中・短パルス	中・短パルス	短パルス、低遅延
主回路	Direct	MARX	MARX	MARX	LTD
波形制御	-	PWM	補正回路	補正回路	補正回路
給電	リニアレギュレータ/ スイッチングレギュレータ (マスタースレーブ制御)	スイッチング レギュレータ	スイッチング レギュレータ	スイッチング レギュレータ	地上から 直接給電

Table 1: Optimal Combination of Each Element

Figure 17: Three types of self-power feeding circuits.

れている半導体スイッチの電圧分担がアンバランスに なってしまう。したがって、本方式は、電圧分担を気に しなくてよい MARX にのみ適用可能である。

 A.3 スイッチングレギュレータ (マスタースレーブ 制御)

各段が個々にスイッチングするのを防ぐために、1段 目の出力電圧のみを監視し、2段目以降も1段目と全く 同じようにスイッチングさせる、マスタースレーブ制 御を採用することで、高い電力効率と均等な電圧分担 を両立することができる [8]。

5. 結論

半導体スイッチを用いた加速器用高電圧パルス電源 について、主回路、波形制御、給電の3要素に分け、そ れぞれの特徴についてまとめた。その結果、用途ごと の最適な組合せは Table 1 の通りと考えられる。

参考文献

- N. Ikoma and A. Tokuchi, "A solid-state MARX-type magnetron modulator with 1.7 kV SiC MOSFET", Proc. PASJ2023, Funabashi, Japan, Aug.-Sep. 2023, pp. 763-765.
- [2] K. Nakayama and A. Tokuchi, "Evaluation of a MARXtype klystron modulator using semiconductors for practical application", PASJ2024, Yamagata, Japan, Jul.-Aug. 2024, WEP071, this meeting.
- [3] Y. Hirose, A. Tokuchi and W. Jiang, "Ultra-fast response high voltage pulse power supply using LTD", PASJ2024, Yamagata, Japan, Jul.-Aug. 2024, THP053, this meeting.
- [4] T. Takayanagi *et al.*, "LTD pulse power supply for kicker magnets using SiC-MOSFETs", PASJ2024, Yamagata, Japan, Jul.-Aug. 2024, THP053, this meeting.
- [5] T. Takayanagi *et al.*, "Semiconductor pulse power supplies for accelerators at J-PARC", Proc. PASJ2022, Online, Japan, Oct. 2022, pp. 242-246.
- [6] Y. Sawamura *et al.*, "Development of MARX modulator for ILC using 1.7 kV-SiC-MOSFET", Proc. PASJ2020, Online, Japan, Sep. 2020, pp. 549-552.
- [7] K. Nakayama *et al.*, "Development of self-powered DC-DC convertor for multi-stage stackable high-voltage semiconductor switch", Proc. PASJ2021, Online, Japan, Aug. 2021, pp. 822-825.
- [8] N. Ikoma *et al.*, "Development of a self-power feeding circuit for semiconductor crowbar switches", Proc. PASJ2022, Online, Japan, Oct. 2022, pp. 663-665.