

2024年8月1日

第20回日本加速器学会年会

放射光源加速器の真空のための 高機能コーティング膜の開発 秀光、谷本育律、内山隆司、本田 融 金 高エネルギー加速器研究機構(KEK)

- 研究背景
- Pd表面層を導入したNEG膜の開発
- 密なPd膜の開発
- ・まとめ

• 研究背景

- Pd表面層を導入したNEG膜の開発
- 密なPd膜の開発
- ・まとめ

真空のためのNEGコーティング

- ・非蒸発ゲッター(NEG)材をチェンバの内壁にコーティング し、ガス源である内壁をポンプに変える技術である。
- TiZrV膜は、比較的低温(180℃、24h)で再活性化できる。
 (市販のNEGポンプは550℃で再活性化)

C. Benvenuti et al., Vacuum 60 (2001) 57-65.

・低い光刺激脱離(photon-stimulated desorption (PSD))係数を有する。

(リング型放射光源では、ハイパワーの放射光が真空ダクトと他の真空部品に 照射されるため、PSDを下げることが重要)

 LHC、ESRF、ELETTRA、Sirius、MAX IV、KEK PFなどの加速器の 真空チェンバに利用されている。

- 化学吸着作用により排気する。
 H₂、CO、CO₂、H₂O、N₂、O₂排気、希ガス、CH₄は排気できない。
- ・表面飽和すると排気できない。
- 再活性化することで、排気性能が復活する。

TiZrVの低温再活性化

コーティング膜の改善すべき点

・Resistive wall impedanceにより、ビームが不安定になる。

• 研究背景

Pd表面層を導入したNEG膜の開発

- 密なPd膜の開発
- ・まとめ

NEGコーティングの研究@KEK

マグネトロンスパッタ装置

Twisted TiZrV wire

Twisted Pd wire

排気性能評価装置

Collimator

RGA

Orifice

$PdtH_2$ 、COを吸着、O₂、H₂Oとは室温で反応しない。

スパッタリング法で、Pd/TiZrV膜をCuダクト上に作製した。

使用寿命の評価

- ・乾燥空気開放と再活性化を 繰り返す。
- 再活性化条件:
 TiZrVは250°C、4 h
 Pd/TiZrVは200°C、4 h
- Pd/TiZrVは一定の吸着確率を 保つ。

Pd層の保護作用が有効であり、 <u>水素の吸着確率も向上する</u>。

X.G. Jin et al., J. Vac. Sci. Technol. B39 (2021) #064202.

Pd/TiZrV膜のPSDの結果 PSD結果@PF BL21 Cu duct 10^{-1} TiZrV film 照射前の試料の熱処理: rield դ (molecules/photon) γield ► Pd/TiZrV film 10⁻² 無酸素銅ダクト:150°C、20h 10⁻³ TiZrVコーティングしたダクト: 250°C、4h 10^{-4} Pd/TiZrVコーティングしたダクト: 250°C、4h 10⁻⁵ <u>刺激脱離係数(n):</u> 10⁻⁶ 脱離分子数/照射光子数 10¹⁸ 10¹⁹ 10^{20} 10^{21} 10²²

世界初で、Pd膜がPSDを下げることに

有効であることを発見。

Photon dose (photons/m)

X.G. Jin *et al.*, Vacuum 192 (2021) #110445.

TiZrVとPd表面の違い

- Pd表面の水素排気速度がTiZrVより高い。
- ・室温でPdは酸化しないため、表面付近の酸素濃度が低い。
- ・加熱後、Pd表面付近のカーボン濃度が低い。

CO、CO₂の排気性能

吸着ファクターは通過法で計測した。

加熱条件:

TiZrV膜, 250°C for 4 h;

Pd/TiZrV膜, 200 °C for 4 h

	TiZrV film	Pd/TiZrV film
CO sticking factor	0.06	0.05
CO ₂ sticking factor	0.05	

- 研究背景
- Pd表面層を導入したNEG膜の開発
- 密なPd膜の開発
- ・まとめ

密なPd膜の低抵抗率への期待

XRD intensity (cps)

金属の抵抗率表

金属名	抵抗率 (μΩ·cm)
Ag	1.59
Cu	1.6
Pd	10.87
Zr	40
V	40
Ti	43 ~ 170
TiZrV合金	175

表面SEM像 Columnar TiZrV film Dense Pd film X線回折 $2 \, 10^2$ 2 10⁴ (111)Nanocrystalline Nanocrystalline 50 nm以上 1~2 nm $1.5\,10^2$ $1.5\,10^4$ $1 \, 10^2$ $1 \, 10^4$ 5 10³ 5 10¹ (200) 0 30 0 35 45 40 50 30 35 40 45 50 2θ 2θ 多結晶構造 アモルファス構造

密なPd膜のPSDの結果

密なPd膜の耐久性の評価 耐久性の評価: Pd膜を大気開放、加熱、PSD計測 (b) After air exposure and heating (a) After air exposure and heating (160 °C, 24h) (250 °C, 4h) 10-4 10-4 Yield (molecules/photon) Yield (molecules/photon) CC 10⁻⁵ 0⁻⁵ 10⁻⁶' 10⁻⁶ 10⁻⁷ ' 10 10⁻⁸ 10¹⁹ 10⁻⁸ 10¹⁹ 10²⁰ 10²⁰ 10²¹ 10²² 10²¹ 10²² Photon dose (photons/m) Photon dose (photons/m) X.G. Jin et al., Vacuum 215 (2023) #112370.

大気開放の影響をほとんど受けず、低いPSDを保つ。

密なPd膜の抵抗率

Pd膜をSiO₂/Si基板上に作製し、DC抵抗率を測定。

Four-probe technique

Pd成膜条件と抵抗率値

	Pd film(l)	Pd film(II)
■ (V)	500	700
Kr圧力 (Pa)	0.9	0.5
膜厚 (µm)	2.5	1.8
抵抗率 (μΩ·cm)	30	18

金属抵抗率值(単位μΩ·cm)

Cu	1.6
Pd	10.9
Zr	40
Ti	43~170
TiZrV	175

X.G. Jin et al., Vacuum 215 (2023) #112370.

放射光源加速器への応用

挿入光源のダクト(Resistive wall impedanceの効果が大きい)ー

超低PSD・低抵抗率・長耐久性の密なPd膜

- ・他のダクト 超低PSD・長寿命Pd表面層を持ったNEG膜(Pd/Ti、Pd/Zr)
- ・アブソーバー ー 低PSDのAg膜 <u>X.G. Jin</u> et al., Vacuum 207 (2022) #111671. 20

まとめ

- ・PF継続機のために、コーティング膜の開発を積極的に進めてきた。
- ・Pd表面層を導入したNEG膜を開発し、超低PSD・長寿命を実現した。
- ・密なPd膜を開発し、超低PSD・低抵抗率・長耐久性を実現した。