PASJ2024 THP010

SPring-8 におけるパルス・モード計測型光位置モニタの性能評価と運用実績 PERFORMANCE TESTS AND OPERATIONAL RESULTS OF PULSE-MODE X-RAY BEAM POSITION MONITOR AT SPring-8

青柳秀樹[#], 甲斐 智也, 佐野 睦, 高橋 直 Hideki Aoyagi [#], Tomoya Kai, Mutsumi Sano, Sunao Takahashi Japan Synchrotron Radiation Research Institute

Abstract

Pulse-mode X-ray beam position monitor, which can measure the beam position for each pulse, are now in operation at the insertion device beamlines in SPring-8. This monitor can be operated as a DC mode as well as a standard X-ray beam position monitor, so that the monitor can be updated without worrying about trade-offs. In this paper, the dependence of the signal current on the bias voltage in DC mode and the comparison of correction factors between pulse-mode and DC mode are discussed.

1. はじめに

大型放射光施設 SPring-8 の挿入光源ビームラインに おいて、パルス毎のビーム位置を計測することのできる パルス・モード計測型光位置モニタ[1]の運用を開始して いる。本モニタの検出素子の特徴は、ヒートシンクとして のダイヤモンド基板上にコンパクトな受光素子(チタン蒸 着)を配線することで高い耐熱性能を保持したまま浮遊 電気容量を低下させている(Fig.1)。これにより、検出素 子の持つ時定数をサブナノ秒オーダーに低減させてい る。また、真空容器内ではマイクロ・ストリップラインを用 いることで、パルス長の短い単極性パルス信号の伝送を 可能としている。本モニタは、標準型光位置モニタ[2]と 同様に DC モードとしても動作が可能なため、トレードオ フ関係を気にすることなくモニタを更新することが出来る。 現在までに、BL35XU(2021年8月)とBL13XU(2024年 3月)において、パルス・モード計測型光位置モニタに置 き換えた。本報告では、DC モードにおける信号電流の バイアス電圧依存性、および、パルス計測モードとDCモ ードでの補正係数の比較について議論する。

2. 信号電流のバイアス電圧依存性

光電子放出を検出原理とする光位置モニタの出力値 は、バンチ電流値の強度が異なると放出される光電子に よる空間電荷効果に差異が生じるため、蓄積リングのフ ィリング・パターン[3]の変更時に影響を受ける。パルス・ モード計測型光位置モニタの検出素子の配列は、既に 標準型光位置モニタで空間電荷効果が緩和されること が実証されている傾斜配置[4-6]を採用している。本モニ タのフィリング・パターンの変更による影響を評価するた めに、光電子収集電極の印加電圧(バイアス電圧)を変 えて各ブレード検出素子の出力信号の応答を測定した。 Figure 2 に、ブレード検出素子の電流と光電子収集電極 に印加する電圧の関係を表す電流電圧曲線を示す。 Figure 2 (a) は、BL13XU での 3 種類のフィリング・パタ ーンにおける測定結果である。単一バンチのバンチ電流 値が最も低い 0.052 mA の "Multi bunch (160 bunches

Figure 1: Detection elements of a pulse-mode X-ray beam position monitor. The beam goes from the back of the paper to the front. Four detection elements (photodetector), which are made of titanium vapor-deposited on a diamond heat sink (t=0.3), are fixed in two pieces on the upper and lower cooling blocks. Photoelectron collecting electrodes (aluminum, t=1) are provided on both sides of the detection elements, and a shielding mask (oxygen-free copper) with an aperture H 18 mm x V 16 mm is provided directly upstream.

train x 12)"モード[7]では、バイアス電圧 H = +20 V 以上 でプラトー領域となる。そして、フィリング・パターンの変 更による影響が最も強く現れる E-mode ("2/29-filling +26 bunches")では、挿入光源のギャップ値 (ID gap)が最 小値の 9.6 mm においても H = +100 V 以上でプラトー領 域となる。フィリング・パターンの変更による影響が中程 度であるバンチ電流値 0.49mA の A-mode ("203 bunches")では、その中間の振る舞いを示す。Figure 2 (b) に、BL35XU における 2 種類のフィリング・パターン ("Multi bunches" 及び "2/29-filling +26 bunches")の測 定結果を示す。設置されている挿入光源の仕様が異な るので ID gap での比較はできないが、ブレード検出素子 の電流が同等であれば、電流電圧曲線の振る舞いは概 ね BL13XU と同じとなっている。

Figure 3 では、傾斜配置を採用している標準型光位置 モニタ(std-XBPM、破線)とパルス・モード計測型光位置 モニタ(PM-XBPM、実線)を比較している。ブレード検出

[#] aoyagi@spring8.or.jp

PASJ2024 THP010

Figure 2: Current-voltage (blade current vs applied voltage) curves.

素子の電流が同等なもの同士を比べると、プラトー領域 の下限値はパルス・モード計測型光位置モニタのほうが 低く抑えられていることが分かる。パルス・モード計測型 光位置モニタでは、高周波性能の向上のために検出素 子を小型化したことで、受光面上の電界が効果的に高 められたことが理由と考えられる。

挿入光源ビームラインの他の標準型光位置モニタは バイアス電圧 HV = +500 V に統一して運用しているので、 パルス・モード計測型光位置モニタも同じバイアス電圧 で運用している。

Figure 3: Comparison of standard and pulse-mode XBPM in current–voltage curves.

3. 補正係数の評価

検出素子の配分比から放射光ビームの位置情報を算 出するための係数(補正係数)を BL13XU に設置したパ ルス・モード計測型光位置モニタにおいて、DC モードと パルス計測モードでそれぞれ評価した。測定時のフィリ ング・パターンは A-mode で、挿入光源のギャップ値は ID13 gap = 14.833 mm とした。

3.1 DCモード

標準型光位置モニタと同様に、DC モードとして通常 の手順に従って補正係数を測定した。Figure 4 に示すよ うに、光位置モニタ本体を水平方向に $\Delta x = \pm 0.2 \text{ mm}$ 、 垂直方向に $\Delta y = \pm 0.2 \text{ mm}$ 移動させて 4 信号の差分 (diff./sum) を測定した。これにより、結果として補正係数 (Ax, Ay) = (2.33, 2.14) の値を得た。

Figure 4: Measurement of correction coefficients in DC mode. ID13 gap = 14.833 mm.

Figure 5: Pulse waveforms measured with an oscilloscope (Tektronix MSO64B). Digital bandwidth: 200 MHz.

Figure 6: Difference between the four current signals. Attached numbers are pulse height of differences of pulse waveforms.

3.2 パルス計測モード

パルス・モード計測型光位置モニタの信号ケーブルを オシロスコープ(Tektronix MSO64B, 4 GHz B.W.)に接続 し、モニタ本体を水平・垂直方向に Δx , $\Delta y = \pm 0.2$ mm 移 動させてパルス波形を測定した。水平方向に $\Delta x = +0.2$ mm (a), 0 mm (b), -0.2mm (c) 移動させた時の A-mode の連続する 3 つのパルス波形を Fig. 5 に示す。プラス方 向(マイナス方向)への移動では、Left 側(Right 側)のブ レード信号が増大していることが分かる。Figure 6 では、4 信号の差分を示した。計算式は以下の通り。

水平方向: Diff. = - UL - UR + LL + LR 垂直方向: Diff. = UL + UR - LL - LR

UL: Upper-Left, UR: Upper-Right, LL: Lower-Left, LR: Lower-Right

3.3 補正係数の比較

DC モードとパルス計測モードにおいて、補正係数を それぞれ算出した結果を Table 1 に示す。パルス計測モ ードでは、波形の積分値を基準に用いた場合と、パルス 波高を基準に用いた場合の補正係数をそれぞれ示した。 パルス波高を用いる方法は、オシロスコープの出力画面 から直接的にビーム振動の振る舞いを知ることが出来る という利点がある。パルス計測モードで波形の積分値を 用いた場合の値は、DC モードの値と良い一致を示して いる。一方で、パルス波高を用いた場合は、DC モードの 値と比べやや小さな値となった。

パルス波高基準の補正係数を用いて、蓄積リングへの ビーム入射のタイミングで誘起されるビーム振動の様子 を観測した。フィリング・パターンは A-mode で、通常のト ップアップ運転では約30秒に1回の頻度で行われる。 Figure 7 に示す画像はオシロスコープの出力画面で、内 部の波形演算機能を利用して、縦軸がバンチ毎のパル ス波高がそのまま変位の量になるようにパルス波高基準 の補正係数で表示させている。Figure 7(a) から分かるよ うに、SPring-8 蓄積リングの周回時間である 4.8 μs 周期 の構造がみられる。最大振幅は水平 0.6 mm、垂直 0.2 mm 程度であり、角度にして、それぞれ 30 µ rad、10 µ rad 程度に相当する(光源から光位置モニタまでの距離は約 20m)。Figure 7 (b) は、Fig. 7 (a) の黄色の帯の部分を 拡大したものである。バンチ間隔 23.6 ns のバンチ・トレイ ンにおいて、パルス毎のビーム位置の情報が得られてい るることが分かる。

Table 1: Calculation of Correction Factors

	DC-mode	Pulse mode	
physical quantity	Blade current	Waveform area	Pulse height
Horizontal	2.33	2.29	2.15
Vertical	2.14	2.16	1.92

PASJ2024 THP010

Figure 7: Beam oscillations induced immediately after beam injection.

4. まとめ

大型放射光施設 SPring-8 の挿入光源ビームラインで 運用中のパルス・モード計測型光位置モニタの信号電 流のバイアス電圧依存性と補正係数について調査した。

DC モードにおけるブレード電流信号と光電子収集電極のバイアス電圧の関係を表す電流電圧曲線の測定では、プラトー領域の下限が HV=+20~+100V となり、ブレ

ード検出素子の配列に傾斜配置を採用する標準型光位 置モニタと同等以上の大変良好な結果が得られた。これ により、フィリング・パターンの変更による影響を最小限に 抑えられていることが確認された。

補正係数を算出するための基準として、DC モードで の電流値、及び、パルス計測モードでの波形積分値と波 高値を用いる3通りの方法を比較した。電流値基準に対 して波形積分値基準はよく一致しており、パルス波高基 準ではやや小さな値となった。パルス波高基準による方 法は、オシロスコープの出力画面からビーム振動の振る 舞いを直覚的に知ることが出来るという点で、有効な方 法である。オシロスコープの内部機能を用いてパルス波 高基準の補正係数で較正することにより、ビーム入射時 の振動の様子を定量的に観測できる例を示した。

参考文献

- [1] H. Aoyagi *et al.*, "Pulse-mode x-ray beam position monitor prototype for a synchrotron radiation beam line", Phys. Rev. Accel. Beams 24, 032803 (2021).
- [2] H. Aoyagi *et al.*, "Blade-type X-ray beam position monitors for SPring-8 undulator beamlines", Nucl. Instr. and Meth. A 467-468, 252-255 (2001).
- [3] http://www.spring8.or.jp/en/users/operation_status/ schedule/bunch_mode
- [4] H. Aoyagi *et al.*, "Newly designed inclined X-ray beam position monitor and reduction of influence due to filling patterns of the SPring-8 storage ring", PASJ2020, THOO06.
- [5] H. Aoyagi *et al.*, "Inclined X-ray beam position monitors to reduce influence of filling pattern for the SPring-8 photon beamlines", IBIC2020, TUPP06.
- [6] H. Aoyagi *et al.*, "Evaluation of influence on X-ray beam position monitors by changing filling pattern at SPring-8", PASJ2023, WEP06.
- [7] "Multi bunches" mode is a filling pattern used, for example, for accelerator tuning.