PASJ2024 WEP086

ビーム負荷パワーのビーム電流依存性から求めた PF-AR のロスファクター

LOSS-FACTOR MEASUREMENT OF THE PF-AR BY MEANS OF A DEPENDENCE OF BEAM-LOADING POWER ON THE BEAM CURRENT

坂中章悟#,山本尚人,内藤大地,高橋毅,本村新,高井良太

Shogo Sakanaka[#], Naoto Yamamoto, Daichi Naito, Takeshi Takahashi, Arata Motomura, Ryota Takai Accelerator Laboratory, High Energy Accelerator Research Organization (KEK)

Abstract

In the synchrotron light source PF-AR at KEK, a single bunch of electrons is stored to provide users with intense pulsed X-rays. Due to its high bunch charge of \sim 63 nC, the parasitic-mode losses limit the maximum beam current at the PF-AR. We tried to determine the total loss factor by measuring the beam loading power as a function of the beam current. As a result, we obtained the loss factors of 25.3–25.6 V/pC at a beam energy of 5 GeV, and 24.4–28.4 V/pC at 6.5 GeV. We also measured the shifts in the synchronous phase of the electron bunch as a function of the beam current using a streak camera, and estimated the loss factor.

1. はじめに

放射光リング PF-AR では大電荷の単一バンチをリング 内に蓄積し、挿入光源や偏向電磁石で発生する放射光 をユーザーに供給している[1]。 PF-AR の主要なパラメー タを Table 1 に示す。年間約 3,000 時間の運転時間の約 半分をビームエネルギー6.5 GeV で運転し、残り半分を 5 GeV で運転している。 PF-AR は常時単バンチ運転を 行っているため、強力な短パルス X 線を必要とする時分 割実験のユーザーにはとりわけ有用な光源である。

PF-ARでは約63 nCという大電荷のバンチを蓄積する ため、電子バンチが加速空洞や真空チェンバーの形状 変換部などを通過する際にウェーク場を発生することに よる損失電力(寄生モード損失)が特に大きい。例えば 加速空洞では各加速セルに取り付けられた高次モード 結合器から合計で約30 kWの高次モード電力が引き出 されている[2]。また真空チェンバーの形状変換部やバン チ毎フィードバック用のストリップライン電極などでは寄生 モード損失による発熱があり、ファンで空冷をしている。

このように、PF-AR では寄生モード損失がビーム電流

 Table 1: Principal Parameters of the PF-AR with Middle-low-emittance Optics

Beam energy	6.5 GeV	5 GeV
Radiation loss/turn*	6.661 MeV	2.332 MeV
RF voltage	16 MV	8 MV
Natural bunch length	51.7 ps	48.1 ps
RF frequency	508.57 MHz	
Harmonic number	640	
Momentum compaction	0.0115	
Beam current	50 mA (top-up)	

* Without insertion devices

shogo.sakanaka@kek.jp

を制限する主要な要因の一つである。リングの寄生モー ド損失の大きさは、ロスファクターで表される。

蓄積リングでは、放射光を発生する等によりビームが 失う電力は、高周波加速(RF)系でビームに供給される 電力に等しい。ビームが空洞から持ち去る電力(ビーム 負荷パワー, P_b)のビーム電流依存性から、リングのロス ファクターを測定する手法が文献[3]で報告されている。 RF系においてビーム負荷パワーは、空洞への入力電力 の合計値(ジェネレータ電力, P_g)から、空洞での壁損失 電力の合計値(P_c)と、空洞から反射される RF 電力の合 計値(P_r)を差し引くことによって求めることができる:

$$P_{\rm b} = P_{\rm g} - P_{\rm c} - P_{\rm r} \,. \tag{1}$$

ビーム負荷パワーPb のうち、シンクロトロン放射による損 失電力は、リング 1 周での放射損失エネルギーU₀[eV]と ビーム電流 I₆[A]を用いて、

$$P_{\rm b,SR} = (U_0 / e) \times I_{\rm b} , \qquad (2)$$

で与えられ、これはビーム電流 L に比例する。一方、寄 生モード発生による損失電力は、単バンチ運転の場合、

$$P_{\rm b,pm} = k_{\rm loss} T_0 I_b^2 \,. \tag{3}$$

で与えられ[4,5]、これはビーム電流の2乗に比例する。 ここで kloss[V/C]はリングの合計ロスファクター、To[s]はビ ームの周回周期である。ビーム負荷パワーPbのビーム電 流依存性を測定し、それをビーム電流の2次関数でフィ ットすることにより放射損失と寄生モード損失の寄与を分 離でき、リングの合計ロスファクターを求めることができる。 ただし、ロスファクターはビーム電流に依存せず一定と仮 定する。

我々は、PF-AR にこの手法を適用し、ビームエネルギ -5 GeV および 6.5 GeV の運転においてリングの合計ロ スファクターの測定を試みた。それらの結果を第2節と第 3節で報告する。またバンチの同期位相のずれをストリー クカメラを用いて測定し、その結果からロスファクターを 求める試みも行った。その結果を第4節で述べる。第5 節では、PF-AR のロスファクターのうち大きな割合を占め ると考えられる加速空洞のロスファクターを計算した結果 を報告する。第6節では得られた結果を考察する。

PASJ2024 WEP086

2. ビームエネルギー5 GeV での測定

PF-AR のビームエネルギー5 GeV, RF 電圧 8 MV, middle-low-emittance optics, 単バンチの運転時に測定 を行った。 $0\sim50$ mA(10 mA おき)の各ビーム電流で RF 系のパワーを測定した。結果を Fig. 1 に示す。ジェネレ ータ電力 P_g はクライストロン出力直後の方向性結合器で 測定し、これを空洞冷却水温度差から求めた空洞壁損 失電力と空洞からの反射電力の合計値で校正した。温 度差の誤差を±0.5℃と仮定すると、校正の誤差は±5%程 度となる。空洞壁損失電力 P_c は空洞のピップアップ信号 で測定し、これを空洞の冷却水温度差で校正した。空洞 からの反射電力 P_r は方向性結合器で測定した。

上記の測定値からEq. (1) を用いて求めたビーム負荷 パワーを Fig. 2 に丸印で示す。ビーム負荷パワーのビー ム電流依存性は、直線からずれている事がわかる。この 測定値をビーム電流 *I*_b[mA]の 2 次関数でフィットした結 果、

 $P_b[kW] = -16.27 + 2.380 \times I_b + 0.03179 \times (I_b)^2$ (4) が得られた。まず Eq. (4)右辺でオフセットが-16.27 kW あ るが、これは $P_g \ge P_c$ 等の測定で校正が少しずれている 為と考えられる。 P_g の最大値 341 kW に対して上記のオ フセットはその約 5%であり、校正誤差と同程度である。

次に Eq. (4)右辺でパワーがビーム電流に比例している項は、シンクロトロン放射損失の寄与と考えられる。こ

Figure 2: Beam power (P_b) as a function of the beam current at 5 GeV. Solid line denotes the fitting result.

の項を Eq. (2)と比較すれば、1 周での放射損失として $U_{0,\text{meas}} = 2.380 \text{ MeV}$ が得られる。一方、このスタディ時の 挿入光源のギャップ値も考慮した放射損失の計算値は $U_{0,\text{calc}} = 2.383 \text{ MeV}$ であり、上記の測定値はこれと良く一 致している。

最後に、Eq. (4)右辺でパワーがビーム電流の2 乗に 比例している項は、寄生モード損失の寄与と考えられる。 この項を Eq. (3)と比較し、周回周期 $T_0 = 1.258 \mu s \epsilon \pi$ ると、リングの合計ロスファクターとして $k_{loss} = 25.3 V/pC$ が 得られる。

再現性を見るため、同様の測定を別の日時に行った。 これら2回の測定結果を Table 2 にまとめた。2回目の測 定では放射損失 U_0 の値が計算値と約 6%ずれていたが、 ロスファクターは 1 回目の測定値に近い値(25.6 V/pC) が得られた。

Table 2: Summary of Two Measurements of Loss Factors at a Beam Energy of 5 GeV

	1st measurement (Feb. 13, 2024)	2nd measurement (June 3, 2024)
kloss	25.3 V/pC	25.6 V/pC
U ₀ (meas.)	2.380 MeV	2.194 MeV
U ₀ (calc.)	2.383 MeV	2.335 MeV

3. ビームエネルギー6.5 GeV での測定

前章と同様の測定をビームエネルギー6.5 GeV, RF 電 圧 16 MV, middle-low-emittance optics, 単バンチの運転 時にも行った。ジェネレータ電力 P_g , 空洞壁損失電力 P_c , 空洞からの反射電力 P_r の測定結果を Fig. 3 に示す。こ れらの測定値から Eq. (1)を用いて求めたビーム負荷パワ ーを Fig. 4 に丸印で示す。エネルギー6.5 GeV での運転 では、放射損失電力が大きいため、 P_b のビーム電流依 存性は直線に近い。この測定値をビーム電流 I_b [mA]の2 次関数でフィットした結果、

 $P_{b}[kW] = -6.31 + 6.6609 \times I_{b} + 0.03066 \times (I_{b})^{2}$ (5) が得られた。まず、右辺のオフセット -6.31 kW は、パワ 一校正のずれの為と考えられる。

次に Eq. (5)右辺でパワーがビーム電流に比例してい

Figure 3: RF powers (P_g , P_c , and P_r) that were measured at a beam energy of 6.5 GeV of the PF-AR.

る項から、1 周での放射損失 $U_{0,meas} = 6.661$ MeV が得られる。このスタディ時の挿入光源のギャップ値を考慮した放射損失の計算値は、 $U_{0,calc} = 6.719$ MeV であり、上記の測定値は計算値と1%以内で一致している。

最後に、Eq. (5)右辺でパワーがビーム電流の2 乗に 比例している項から、リングの合計ロスファクターとして $k_{loss} = 24.4 \text{ V/pC}$ が得られた。

ここでも再現住を見るため、同様の測定を別の日時に行った。これら2回の測定結果をTable3にまとめた。2回 目の測定ではロスファクターの値として28.4 V/pCが得られ、1回目の結果と約16%ずれていた。また、得られた放 射損失 U0,measは計算値と約8%ずれていた。Figure4からわかるように、ビームエネルギー6.5 GeVでは、ビーム 負荷パワーのビーム電流依存性は直線に近く、この直線 からの小さなずれをもとにロスファクターを見積もる。その ため、ロスファクターの測定値はRFパワーの測定誤差に 敏感であると考えられる。

Figure 4: Beam power (P_b) as a function of the beam current at 6.5 GeV. Solid line denotes the fitting result.

Table 3: Summary of Two Measurements of Loss Factors at a Beam Energy of 6.5 GeV

	1st measurement (Feb. 28, 2024)	2nd measurement (May 9, 2024)
kloss	24.4 V/pC	28.4 V/pC
U_0 (meas.)	6.661 MeV	6.154 MeV
U_0 (calc.)	6.719 MeV	6.666 MeV

4. バンチ長とバンチ同期位相の測定

寄生モード損失がある場合、バンチの同期位相がビーム電流とともにシフトすることが予想される。これを確認 するため、以前取得したストリークカメラを用いたバンチ 進行方向プロファイルの再解析を行った。データを取得 した条件は、ビームエネルギー6.5 GeV, middle-lowemittance optics, RF 電圧 16 MV,単バンチ運転であっ た。測定時にはまずビーム電流 50 mA を蓄積し、データ を取得した後、一旦ビームを捨て、ビーム電流 40 mA を 蓄積する、という手順をビーム電流 10 mA まで行った。

ビーム電流 50 mA と 20 mA で測定したバンチの進行 方向プロファイルの例を Fig. 5 に示す。横軸(時間)の数

Figure 5: Longitudinal bunch profiles observed at beam currents of 20 mA and 50 mA. For each beam current, five traces were overlaid. Beam energy: 6.5 GeV.

値が小さい方がバンチの前方を示す。この図から、ビー ム電流 50 mA では 20 mA に比べて、バンチの中心がバ ンチ前方にシフトしていることがわかる。

各ビーム電流で 20 回測定したストリークカメラの画像 を、1 画像毎にガウス分布でフィットし、rms バンチ長とバ ンチ中心位置を求めた。20 画像から求めたデータの標 準偏差をエラーバーとした。解析の結果をFig.6とFig.7 に示す。Figure 6 より、ビームエネルギー6.5 GeV, ビー ム電流 10~50 mA の範囲では、rms バンチ長はビーム 電流によらずほぼ一定である事がわかった。このことから、 少なくとも 6.5 GeV 運転時には、ロスファクターがビーム 電流によらず一定とした第3節での仮定が妥当であるこ とが裏付けられた。得られたデータを単純平均した rms バンチ長は 48.0 ps であった。

Figure 6: Measured rms bunch length as a function of the beam current. Beam energy: 6.5 GeV.

バンチ中心の位置を示した Fig. 7 のデータより、ビーム電流が 20~50 mA の範囲では、ビーム電流が高いほ どバンチ中心が前方(縦軸の数値が小さい方向)に移動 することがわかる。ただ、ビーム電流 10 mA のデータはこ の傾向に従っておらず、その理由は理解できていない。 10 mA でのデータは最後に測定したため、その前に RF 基準信号源からストリークカメラまで、または RF 系までの 基準信号分配系で位相がずれたり、ストリークカメラのトリ ガーのタイミングが何らかの原因でずれたりした可能性 が考えられる。より信頼性の高いデータを得るには、再 測定を行う必要があるが、ここではビーム電流 20~

PASJ2024 WEP086

1

50 mA のデータを用いて、ロスファクターを見積もってみる。線形フィットを行うと、バンチ位置シフトの電流依存性は-0.761 ps/mA(同期位相のずれに直すと-2.43 radian/A)であった。

寄生モード損失がある場合、バンチの同期位相々は

$$\cos\phi = \frac{(U_0 / e) + k_{\rm loss} I_{\rm b} T_0}{V_c}, \qquad (6)$$

で与えられる。ここで V_{c} は RF 電圧である。寄生モード損 失がない場合の同期位相を ϕ_{0} 、 $\phi = \phi_{0} + \Delta \phi$ とおき、 $\Delta \phi$ は小さいと仮定して線形近似すれば、

$$k_{\rm loss} \approx -\frac{V_{\rm c} \sin \phi_0}{T_0} \frac{\Delta \phi}{I_{\rm b}},$$
 (7)

が得られる。実験時の条件、 V_e =16 MV, U_0 = 6.66 MeV、 フィッティングで求めたバンチ同期位相のずれを用いる と、PF-AR のロスファクターとして k_{loss} = 28.1 V/pC が得ら れた。

Figure 7: Measured shifts (black and red circles) in the bunch-center position as a function of the beam current. Beam energy: 6.5 GeV.

5. APS 空洞のロスファクターの計算

PF-AR では 11 個の加速セルを持つ APS (Alternating Periodic Structure)型加速空洞[6]を6台使用している。これらの空洞は PF-AR のロスファクターに大きく寄与すると考えられるため、そのロスファクターを計算した。APS 加速空洞(上流側半分)の内面形状を Fig. 8 に示す。電磁場解析コード MAFIA を用いて、2 次元軸対称形状に対する時間領域計算を行った。r, z 方向ともメッシュサイズは 0.5 mm とした。

バンチ長 14.4 mm (48 ps) に対する縦方向 wake potential の計算例を Fig. 9 に示す。この例では、空洞の

Figure 8: Inner shape of the APS cavity. Only upper half of the cavity is shown.

Figure 9: Calculated longitudinal wake potential (black line) of the APS cavity for a bunch length of 14.4 mm. Assumed charge distribution is also indicated by red line.

ロスファクターは k = 5.608 V/pC と計算された。加速空洞 では、バンチが誘起する加速モードの電磁場は RF シス テムのエネルギー収支で扱われるため、ロスファクターの うち加速モードの寄与を差し引いた寄生モード・ロスファ クターを使う必要がある。電磁場シミュレーションで得ら れたロスファクターを k,加速モードのロスファクターを k_0 = (ω /4)·(R/Q),加速モードの共振角周波数を ω ,時間で 表した rms バンチ長を σ_r とすれば、寄生モード・ロスファ クターは

$$k_{\rm pm} = k - k_0 \exp\left(-\omega^2 \sigma_\tau^2\right),\tag{8}$$

で与えられる[4, 5]。APS 空洞の加速モードのパラメータ $R/Q = 2006.2 \Omega を 用いると、rms バンチ長 14.4 mm$ (48 ps) に対して、 $k_{pm} = 4.043 V/pC$ が得られた。同様に 計算した、バンチ長 10~20 mm に対する寄生モード・ロ スファクターを Fig. 10 に示す。

Figure 10: Calculated parasitic-mode loss factor of the APS cavity as a function of the rms bunch length. Solid line indicates a result of interpolation.

6. 考察

PF-AR おけるビーム負荷パワー(P_b)のビーム電流依存性を測定し、PF-AR の合計ロスファクターを求めた。その結果、5 GeV 運転時に 25.3 および 25.6 V/pC(2回の測定結果)が得られ 6.5 GeV 運転時に 24.4 および

28.4 V/pC が得られた。ビームエネルギー6.5 GeV における測定では、シンクロトロン放射損失に比べて寄生モード損失が小さいため、測定誤差が相対的に大きいと考えられる。

ビーム負荷パワーを解析する際、ロスファクターはビー ム電流によらず一定であると仮定した。ストリークカメラを 用いたバンチ長測定により、6.5 GeV 運転時にビーム電 流 10~50 mA の範囲では、バンチ長はビーム電流によ らずほぼ一定である事が示された。従って、少なくとも 6.5 GeV 運転時にロスファクターが一定であるとした仮定 は妥当である。

今回適用した RF パワー測定よりロスファクターを求め る手法は、RF パワーの測定誤差の影響を受ける。特に、 寄生モード損失電力がシンクロトロン放射損失に比べて 小さい場合には、結果は測定誤差に敏感になる。今回 行った RF パワーの測定では、パワーの校正精度にまだ 改善の余地がある。本手法を適用するには、できるだけ 高い精度でパワーの校正を行うのが望ましい。

6.5 GeV 運転時に行ったストリークカメラを用いた進行 方向バンチプロファイルの測定では、ビーム電流 20~ 50 mA の範囲で、バンチの中心位置がビーム電流と共 にバンチ前方に移動する傾向が観測された。この 20~ 50 mA でのバンチ同期位相のシフトを用いて PF-AR の ロスファクターを見積もったところ、28.1 V/pC の値が得ら れた。この結果は、RF パワー測定から得られた値(24.4 および 28.4 V/pC)と近い値である。ただし、ビーム電流 10 mA での振る舞いが不規則で、その理由が理解でき ていない。より信頼性の高いデータを得るには、ストリー クカメラでの再測定が必要だと考えられる。ストリークカメ ラを用いたバンチ同期位相の測定では、RF 基準信号の 伝送系や空洞 RF 電圧で位相がずれると、測定誤差に なる。従って、基準信号や RF 系、ストリークカメラのトリガ ー系の安定度に注意すると共に、何回かの測定で再現 性をチェックする必要があると考えられる。

ストリークカメラのデータ解析では、バンチのプロファイ ルをガウス分布でフィッティングした。大電流ではプロフ ァイルがガウス分布からややずれるため、ガウス分布を 仮定せず、バンチの電荷分布の一次モーメントを求める などの解析方法も試したい。

PF-AR で使用している APS 空洞のロスファクターを計算した結果、加速モードの寄与を差し引いた寄生モード・ロスファクターの値として、バンチ長 14.4 mm (48.0 ps) に対して 4.04 V/pC の値が得られた。PF-AR に設置されている空洞 6 台の合計では、24.24 V/pC となる。この値は、RF パワー測定で得られた PF-AR のロスファクター (24.4 または 28.4 V/pC)の 85~99%である。従って、PF-AR のロスファクターのうち、概ね 85%以上は APS 空洞の寄与であると考えられる。今後は、PF-AR の他の真空コンポーネントのロスファクターの評価も行いたい。

7. まとめ

PF-AR のビームエネルギー5 GeV および 6.5 GeV、単 バンチ運転時に RF パワーの測定を行い、ビーム負荷パ ワー(P_b)のビーム電流依存性を測定した。その依存性を ビーム電流の 2 次関数でフィットする解析により、PF-AR の合計ロスファクターとして、5 GeV 運転時に 25.3 および 25.6 V/pC、6.5 GeV 運転時に 24.4 および 28.4 V/pC が 得られた。

PF-AR で使用している 6 台の APS 型加速空洞の寄 生モード・ロスファクターの合計値は 24.2 V/pC と計算さ れた。従って PF-AR のロスファクターのおよそ 85%以上 は空洞の寄与であると考えられる。

また、ストリークカメラを用いたバンチ進行方向プロファ イルの測定により、バンチ同期位相のビーム電流依存性 が観測された。得られた結果はまだ信頼性が十分では ないが、ビーム電流 20~50 mA でのバンチ同期位相の ずれを用いたところ、PF-AR のロスファクターとして 28.1 V/pC が得られた。

本稿で報告した RF パワー測定によるロスファクターの 測定は簡便で実用的な方法である。パワー測定の精度 をより高めることで、より高精度なロスファクターの測定が 可能である。また、ストリークカメラを用いたバンチ同期位 相のずれからロスファクターを求める方法も有望な方法 である。RF 伝送系などでの位相安定度に注意して測定 を行えば、信頼性のあるロスファクターの評価が可能で あると考えられる。

謝辞

KEK の帯名崇氏には有益なコメントを頂き、阿達正浩 氏にはスタディ時の挿入光源のパラメータを調べて頂き ました。本研究は JSPS 科研費 JP24K15602 の助成を受 けたものです。

参考文献

- [1] T. Obina *et al.*, "KEK 放射光源加速器 PF リングと PF-AR の現状", Proceedings of the 20th Annual Meeting of Particle Accelerator Society of Japan, August 29-September 1, Funabashi, Japan, 2023, pp. 1088-1092.
- [2] S. Sakanaka et al., "放射光リング PF-AR 用加速空洞の高 次モード引き出し用ケーブル系の更新", Proceedings of the 17th Annual Meeting of Particle Accelerator Society of Japan, September 2-4, Online, 2020, pp. 303-307.
- [3] A. Novokhatski, "Overall HOM measurement at high beam currents in the PEP-II SLAC B-Factory", Proceedings of PAC07, Albuquerque, USA, 2007, pp. 45-47.
- [4] J. N. Weaver, "Measuring, calculating, and estimating PEP's parasitic mode loss parameters", PEP-NOTE-342 (1981).
- [5] P. B. Wilson, "Introduction to wakefields and wake potentials", AIP Conf. Proceedings 184 (1989) pp. 525-564.
- [6] K. Akai et al., "RF System with room-temperature cavity of the TRISTAN e+e- storage ring", KEK Preprint 86-54 (1986).