PASJ2024 WTSP01

理研 AVF サイクロトロン運転の現状報告

STATUS REPORT ON THE OPERATION OF RIKEN AVF CYCLOTRON

柴田順翔^{A)}, 大関和貴^{#, B)}, 福澤聖児^{A)}, 濱仲誠^{A)}, 石川盛^{A)}, 小林清志^{A)}, 小山亮^{A)}, 茂木龍一^{A)}, 仲村武志^{A)}, 西田稔^{A)}, 西村誠^{A)}, 月居憲俊^{A)}, 矢冨一慎^{A)}, 足立泰平^{B)}, 藤巻正樹^{B)}, 福西暢尚^{B)}, 長谷部裕雄^{B)}, 日暮祥英^{B)}, 今尾浩士^{B)}, 上垣外修一^{B)}, 木寺正憲^{B)}, 込山美咲^{B)}, 熊谷桂子^{B)}, 眞家武士^{B)}, 三宅泰斗^{B)}, 長友傑^{B)}, 中川孝秀^{B)}, 西隆博^{B)}, 大西純一^{B)}, 奥野広樹^{B)}, 坂本成彦^{B)}, サキラヤン グリニスメイ^{B)}, 須田健嗣^{B)}, 内山暁仁^{B)}, 渡部秀^{B)}, 渡邉環^{B)}, 渡邉裕^{B)}, 山田一成^{B)}, 鎌倉恵太^{C)}, 小高康照^{C)} Junsho Shibata^{A)}, Kazutaka Ozeki^{#, B)}, Seiji Fukuzawa^{A)}, Makoto Hamanaka^{A)}, Shigeru Ishikawa^{A)}, Kiyoshi Kobayashi^{A)}, Ryo Koyama^{A)}, Ryuichi Moteki^{A)}, Takeshi Nakamura^{A)}, Minoru Nishida^{A)}, Makoto Nishimura^{A)}, Noritoshi Tsukiori^A, Kazuyoshi Yadomi^{A)}, Taihei Adachi^{B)}, Masaki Fujimaki^B, Nobuhisa Fukunishi^{B)}, Hiroo Hasebe^{B)}, Yoshihide Higurashi^{B)}, Hiroshi Imao^{B)}, Osamu Kamigaito^{B)}, Masanori Kidera^{B)}, Misaki Komiyama^{B)}, Keiko Kumagai^{B)}, Takeshi Maie^{B)}, Yasuto Miyake^{B)}, Takashi Nagatomo^{B)}, Takahide Nakagawa^{B)}, Takahiro Nishi^{B)}, Jun-ichi Ohnishi^{B)}, Hiroki Okuno^{B)}, Naruhiko Sakamoto^{B)}, Glynnis Mae Saquilayan^{B)}, Keita Kamakura^{C)}, Yasuteru Kotaka^{C)}

^{A)} SHI Accelerator Service Ltd.

^{B)} RIKEN Nishina Center

^{C)} Center for Nuclear Study, University of Tokyo

Abstract

The RIKEN AVF cyclotron started its operation in 1989. Since then, it has been used not only as an injector of the RIKEN ring cyclotron but also as a supplier of various ion beams directly to users in its standalone operations. In this report, we describe both the operational status and improvement works performed in this year (August 2023-July 2024) aiming at increasing accelerating ability of the AVF cyclotron.

1. はじめに

理化学研究所 仁科加速器科学研究センターの AVF サイクロトロン(以下、AVF)[1]は、理研リングサイクロトロ ン(RRC)[2]の入射器として 1989 年から運転されている。 AVF の基本仕様は、K 値 70 MeV、ビーム取り出し半径 0.714 m、RF 周波数 12~24 MHz、最大励磁時の平均磁 束密度 1.7 T となっており、外部入射イオン源 3 台 (Hyper-ECR[3]、18 GHz-ECR[4]、PIS[5])のうち、1 台か ら生成したイオンビームを加速している。 仁科センターの加速器群の全体図を Fig. 1 に示す。 RILAC[6]及び RILAC2[7]が比較的重いイオンを加速す るのに対し、AVF は基本的に質量数 40 以下の比較的 軽いイオンを加速して RRC ヘビームを送り込む。これを RRC 入射モードと呼ぶ。一方で、AVF から各実験コース へ直接ビームを供給する AVF 単独モードもある。AVF 近傍図を Fig. 2 に示す。

AVF 単独モードでは、陽子から⁸⁴Kr¹⁴⁺までのイオンを 2~15 MeV/u(陽子は 30 MeV)まで加速する。RRC 入射 モードでは、AVF で水素(H₂)から Xe までのイオンを

Figure 1: Schematic layout of RIBF at RIKEN Nishina Center.

Figure 2: Overview of AVF cyclotron.

[#] k_ozeki@riken.jp

2.45~7 MeV/u に加速し、RRC で 36~135 MeV/u まで 多段加速する。2009 年から RI ビームファクトリー(RIBF[8, 9])で軽イオン加速が開始されてからは、AVF は RIBF に おける入射器の役割も果たしている。AVF から取り出し た偏極重陽子、¹⁴N、¹⁸O などを RRC 及び超伝導リング サイクロトロン(SRC)[10]で 190~345 MeV/u まで加速し て、BigRIPS と下流の実験室へ送り込んでいる。2015 年 からは⁴⁰Ar ビームを AVF から RRC、中間段リングサイク ロトロン(IRC)[11]を用いて 160 MeV/u まで加速後、旧施 設(RARF)側へ輸送し、生物実験に供給している。また、 AVF から RRC で 36 MeV/u まで加速した ¹²⁹Xe ビーム の産業利用実験への供給を 2023 年から開始している。

本稿では2023年8月から2024年7月までのAVFの 運転状況、トラブル対応とメンテナンスについて報告する。

2. 運転状況

この1年間の加速粒子一覧をTable1に示す。

これまで AVF で加速された核種の質量荷電比と核子 当たりのエネルギーの関係を Fig. 3 に示す。図中には加 速実績のある全てのビームについてプロットしている。こ

	Ion	Energy (MeV/u)	Intensity (eµA)
AVF Standalone	р	14	14.4
1 st beam	р	17	17.2
	p	30	12.6
	d	12	10.8
	α	6.5	3.3
	α	7.25	30.7
	α	12.5	9.2
	$^{7}Li^{2+}$	6	2.3
	⁷ Li ³⁺	8.3	18.5
	⁷ Li ³⁺	10	2.3
	$^{12}C^{4+}$	7.3	3.8
	$^{13}C^{4+}$	6	2.4
	$^{15}N^{5+}$	7	11
	$^{18}O^{6+}$	7	3.8
Injection to RRC	d	7	2.1
	$^{12}C^{4+}$	7	3
	$^{18}O^{6+}$	4.9	7.3
	$^{40}Ar^{11+}$	3.78	3.4
	$^{40}Ar^{11+}$	5.2	3.2
	${}^{56}{\rm Fe}^{15+}$	5.02	1.1
	⁸⁴ Kr ²⁰⁺	3.97	3.1
	⁸⁶ Kr ²⁰⁺	3.8	3.8
	¹²⁹ Xe ²⁵⁺	2.45	1.1

の1年間でのAVF単独モードの粒子は赤色の○、RRC 入射モードは青色の○、今期初めて加速したビーム(以 下、1st ビーム)は赤色ないし青色の●で表している。1st ビームは陽子 17 MeV であった。RI 製造実験における 実験者要望のエネルギー変更で、19 MeV から 17 MeV へ下げる調整を行い、ビームを供給した。

Figure 3: Energy-mass to charge map of AVF.

過去 10 年間の AVF 単独モードにおける運転時間の 推移を Fig. 4 に示す。AVF の調整時間(AVF のメインコ イル通電開始から各実験コースのターゲット上でスポット 調整が完了するまでの時間)、実験コースへのビーム供 給時間(スポット調整完了から実験終了までの時間)、ビ ーム供給中の AVF 事由によるトラブル等の供給中断時 間を集計している。ビーム供給先は、C01(加速器調整、 マシンスタディ)、C03(RI 製造)、E7V(東京大学原子核科 学研究センター[以下、CNS]による実験、RI 製造)、 E7A(CNS RI beam separator が使用される実験[12]、RI 製造)、E7B(学生実験、RI 製造)である。

今期のビーム供給時間は、C01:0h、C03:450.1h、 E7V:97.3h、E7A:436.4h、E7B:147.6h であった。AVF 調整時間は 792.8h、AVF 事由によるビーム供給中断時 間は 68.6h、AVF 単独モードにおける総運転時間は 1924.2h であった。

Figure 4: Beam service time of AVF standalone operation.

同様に RRC 入射モードにおける運転時間の推移を Fig.5 に示す。調整時間は AVF のメインコイル通電開始 から RRC ヘビームを受け渡すまでの時間とした。その後 の供給先を RARF と RIBF に分け、IRC からの戻りライン は RARF に分類した。

PASJ2024 WTSP01

今期は AVF を入射器とした RIBF 実験へのビーム供給が 3 年ぶりに行われ、ビーム供給時間は 418.2 h であった。RARF 実験コースへのビーム供給時間は 596.4 h、調整時間は 153 h、AVF 事由によるビーム供給中断時間は 2.2 h、RRC 入射モードでの総運転時間は 1167.6 h であった。

Figure 5: Beam service time of RRC injection operation.

3. 主なマシントラブルとその対応

3.1 AVF 第1高周波系(RF#1)真空管の故障

2024年1月14日、G1電源投入後すぐに同過電流で 異常停止するようになったが、真空管を交換して励振可 能となった。2023年6月を境に、RF#1プレート過電流異 常発生時、プレート電源一次側キュービクルの漏電遮断 器(ELCB)がトリップする事象が稀に発生していた。当初 は ELCB の誤作動を疑っていたが、真空管交換後は漏 電トリップが起きることはなくなったため、主原因は真空 管の故障であった可能性が高いと考えている。

交換作業は AVF 調整時間内に完了したため、実験 へのビーム供給は予定通りの時刻で開始した。

ELCB については、誤作動を起こしていた可能性は低くなったものの、交換することを既に決断していたため、2024 年 3 月に予定通り交換作業を実施した。更に、予防保全としてプレート電源の配線用遮断器(MCCB)も交

Figure 6: Replaced devices for AVF. (a) Vacuum tube, (b) ELCB, (c) MCCB.

換済みである。交換した装置の写真をFig.6に示す。

3.2 AVF 室-E7 室間のゲート弁 GV-C10 故障

2024年6月8日、E7Aコース実験中にGV-C10が故障して開けられなくなった。AVF室とE7室の間(Fig.2参照)に設置してあるゲート弁であり、作業に人手が必要なこと、土曜日に発生したことなどから、週明け月曜日からの修理対応となった。また、作業空間が限られていたため、ゲート弁そのものの交換ではなく、整備済み同型機の弁体を含む駆動部と入れ替えて修理した。作業場所と入れ替えた駆動部の写真をFig.7に示す。

トラブル発生からビーム供給再開までは 53.7 h を要したものの、作業自体は2時間強で完了した。

Figure 7: Work area of GV-C10 replacement and replaced part.

3.3 AVF 位相スリット駆動軸継手の破損

以下の日時において、軸継手の破損が判明したため、 交換を実施した。破損した軸継手の一例と交換後の写 真をFig.8に示す。

- ・ 位相スリット位置駆動用軸継手: 2024 年 3 月 24 日
- ・ 位相スリット間隔駆動用軸継手: 2024 年 1 月 4 日、2024 年 7 月 3 日

このトラブルについては既知のものであり、対処も比較的容易である。しかしながら、ここ数年破損の頻度が上がっているため、夏季メンテナンス期間中に原因を調査予定である。

Figure 8: (left) Damaged shaft coupling, (right) shaft coupling after replacement.

4. スパイラルインフレクター整備

昨年のAVF 運転報告の通り、インフレクター下電極高

電圧導入接続部付近の高圧ケーブルが絶縁不良を起こ した。その原因は、ケーブルの許容温度範囲を超えたた めと考えている[13]。そのため、水漏れを起こして以来、 使用していなかった冷却配管の修理を含め、メンテナン スを行うことにした。実施した作業内容について報告する。

- 4.1 インフレクター電極部のメンテナンス
- 折損の激しいコンタクトフィンガー除去と電極取り付け台への新品コンタクトフィンガーのはんだ付け
- ヘッドブロック根本付近にピンホールの空いた銅管の除去と新品銅管のはんだ付け
- 冷却水ホース交換と繋ぎ込み
- 電極ほか各部品の研磨と清掃
- 新品高圧ケーブルに交換

メンテナンス時の写真を Fig. 9 に示す。

Figure 9: Maintenance of spiral inflector. (a) Soldering of copper pipe, (b) whole of head-block, (c) upper-electrode, (d) lower-electrode and stand for mounting electrode.

4.2 温度モニターへの追加

AVF の静電デフレクターについては、ビーム損失によるセプタムの溶融を防ぐため、熱電対を取り付ける改造

Figure 10: (left) Mounting position of thermocouple on head-block, (right) temperature monitoring screen.

を既に行ってある[14]。そこで、インフレクターにも新たに 熱電対を取り付けて温度監視を行うことにした。既に運 用中のデフレクター用 PLC 温度モニターモジュールにイ ンフレクター熱電対の繋ぎ込みと設定を行い、AVF 静電 チャンネル一覧として常時温度モニターに追加した。 Figure 10 に熱電対を取り付けた位置と温度モニター画 面を示す。

5. まとめ

この 1 年間の AVF サイクロトロンの総運転時間は 3092 h であった。老朽化は止められないものの、その都 度修理と対策を練り、実施している。今後も引き続き安定 なビーム供給を目指す。

参考文献

- A. Goto *et al.*, "Injector AVF cyclotron at RIKEN", Proceedings of Cyclotrons 1989, 1991, pp. 51-54.
- [2] H. Kamitsubo, "Progress in RIKEN Ring Cyclotron Project", Proceedings of Cyclotrons 1986, 1987, pp. 17-23.
- [3] K. Kamakura *et al.*, "Current Status of 14 GHz ECR Ion Source at CNS, the University of Tokyo", Proceedings of the18th PASJ Meeting, 2021, pp. 598-599.
- [4] T. Nakagawa *et al.*, "Intense beam production from RIKEN 18 GHz ECRIS and liquid He free SC-ECRISs", Rev. Sci. Instrum. 73, 2002, 513.
- [5] H. Okamura *et al.*, "Development of the RIKEN polarized ion source", AIP Conference Proceedings 293, 1993, pp. 84-87.
- [6] M. Odera *et al.*, "Variable frequency heavy-ion linac, RILAC: I. Design, construction and operation of its accelerating structure", Nucl. Instrum. Methods Phys. Res. A 227, 1984, pp. 187-195.
- [7] K. Yamada *et al.*, "Beam commissioning and operation of new linac injector for RIKEN RI beam factory", Proceedings of IPAC 2012, 2012, pp. 1071-1073.
- [8] Y. Yano, "The RIKEN RI Beam Factory Project: A status report", Nucl. Instrum. Methods Phys. Res. B 261, 2007, pp. 1009-1013.
- [9] M. Nishida *et al.*, "Status report of the operation of RIBF ring cyclotrons", Proceedings of the 21st PASJ Meeting, WTSP09, 2024.
- [10] H. Okuno *et al.*, "The Superconducting Ring Cyclotron in RIKEN", IEEE Trans. Appl. Supercond. 17, 2007, pp. 1063-1068.
- [11] J. Ohnishi *et al.*, "Construction status of the RIKEN intermediate-stage ring cyclotron (IRC)", Proceedings of Cyclotrons 2004, 2005, pp. 197-199.
- [12] Y. Yanagisawa *et al.*, "Low-energy radioisotope beam separator CRIB", Nucl. Instrum. Meth. Phys. Res., Sect. A 539, 2005, pp. 74-83.
- [13] M. Nishimura *et al.*, "Status report on the operation of RIKEN AVF cyclotron", Proceedings of the 20th PASJ Meeting, TWSP12, 2023, pp. 1049-1053.
- [14] S. Fukuzawa *et al.*, "Status report on the operation of RIKEN AVF cyclotron", Proceedings of the 18th PASJ Meeting, WEP052, 2021, pp. 760-764.