DETERMINATION OF RESONANCE PARAMETERS IN ELECTRON STORAGE RINGS

Tsukasa Miyajima*, Yukinori Kobayashi Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Abstract

The transverse betatron motions near nonlinear resonances in the Photon Factory electron storage ring were studied using a phase space monitor system. The resonance parameters, consisting of a detuning parameter and a resonance strength, which control the resonance pattern in the phase space, were determined as a function of an octupole magnetic field. In the experiments near the vertical fourth-order resonance strength were found to be linear functions of the octupole field strength.

電子貯蔵リングにおける非線形共鳴近傍での共鳴パラメタの決定

1. はじめに

円形加速器中でのビームの長時間安定性や力学口 径の大きさは、円形加速器中に存在する誤差磁場等 による非線形磁場と密接に関係しており、その影響 を調べることは、加速器の安定な運転のために重要 となっている。このような非線形磁場の影響が顕著 に現れるのが、ベータトロン振動の共鳴近傍である。 共鳴近傍では、誤差磁場等による僅かな摂動であって も、ビームはそれを繰り返し受け続けることになる ため、その影響がビームの運動に顕著に現れる。ま た、共鳴はベータトロン振動の振動振幅を増大させ る場合があり、ビーム損失を引き起こす原因となる。 特に、放射光電子貯蔵リングでは、最近、ビーム電 流を一定に保つために Top-up 運転が行われてきてい るが、このとき放射光ビームラインを開けたままの 状態で入射を行うことになるため、入射中の僅かな ビーム損失も避けなければならない。通常の運転で は、整数共鳴や半整数共鳴などの強い影響を及ぼす 共鳴を避けたオペレーティングポイントが選ばれる が、それ以外の高次の非線形共鳴が近くにある場合 があり、安定に運転するためには、これらの影響を 十分把握しておくことは重要である。

非線形共鳴近傍での運動を研究する方法として、解 析的な方法のほかに、粒子トラッキングなどの数値 的な方法、実際の加速器を用いた実験による方法が ある。計算機の能力向上により、大規模な粒子トラッ キングを容易に行えるようになってきているが、非 線形共鳴を研究するためには、予め共鳴の起源を設 定しておく必要があり、数値的な方法により現実の 加速器中での現象を予想するのは容易ではない。一 方、実験的な方法では、現実の加速器を用いるため、 あらゆる非線形性を含んだ現象を調べることができ るが、測定が容易でない(測定装置が必要、実験条 件の安定化が難しい)ということがある。

我々の研究では、放射光電子貯蔵リングである PF-

ring を用いて、主に実験的手法を用いて非線形共鳴 近傍でのベータトロン振動の観測を行った^[1,2]。共鳴 近傍でのベータトロン振動の特徴は、位相空間中で 顕著に現れるため、実験的に位相空間中での情報を 得るための位相空間モニターシステムを開発し、こ れを用いて実験を行った。さらに、我々の実験では、 非線形共鳴を支配する非線形磁場を積極的にコント ロールし、共鳴パラメタをより正確に決定する方法 を提案した^[1]。今回の実験では、非線形磁場として 8 極磁場の強さをコントロールして共鳴パラメタの決 定を行った。

ここでは、非線形共鳴である垂直 4 次共鳴 ($4\nu_y = 17$) 近傍で行った実験についての結果を紹介する。

2. 非線形共鳴近傍でのベータトロン振動

円形加速器中でのベータトロン振動を、ここでは 単粒子として取り扱うこととする。次に示すハミル トニアンによって、n次の1次元非線形共鳴近傍で のベータトロン振動を記述することができる。

$$\mathcal{H}_{n} = \nu_{y} J_{y} + \frac{1}{2} \alpha_{yy} J_{y}^{2} + J_{y}^{n/2} G_{0,n,l} \cos(n\phi_{y} - l\theta + \xi_{y})$$
⁽¹⁾

 $\alpha_{yy}, G_{0,n,l}$ が共鳴パラメタであり、それぞれ振幅依存 チューンシフトの大きさ、共鳴の強さを表す。また、 ν_y はベータトロンチューン、 (J_y, ϕ_y) は作用・角変数、sは円形加速器中でのビーム進行方向の位置を表し、円 形加速器の実効半径をRとすると $s = R\theta$ の関係がある。この作用・角変数を用いるとベータトロン振動は、 $y(s) = \{2\beta_y(s)J_y\}^{1/2}\cos\Phi_y(s)$ と表される。ここで、 β_y はベータトロン関数であり、 $\chi_y = \int_0^s \mathrm{d}s/\beta_y(s)$ として、振動の位相を $\Phi_y = \phi_y + \chi_y - \nu_y\theta$ とした。 無次元化されたハミルトニアン

$$\Delta r + \Omega r^2 + r^{n/2} \cos(n\phi_1) = \text{const.}$$
(2)

を用いて、共鳴パラメタが変化したときの位相空間パ ターンの変化を図1に示す。ここで、初期作用変数を

^{*} E-mail: tsukasa.miyajima@kek.jp

Proceedings of the 2nd Annual Meeting of Particle Accelerator Society of Japan and the 30th Linear Accelerator Meeting in Japan (July 20 - 22, 2005, Tosu Japan)

図 1:3 次共鳴近傍での共鳴パターンの変化^[2]。

 $J_0 = J_y(0)$ として、 $r = J_y/J_0$, $\phi_1 = \phi_y - (l\theta - \xi_y)/n$ という作用・角変数を用いている。また、無次元化され た共鳴パラメタは、 $\Delta = (\nu_y - l/n)/(G_{0,n,l}J_0^{n/2-1})$, $\Omega = \alpha_{yy}/(2G_{0,n,l}J_0^{n/2-2})$ となる。図1では、共鳴の 特徴的な状態であるアイランドの位置が、共鳴パラ メタが変化するとともに移動していることがわかる。 このように、共鳴近傍でのベータトロン振動は、2つ の共鳴パラメタによって特徴付けられている。実験 では、非線形磁場の強さとして8極磁場の強さを変 化させた場合のベータトロン振動の測定を行い、そ の結果から共鳴パラメタの決定を行った。

次に垂直 4 次共鳴近傍で、8 極磁場が変化したときの共鳴パラメタの変化について考える。PF-ring では 4 台の 8 極電磁石が設置されており、実験のときには 4 台の電磁石を同じ強さに設定している。この場合、 8 極電磁石による振幅依存チューンシフトは、8 極磁 場の強さ $K_3 = L_{\text{oct}}/(B\rho) \cdot d^3 B_y/dx^3$ に対して線形 になり、

$$\alpha_{yy} = \frac{1}{16\pi} K_3 \sum_{i=1}^{4} \beta_{y,i}^2 \tag{3}$$

と記述することができる。ここで、 $\beta_{y,i}$ は i 番目の 8 極電磁石の位置での垂直方向のベータトロン関数を 表す。他にクロマティシティ補正用の 6 極電磁石の 作る磁場からも振幅依存チューンシフトが現れるが、 これは 8 極電磁石の強さには依存しないため、この 実験での α_{yy} の K_3 に対する依存性は、係数を a_0, a_1 として

$$\alpha_{yy} = a_0 + a_1 K_3 \tag{4}$$

のような線形な関係となることが予想される。垂直 4 次共鳴についての共鳴の強さも同様に、K₃ に対し て線形となり

$$G_{0,4,l} \mathrm{e}^{\mathrm{i}\xi_y} = \frac{1}{96\pi} K_3 \sum_{i=1}^4 \beta_{y,i}^2 \mathrm{e}^{\mathrm{i}[4\chi_y - (4\nu_y - l)\theta]}$$
(5)

と表される。8 極電磁石以外の共鳴の起源があると仮 定すると、共鳴の強さは α_{yy} の場合と同様に係数を g_0, g_1 として

$$G_{0,4,l} = g_0 + g_1 K_3 \tag{6}$$

図 2: 垂直 4 次共鳴 ($4\nu_y = 17$) 近傍での測定結果。左の列に振動の時間変化、右の列に規格化された位相空間での軌跡を示す^[1]。

という *K*₃ に対して線形な関係になることが予想される。

n 次のベータトロン振動の一次元共鳴は、ラティ スの超周期が N の場合、ベータトロンチューンが $n\nu_y = Nl(l = 1, 2, 3, \cdots)$ のときに生じる。PF-ring ではラティスの超周期が N = 2 であり、共鳴条件は、 $n\nu_y = 2l$ となる。この場合、Nl が奇数の共鳴は非 構造共鳴と呼ばれ、理想的な条件下では生じない共 鳴となる。ここで紹介する、 $4\nu_y = 17$ という共鳴は 非構造共鳴であり、弱い共鳴と考えられるが、現実 の電子貯蔵リングである PF-ring ではどのようになっ たかを次に示す。

3. 位相空間モニターによる測定

位相空間中でのベータトロン振動の振舞いを測定 するために、位相空間モニターシステムを用いた^[3]。 このシステムは、初期振幅を与えるための高速キッ カー電磁石と位相空間での情報を得るための位相空 間モニターから構成される。高速キッカー電磁石は、 シングルバンチビームに対して、1 ターンのみでキッ クを与えることが可能となっている。位相空間モニ ターは、直線部に距離 L だけ離れて配置された 2つ の BPM (Beam Position Monitor) からの信号をターン バイターンで測定、保存できるようになっている。2 つの BPM からの位置情報を y_1, y_2 とすると、2つの BPM の中心でのビームの位置は $y = (y_1 + y_2)/2$ 、 傾きは $y' = (y_2 - y_1)/L$ となり、これらより位相空 間中での軌跡を描くことが可能となる。 Proceedings of the 2nd Annual Meeting of Particle Accelerator Society of Japan and the 30th Linear Accelerator Meeting in Japan (July 20 - 22, 2005, Tosu Japan)

図 3: 振幅依存チューンシフト α_{yy} の K_3 に対する応 答の測定結果 ^[1]。

4. 垂直4次共鳴での結果

実験条件はシングルバンチ 9.0 mA、初期振動振幅 y(0) = 4.0 mm、初期ベータトロンチューン (ν_x, ν_y) = (9.660, 4.240) に設定された。実験では、8 極電磁石 の強さは、 $K_3 = -390 \sim 390 \text{ m}^{-3}$ の範囲で変更さ れた。実験手順は以下の通りである。1) 垂直 4 次共 鳴 ($4\nu_y = 17$) 近傍にチューンを設定、2) 8 極磁場の 強さ K_3 を設定、3) 高速キッカーにより初期振幅を 与える、4) 位相空間モニターにより振動を測定。 K_3 を変更しながら、2) - 4) を繰り返し、各 K_3 の強さに 対して測定を行った。垂直 4 次共鳴近傍での測定結 果を図 2 に示す。 K_3 の強さによって、1) 振動が減衰 する状態、2) 安定なアイランド構造が形成される状 態、3) アイランドが形成された後すぐに振動が減衰 する状態の 3 つの状態があることが示された。

次に、これらの測定データから、共鳴パラメタを 以下のような手順で決定した。まず、位置についての 振動初期の測定データに対してフーリエ変換を行い チューン Q_y を求め、そのときの作用変数 J_y を用い て、 $Q_y = \nu_y + \alpha_{yy} J_y$ という関係を仮定して、振幅依 存チューンシフトの大きさ α_{yy} を決定する。さらに、 この α_{yy} を用いて、振動減衰が十分小さいと仮定で きる振動初期の測定データを共鳴近傍でのハミルト ニアン (式 (1))にフィットし、共鳴の強さ $G_{0,4,17}$ を求 める。フィッティングの際は、 $G_{0,4,17}$ 、代 を図 3、測定データのフィッティングの結果を図 4、 $G_{0,4,17}$ を図 5 に示す。図 3、図 5 より、 α_{yy} , $G_{0,4,17}$ ともに K_3 に対して線形な関係になっていることがわかる。

このように垂直4次共鳴近傍での共鳴パラメタの 変化は、8極磁場の強さ K₃に対して線形であり、8 極磁場が垂直4次共鳴の起源となっていることを示 すことができた。

5. まとめ

位相空間モニターシステムを用いて、非線形共鳴 近傍において位相空間中でのベータトロン振動を観 測した。さらに、非線形磁場の変化に対する応答から 共鳴パラメタを実験的に決定する方法を提案し、垂 直4次共鳴近傍でのベータトロン振動に対してこの 方法を適用し、この方法が有効であることを示すこ とができた。ここでは紹介しなかったが、垂直3次 共鳴についてもここで提案した方法により共鳴パラ

図 4: 測定データのフィッティング結果。等高線は式 (1)のハミルトニアンにより計算された^[1]。

図 5: 共鳴パラメタ *G*_{0,4,17} の *K*₃ に対する応答の測 定結果^[1]。

メタの決定を行い、その結果から共鳴の起源を推測 することができた^[1]。

今回の測定では、挿入光源の非線形磁場による影響を極力小さくするために、挿入光源のギャップを開いた状態で実験を行った。挿入光源のギャップを1台ずつ閉じた状態で実験を行い、ここで提案する方法を用いて共鳴パラメタを決定することにより、挿入光源に起因する非線形磁場の影響を調べることが可能である。

参考文献

- [1] Tsukasa Miyajima and Yukinori Kobayashi: Japanese Journal of Applied Physics, **44** No. 4A, 2006 (2005).
- [2] 宮島司,小林幸則: "垂直3次共鳴近傍における位相空間中でのベータトロン振動の測定",日本加速器学会誌 1 NO.2,98 (2004).
- [3] Y. Kobayashi, T. Mitsuhashi, A. Ueda and T. Kasuga: Proc. Fifth European Particle Accelerator Conf., Sitges, Spain, 1996, p. 1666.