STATUS OF KURRI-LINAC

Naoya Abe ^{A)}, Toshiharu Takahashi ^{A)}, Jun-ichi Hori ^{A)}, Takumi Kubota ^{A)}, Koichi Sato ^{A)}, Shuji Yamamoto ^{A)}, Ken Nakajima ^{A)}, Kiyoshi Takami ^{B)}; ^{A)} Research Reactor Institute, Kyoto University 2-1010 Asashiro-nishi Kumatori-cho Sennan-gun Osaka 590-0494 ^{B)} Nippon Advanced Technology Co.,LTD 2-1010 Asashiro-nishi Kumatori-cho Sennan-gun Osaka 590-0494

Abstract

The electron linear accelerator of the Research Reactor Institute, Kyoto University (KURRI-LINAC), constructed in 1965 as a pulsed-neutron generator, has two L-band-type accelerating tubes. The maximum electron energy is 46 MeV and the beam power is 6kW. The KURRI-LINAC is utilized for nuclear physics, electron or X-ray irradiation for material science, teraheltz spectroscopy using coherent synchrotron radiation as a nationwide joint-use facility. This report describes the machine state for last year, including some troubles and upgrading the performance.

京大炉中性子発生装置(電子ライナック)の現状

1. はじめに

京都大学原子炉実験所中性子発生装置(以下、京 大炉ライナック)は、定常的な中性子源である原子 炉と相補的なパルス状中性子源として、1965年に米 国ARCO社製L-1512G型電子線型加速器を導入し、翌 年から所内利用、3年後の1968年からは全国共同利 用が開始された。1971・2年に加速管、マイクロ波発 生装置増設によるエネルギー増強作業、1973年に大 型電子銃に交換した電流増強作業があり、その後も 維持費等による更新を続けてきた。近年、所内措置 による維持費のみになり、老朽化も進んでいる上に、 導入当初より管理を担当されている方が退職、保守 管理技術の低下が危ぶまれている。一方で、マシ ン自体は比較的順調に利用されており、これからも 利用されようとしている。

2. 利用状況と運転時間

現在、京大炉ライナックでの実験は①照射実験、 ②中性子実験、③コヒーレント放射光実験に大別で きる。2005年は中性子実験での連続運転の増加を受 け、京大炉ライナック始動からの最大年間運転時間 を更新する1590時間の運転が行われた。昨年は前後 期あわせて17件の共同利用課題が採択され、今年は 昨年を上回る19件が採択された。利用開始から40 年が経過した現在でも利用が活発化しており、今年 は昨年を上回る利用が期待されている。(図1)

3. 改造作業·計画

3.1 電子銃・入射系更新・計画

前回の報告^[1]で述べた小カソード面積の電子銃 (EIMAC YU-156)の導入を含む入射系の全面更新を 2005年夏に行った(図2)。エミッタンスを改善す ることを目的としており、加速及び輸送中のビーム 損失の減少を達成した。また、これまでの電子銃一 体型からアセンブリ型に変更したため交換が容易に なり、カソード径が50 mmから20 mmと小さくなっ たことから、交換から利用再開まで3日間で可能に なった。なお、交換から一ヵ月後に電子銃内部での 短絡が発生し交換しており、その電子銃を分解した 写真を図3に示す。入射電圧の設計値が130kVのと ころ、ハウジングが空気中のため現在80kV程度で 使用しているが、今年夏にガンカバーを導入し、加 圧したSF₆ガスを封入して耐圧を上げる。さらに、 担当者の一人(高見)が開発したアバランシェパル サーを導入することにより、現状で最小47 nsのパル ス巾を5ns以下まで短くする計画である。

図2(上):更新後の電子銃・入射系図3(下):分解した電子銃

3.2 Waveguide Magnet 電源の安定化

KEKの大学連携支援事業の援助を受けて2006年3 月に行った(図4)。更に同7月に安定化/非安定 化電源の切り替えを可能とする改造を行った。安定 化の効果は今夏の放射光実験で確認の予定である。

図4:KEKの支援で設置された安定化電源

3.3 その他の更新

2006年1月に運転開始より使用していた位相調整器を更新した。調整精度が3桁から5桁になり、プリセット機能が搭載されたため、パラメータの再現性が向上した。また同2月にNo.2Waterloadを更新したが、使用中にフランジのシール部でマイクロ波によるものと思われる放電が発生し、シール部を損傷した(図5)。その損傷箇所から充填しているSF₆ガスが漏れており、現在製作業者の下で修理中である。

図5:損傷したシール部

4. マシントラブル

4.1 マイクロ波導入時の真空悪化現象

前回の報告^[1]後、電子銃交換の際に加速管を大気 にさらした。その結果真空悪化の度合いは大きく なったが、以前ほど悪化せず、現在は交換前の状態 まで改善してきている。

4.2 運転中に発生する真空悪化現象

電子銃交換から半年以上経過した2006年4月ごろ から運転中に電子銃付近の放電によるものと思われ る真空悪化が発生するようになった。その際真空イ ンターロックにより電子銃の電源が落ち、再開に10 分以上必要となっていた。その後、発生頻度が日に 3~4回だったのが、約2時間毎に1回にまで増加した (図6)。真空悪化が一時的であることからイン ターロックの設定を緩和して、電子銃の電源を落と さないようにしたところ、発生頻度が低下し始め週 に1~2回しか発生しなくなった。明確な原因が不明 であり、今までのインターロックの設定値が高すぎ た可能性もあるため、現在はこの状態のまま運転し ている。

図6:運転中のデータ(赤:電子銃真空度、橙: 入射電圧、青:ビーム平均電流)

4.3 ショートパルスで発生するビーム不安定化

2006年6月に数ヶ月ぶりに過渡モードでの運転が 行われた際に、正常パルスより数十ns遅れてノイズ 状の短パルス(パルス幅:数ns以下)が多数発生し、 同時に真空状態も悪化する状況が発生した(図7)。 パルス発生源にMOSFETを使用しているためパルス 源からこの幅のパルスが発生したとは考えにくいた め、他の箇所の追求を行った。エミッションを減ら すことで短パルス発生が低下及び消滅することが確 認され、更にNo.1モデュレータからのマイクロ波の 供給を止めると全く発生しないことが確認された。 このマイクロ波はプリバンチャーとNo.1加速管に供 給しているがどのように影響を及ぼしているかは現 在不明である。また、関連が確認されていないが同

上(黄色)ターゲット電流 下(青色)電子銃直後のビーム電流

5. 運転体制とスタッフ

前述のとおり、今年度の共同利用採択件数が多い ために利用運転週も増加しており、保守作業の時間 を得ることが厳しい状況となっている。今年度に関 しては高見が派遣で任用中のため少ない時間での保 守作業が可能であったが、それでも時間減少の分を 埋め切れず一時しのぎの状況が続いている。来年度 以降の体制については現在未定である一方、利用に 関しては今年度と同様の利用が見込まれており厳し い状況が続くと予想される。

6. その他

KEKから譲り受けた耐圧の落ちたサイラトロンに DCクリーニングを行うことで再利用を試みている。 サイラトロンのギャップに放電が起こらない程度の 直流高圧をかけ、徐々にその高圧を上げていく。そ れをギャップ毎に行い、繰り返すと耐圧に一定の改 善が見られた。モデュレータに実装しての検証はま だ実施していないが、再利用の道に兆しが見え始め た。

参考文献

[1] N.Abe et al., "京大炉中性子発生装置(電子ライ ナック)の現状"、Proceedings of the 2nd annual meeting of particle accelerator society of Japan and the 30th Linear accelerator meeting in Japan, Tosu, July 20-22,2005

時に真空悪化現象も見られなくなった。