ELECTRON ACCELERATION BY LASER PRODUCED PLASMA AND ITS APPLICATIONS

Kazuyoshi Koyama^{1 (A)}, Shinichi Masuda^(A), Susumu Kato^(A), Naoaki Saito, Eisuke Miura^(A), Mitsumori Tanimoto^(B), Reiko Taki^(C) ^{A)} National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki, Japan, 305-8568

^{B)} Meisei University

2-1-1, Hodokubo, Hino, Tokyo, Japan, 191-8506 ^{C)} The Graduate University for Advanced Studies (SIKENDAI)-KEK

1-1, Oho, Tsukuba, Ibaraki, Japan, 305-0801

Abstract

A scaling law of a self-modulated laser wakefield accelerator (SMLWFA) was experimentally obtained by using 6-TW laser pulses. An energy gain was inversely proportional to an electron density and proportional to the laser power. A quasi-monoenergetic electron bunch was emitted in a limited density region of 3×10^{19} cm⁻³ and 2×10^{19} cm⁻³ at a fixed laser power of 3-4 TW and 5-6 TW, respectively. This characteristic is similar to our previous experiments. We studied feasibility of applications of laser wakefield accelerator and showed prospects.

レーザー・プラズマによる電子加速とその応用

1. はじめに

超高強度・超短パルスレーザーによって励起され、 光速で伝播する電子プラズマ波(航跡場)は、相対 論的効果によって密度変調δn/n₀が1以上、すなわち 正弦波から大きく外れてピケットフェンス状になり 得る。そのときの最大加速勾配は、

$$eE_{WB} = e\sqrt{2(\gamma_{ph} - 1)}E_0, \qquad (1)$$

で与えられる。ここで、プラズマ波の位相速度を v_{ph} として、 $\gamma_{ph} = 1/\sqrt{1 - (v_{ph}/c)^2}$ であり、 E_0 は 線形理論での砕波電場強度であり、プラズマ周波数 長が800nmのレーザーパルスによって電子密度n。が 1.6×10¹⁸cm⁻³のプラズマにプラズマ波を励起するとき の非相対論的な砕波の限界電場はE_{0[≈]} 100GV/mであ るが、相対論的効果によってプラズマ波は電場強度 が800GV/mまで成長できる。このような大振幅のプ ラズマ波を励起するためには、レーザー電場中での 電子の速度が相対論的になるようなレーザー強度 (>10¹⁸W/cm²) が必要である。

レーザーによる粒子加速の研究が大きく進歩した のは、超高強度・超短パルスレーザーが市販される ようになった1990年代の中頃からである。2004年に は、産総研を始めとして世界の4研究所で準単色電 子加速に成功した。その後の発展は目覚ましく、 2005年末には世界の10ヶ所以上で準単色電子加速に 成功している。

ある条件を満たせば準単色電子加速が可能である

事は明らかであるが再現性に問題がある。この分野 における当面の課題は、再現性の向上と加速の制御 である。昨年の講演で紹介した経験則は航跡場の励 起方法の違いに関わらず成り立っているが^[1]、単色 電子加速の機構を解明して再現性の向上と加速の制 御技術を確立するためには、励起方法を固定した研 究を行う必要がある。そのために、我々は、この種 の研究にとっては比較的小型のテラワット級レー ザーでも大振幅航跡場を励起できる自己変調航跡場 加速の領域で実験を行った。具体的には、レーザー のパルス幅がプラズマ振動周期よりも長い領域であ る。

2. 加速の相似則に関する実験

2.1 実験条件と方法

我々の2004年の発表では、2TWの出力のレーザー を用いて電子密度が(1-1.5)×10²⁰ cm-3のときに準単色 電子ビームを得る事ができた。加速エネルギーは式 (1)で表される加速勾配と加速距離の積で与えられ る。加速距離に波と粒子の位相ずれで制限される脱 位相距離を採ると、加速エネルギーは

$$W_{WB} = \pi m_0 c^2 \sqrt{2(\gamma_{ph} - 1)} \left(\frac{\omega_L}{\omega_p}\right)^2 , \qquad (2)$$

となる。式(2)および文献[1]の図3からは、電子密 度を下げると加速エネルギーが増加することが予想

¹ k.koyama@aist.go.jp

Fig.1: The schematic drawing of the experimental setup.

される。

そのことを実証するために、電子密度を約4×10²⁰ cm⁻³に下げて実験を行った。脱位相距離は電子密度の1.5乗に反比例し、電子密度の低下によって急激に長くなる。その長さにわたってレーザーの集光強度を保つために、集光用反射鏡(軸外し放物面鏡)の焦点距離を伸ばして焦点の面積を大きくした。大きな焦点面の中で集光強度を10¹⁸ W/cm²以上に保ちレーザーによる電子の運動を相対論的にするために、レーザーパワーを最大6TWまで上げた。Fig.1に実験配置を、Table 1に実験条件を示す。

2.2 実験結果

得られた電子のエネルギースペクトルとそこに現 れた単色エネルギーの電子密度依存性およびレー ザーパワー依存性をFig.2に示す。結果からは、ほぼ 予想通りに電子密度に反比例して単色成分のエネル ギーが変化している事が分かる。また、2TWの実験

	Low-Density	High-Density
	Experiment	Experiment
Density (cm ⁻³)	$(2.6-5) \times 10^{19}$	$(1-2) \times 10^{20}$
Laser Power (TW)	2-6	2
Pulse Width (fs)	50	50
Focal Length (mm)	300	160
F-Number	6	3.3
Focus Diameter(µm)	9 (fwhm)	5 (fwhm)
Intensity (W/cm ²)	$(1-4) \times 10^{18}$	5×10 ¹⁸
Gas	Не	He / N ₂

Table 1: Experimental conditions of low-density and high-density^[1] experiments.

(□で表示)の時と同様に、電子密度を準単色電子 が観測された領域よりも下げると高エネルギー電子 はほとんど観測されない。一方、電子密度を上げる と、単色ピークは消えて熱的な分布になる。 Fig.2(b)(c)ではレーザーパワーが5-6TWで電子密度が 3×10¹⁸cm⁻³の時の加速エネルギーが3-4TWの場合と 同程度になっている。これは加速距離が脱位相長で はなくプラズマ長(ガスジェットの大きさ)で制限 されているためであると考えられる。式(2)で与え られる加速エネルギーはレーザーパワーに依存しな い。しかし実際には式(2)の大きさまでに振幅が増 大させる事は難しく、振幅はレーザーパワーで制限 されるものと考えられる。その効果を考慮すると加 速エネルギーは、

$$W_{\rm max} = 4\pi \left(\frac{e^2}{m_0 c \omega_L^2}\right) \left(\frac{\omega_L}{\omega_p}\right)^2 \frac{P_L}{r_L^2} \quad , \tag{3}$$

となり、Fig.2(b)(c)と良く一致している。ここで r_L は

Fig.2: (a) Energy spectra of electrons at different electron densities. Each spectrum is the averaged of ten-shots. (b) Electron-density dependence of acceleration energies of electrons. (c) Laser-power dependence of acceleration energies of electrons.

Fig.3: (a) A schematic drawing of GeV-class single-shot electron spectrometer based on a Thomson scatteining. (b) Trial functions of electron spectra. (b) Calculated spectra from each electron bunch of (b).

焦点半径である。

Fig.2(a)は10回のショットの平均を示したものであ り、連続成分とのコントラスト比は、再現性の低さ が影響したためであると考えられる。単色成分の平 均電荷量はレーザーパワーの増加につれて1ショッ トで得た最大値に近づく。このことは、レーザーパ ワーによって再現性の頻度が変わることを示唆して いる。

3. レーザープラズマ粒子加速の応用

レーザープラズマ粒子加速で得られる電子のバン チ長は100 fs以下の超短パルスであり電荷量が0.1-InCと大きい上に、共通のレーザーパルスから超短 パルスの電子バンチ、レーザーパルス、X線パルス を得る事ができるので、フェムト秒での同期が可能 でありポンプ・プローブによる物性研究に最適であ る。また、数メートル四方に収まるレーザーでも 50MeV級の電子を得る事ができる上に、レーザーは 放射線を出さないので局所的遮へいで済む。これら のことから、医療や産業への応用も容易になると期 待される。

応用に当たっては、ビーム伝送や集束技術も重要 である。現在は磁石が使われる事が多いが、体積と 重量が大きい上に電力消費量も大きい。レーザープ ラズマ粒子加速の基礎課程であるプラズマ中の静電 場または動重力で押される電子流が作る磁場 (>MG)^[2]を応用すると、放射方向を自由に変える事 ができる可能性があり、ビーム伝送などの部分もセ ンチメートル級にできる。

我々は、レーザープラズマ粒子加速の応用の可能 性を広げるために、電子顕微鏡の電子銃への応用と、 トムソン散乱によるパルス硬X線源への応用を検討 した。電子バンチが超短パルス・高エネルギーであ るという特性を活かすことによって、課題は多いも のの、従来にない性能の電子顕微鏡を実現できる可 能性がある。一方、散乱X線を30keVにする事に よって血管造影等への応用が可能になる。また散乱 X線を測定する事によって、場所をとらずに使用す る電子バンチ自身のエネルギースペクトルを知るこ とができる。Fig.3に示すように、電子ビームとレー ザーの衝突角度を適当に選んで散乱X線の光子エネ ルギーをkeV以下にすると、多くの分散素子と高感 度撮像機器を利用してシングルショットでエネル ギースペクトルを得ることができる。これは、将来 GeV級のレーザープラズマ粒子加速器ができた場合 に有用なものになる。

4. まとめ

加速エネルギーは電子密度に反比例しレーザーパ ワーに比例するという、自己変調航跡場励起レー ザープラズマ粒子加速の相似則を得た。プラズマの 特性を応用すると、ビーム伝送系の超小型化も可能 にして、加速・伝送・集束の全てをプラズマが担う 従来とは全く異なる加速器システムが可能になる。

レーザープラズマ粒子加速の可能性を広げるため に、電子ビームの直接的利用として電子顕微鏡への 応用を検討し課題等を明らかにした。またトムソン 散乱によるX線発生の試算も行い、電子のエネル ギースペクトロメータへの応用の可能性を示した。

謝辞

この研究は、原子力委員会の評価に基づく文科省 「原子力試験研究費」および文科省「先進小型加速 器の要素技術の普及事業」によって行われた。

参考文献

- K.Koyama, "第2回日本加速器学会年会、第30回リ ニアック技術研究会報告集 Proceedings of the 2nd Annual Meeting of Pasrticle Accelerator Society of Japan and the 30th Linear Accelerator Meeting in Japan, Tosu, July. 20-22, p.92-96, 2005
- [2] M.Tanimoto, et al., Phys. Rev. E, .68, 026401 (2003).