Stabilization of Optical Cavity of UVSOR-II Free Electron Laser

Masashi Koike^{1,A) B)}, Masahito Hosaka^{A)}, Masahiro Katoh^{A) B)}, Yoshifumi Takashima^{A)}

Naoto Yamamoto^{A)}, Masahiro Adachi^{B)}, Takanori Tanikawa^{B)}, Jun-ichiro Yamazaki^{B)}

A) Graduate School of Engineering, Nagoya University,

Furo-cho, Chikusa, Nagoya, Aichi 464-8585

 B) UVSOR facility Institute for Molecular Science 38 Myodaiji-cho, Okazaki, Aichi 444-8585

Abstract

At the UVSOR storage ring, free electron laser (FEL) experiments have been made using a helical optical klystron. We have already succeeded in high power lasing around 1 W in the deep UV region and the shortest wavelength attained so far is 199nm. Recently, application experiments of the FEL in the deep UV region, for example, photo-electron spectroscopy, irradiation on biological molecules have been carried out. Although a stable FEL is favorable for these applications, we have noticed a rapid power drop with time when the FEL is operated with a high electron beam current (~200 mA). It was speculated that the power drop was due to a distortion of a resonator mirror heated by synchrotron radiation light. We developed a monitor system using a HeNe laser and observed the tilt of cavity mirror. The distortion of the mirror was also estimated using ANSYS and the tendency was found to be consistent with the experiment. A feedback system to stabilize the cavity mirror is now being developed. Its performance has been already confirmed and soon it will be applied for users application experiment.

UVSOR-II自由電子レーザーの光共振器の安定化

1. はじめに

UVSORでは、円偏光オプティカルクライストロン 型アンジュレータを用いた蓄積リング型自由電子 レーザー(FEL)の開発を継続しており、2003年か らのUVSOR高度化による蓄積リングの低エミッタ ンス化と高周波加速系の増強により、FEL増幅率は 大幅に向上し、現在では最短波長として199nmの紫 外領域の発振に成功している^[1]。最近では、生体分 子への照射実験、光電子分光実験、磁気2色性実験 ^{[2][3]}など、さまざまな利用実験が進められている。

しかし現在、ストレージリングに大電流の電子 ビームを蓄積しているときに、FELの出力が時間と ともに急速に低下するという現象が観測されている。 図1ではFELの発振初期の出力の推移を示している。 電子ビームを200mA程度蓄積し、ビームシャッター を開けることでFELの発振は始まる。発振が始まっ てから30秒程度でレーザーパワーは急速に低下する。 ここでミラーを調整することでレーザーパワーは回 復するが、再びパワーは急速に低下する。このよう な現象は近年、電子蓄積リングに大電流を蓄積して 利用実験を行うときに顕著にみられるようになった。 このような出力低下は特にFELの高出力を活かした 実験にとって不利になる。そこで、本研究ではこの FEL出力の低下の原因を調べる実験を行い、さらに レーザー出力を安定化させるフィードバックシステ ムの開発を行った。

2. FELパワーの低下原因とミラー位置モニ ター

FEL発振時に共振器ミラーはアンジュレータから の放射光に曝される。これによりミラーが熱変形し、 共振器のアライメントが損なわれ、それによりレー ザー出力が低下することが予想される。そこで放射 光照射時のミラーの動きを調べる実験を行った。

ミラー位置モニターのセットアップを図2に示す。 He-Neレーザーを共振器ミラーに当て、反射光を CCDカメラに取り込み、その位置変動でミラーの傾 き角度の変化を測定した。図3にFEL発振用のアン ジュレータからの放射光をミラーに照射したときの

¹ E-mail: <u>koike.masashi@b.mbox.nagoya-u.ac.jp</u>

ミラーの角度変化を示す。ミラーに放射光を当て始 めた直後から角度は急激に変化していった。時間と 共に蓄積電流が下がっていき、蓄積電流値が120mA 辺りまで低下すると、ミラーの変動は安定してくる。 そしてそれ以降、垂直・水平両方向とも僅かにもと の角度に戻る。これらの結果から、蓄積電流値が高 いと熱負荷が大きく、ミラーの熱変形が進み、時間 とともに電流値が低下すると、熱変形も飽和に達す る。さらに電流値が低下すると徐々に元の状態に戻 ると考えられる。また図4のように突然に放射光の 照射を止めると急速にミラーモニター位置はもとに 戻ることも観測された。

これらの観測結果からFELの出力の急速な低下は 放射光照射によるミラーの熱変形が主たる原因であ ることが示された。

3. ミラー変形シミュレーション

アンジュレータ放射光照射によるミラー、ミラー ホルダー、またその周りのダクトなどの温度変化、 それに伴う変形をANSYS^[4]を用いて評価した。放射 光照射によりミラーに流入する熱量はSPECTRA^[5]を 用いて計算した。Beam Currentは150mAとした。

図5から、ミラーの温度分布は中心付近で185℃程 度に達し、またミラーホルダーから遠いため熱が逃 げにくいミラーの端の3点の場所でも同様に約180℃ と高い温度に達していた。またミラーホルダー付近 では熱がホルダーに逃げやすく、100℃程度の上昇 に止まっていた。

共振器軸方向の変形量に関しては、ミラー全体に 渡り共振器長が短くなる方向に変形していた。これ は通常のFEL実験中に見られる傾向と一致している。 ミラーの中心を通る垂直線上の表面上の放射光方向 の変形の分布を図6に示す。ミラー支持機構が上下 非対称であるために熱変形も非対象となっている。 このため、光共振器のアライメントがずれ、FELは 電子バンチと効率よく相互作用できなくなりFELパ ワーの低下が起きると考えられる。

図5 温度分布シミュレーション

図2 モニターセットアップ

図6 放射光の光軸方向の変形シミュレーション(上図)とミラー 表面の垂直線上の変形量(下図)

4. ミラーアライメント Feedback System

以上の研究からアンジュレータからの放射光によるミラー熱変形が、共振器のアライメントを損なわせ、そのことでレーザーパワーが急速に低下することが明らかになった。そこでFEL出力を検出しながら、その値が最大になるように、ミラーのアライメントを調整するFeedback systemの開発を行った。その概略図を図7に示す。

Feedbackのテスト実験は、520nmの波長のFELで 試みており、一つの成果として、パワーが低下して きたときにFeedbackを使うと、パワーが回復するこ とに成功した。また、ミラー位置をミスアラインさ せてからFeedbackを作動させると最適な位置まで自 動で動いていきレーザーパワーも図8のように回復 することに成功している。

現在は、FELの増幅率が大きい可視光領域で試 しているが、今後は増幅率が低い深紫外領域での Feedbackで成功するために更なる改良が必要である。 また、時間とともに共振器長がずれてくるので、 RF周波数を変更するプログラムも取りいれ、更な る安定性を追求していきたい。

5. まとめ

新たに開発したミラー位置モニターにより、FEL パワーが急激に低下する原因は、アンジュレータ放 射光の照射によるミラーの熱変形であることが示さ れた。観測結果はANSYSを用いたシミュレー ションとも定性的に一致した。ミラーホルダーが3 点支持構造であることから、ミラーの変形が上下方 向で非対称となっており、これがアライメントを損 なわせFELパワーを低下させる要因となっている可 能性が示された。今後、水平方向、垂直方向とも対 称な構造のミラーホルダーを試験してみる予定であ る。

一方、Feedback Systemの開発も進めており、基本 的な動作確認を終えている。今後、共振器長のずれ をも補正するシステムも取り入れ更なる安定化を目 指していきたい。

参考文献

M.Hosaka et.al. UVSOR Activity Report 2007 (2008).
T.Nakagawa et.al. UVSOR Activity Report 2006 (2007)

[3] T. Tanaka and H. Kitamura, J. Synchrotron Radiation 8(2001)1221

[4] サイバネットシステム株式会社. ANSYS Workbench Products 7.1

[5] T. Tanaka and H. Kitamura, J. Synchrotron Radiation 8(2001)1221.