[14B-02]

DEVELOPMENT OF PULSED MeV POSITRON BEAM LINE (II)

M. Maekawa, S. Okada and H. Itoh

Japan Atomic Energy Research Institute, Takasaki Radiation Chemistry Research Establishment 1233 Watanuki, Takasaki, Gunma 370-1292, Japan

Abstract

A high energy (1MeV) pulsed positron beam line has been developed for positron annihilation lifetime spectroscopy measurements of materials under extreme conditions. As a result of its performance tests using an electron gun, additional short pulses arising from insufficient chopper driving were observed in the time structure of accelerated beams. A high quality beam with single fine pulses is expected to be formed by improving the chopper system.

高速短パルス陽電子ビーム形成装置の開発(1)

1. はじめに

陽電子消滅寿命測定法(PALS)は材料欠陥の種類 や量を非破壊かつ高感度に測定でき、物性研究におけ る有力なプローブの一つに挙げられる。特にパルス陽 電子ビームを用いたPALSでは、試料を線源と密着させ て陽電子を直接試料に注入する従来方式と比べ、線源 と試料が非接触であるため測定条件を幅広く設定する ことが可能になる。さらに高エネルギー陽電子ビームを 用いると真空外へのビーム取り出しが容易となるため、 空気中などの任意の雰囲気中や高温・応力下にある試 料の測定にも適用でき、半導体中の欠陥集合過程や繰 返し応力下での金属中のボイド形成過程を解明するの に極めて有効である。我々はそのような高時間分解能 陽電子ビームの形成をめざし、高速短パルス陽電子ビ ーム形成装置の開発を行ってきた¹⁻²。

陽電子ビームを用いた PALS は、ビームを時間的に 圧縮 (バンチング)させ、パルスビームとすることで物質 中に陽電子が入射した時刻を明確化し、消滅ガンマ線 を検出するまでの時間差を検出することで測定が行わ れる。高精度なPALSのためには入射時刻の時間ジッタ ーが小さく(パルス幅が狭く)、バックグラウンドが低い (S/N比が高い)ビームが必要となる。高エネルギービー ムを直接パルス化するのは容易ではないため、本装置 では²²Na 線源からの低速陽電子ビームをバンチャー (SHB)にて速度変調を掛けバンチングした後 RF 空洞 を用いて加速する。低速陽電子ビームの輸送エネルギ ーは 1000eV とし、周波数 2856MHz のクライストロンを RF 源とする定在波型加速管を用いて最大エネルギー 1MeV にまで加速する。加速管内で発生する放電電子 は試料に照射損傷を与える可能性があるため、磁場を 用いたフィルター部を設置して、陽電子-電子の分離と エネルギー弁別を行う。またビーム集束のため、磁気フ ィルター前後にQマグネットを設置している。

これまでに電子銃を用いた動作試験を行い、最大ビ ームエネルギー1 MeVまで5%程度のエネルギー広がり で加速でき、さらに1 mm 以下のビーム径へと集束でき ることを確認した。エネルギースペクトルとビーム径は高 エネルギー陽電子ビームとしては十分良質ではあるが 高精度 PALS 測定のためには陽電子のシングルファイ ンパルス化が不可欠である。ビームパルスの時間構造 を把握する目的で、高速オシロスコープ (Tektronix TDS694C、3 GHz)を用いてビーム時間構造の直接観 測を行った。

2. ビーム時間構造の測定

パルス幅が狭く、高S/N比のビーム形成には、低速ビ ームのバンチング挙動を把握することが重要であるため はじめに低速ビームの時間構造を測定した。図 1-a は 電子銃のみのビーム電流を示している。この状態から SHBを動作させると図 1-b の形状へと変化した。SHB は

178.5MHz のサイン波を用いてビームに速度変調を掛 けるため、この変調に対応して 5.6ns 周期でビームがバ ンチングされていることが確認された。しかしパルス幅は FWHM で 1ns 程度あり、S/N比も7:1程度にとどまった。 これらを改善するため SHB の不要位相へのビームの 入射を制限するビームチョッパーを設置した。チョッパ ーは3枚並べた金属メッシュで構成され、中央のメッシ ュの電位を変化させることでビームの断続を行う。高効 率なチョッピングを行うためには電位の変化幅を大きく し、ビームの時間構造を崩さないためには電位を矩形 波的に変化をさせることが望ましいが、今回は電位変動 幅を優先した。このためパワーアンプを用いて 178.5MHz のサイン波を増幅し、これにオフセット電位を かけることでビームのチョッピングを行った。チョッパーを 動作させて得られた波形が図1-cである。パルス幅につ いてはあまり変化はみられなかったが、S/N 比はおよそ 30:1まで向上した。

このバンチングビームを加速管に投入し 500 keV に 加速した時のビーム時間構造を測定すると、低速ビー ムの時間構造を良く反映する結果となった。加速管の みを動作させた状態(図2-a)では幅150~200 psのファ インパルス列(350 ps 周期)が観測された。これは 2856 MHz(1周期350 ps)のRFを用いた加速の効果であると 考えられる。SHBを動作させると 5.6 ns 周期にパルス化 された成分に、RF 加速による幅 150~200 ps のファイン パルス列が重畳したものがビームの時間構造として取 得できた(図 2-b)。パルス幅は FWHM で 2 ns 弱と広く、 複数の加速位相にまたがってサテライトパルスの形成が 見られ、これは PALS における擬似寿命成分となりうる。 擬似したサテライトパルスがバックグラウンド領域にも観 測され、測定精度を下げる要因となる。チョッパーを駆 動させても(図 2-c)、擬似寿命成分となるサテライトパル スが残存しており、この除去が今後の課題である。また バックグラウンドとなる領域のサテライトパルスについて は、加速管からの放電電子に原因すると考えられ、陽 電子を加速した場合には磁気フィルターで除去できると 予想される。

図2. 加速ビームの時間構造

3. ビーム時間構造改善の検討

高精度 PALS のためにはサテライトパルスを除去し 5.6 ns 周期のシングルファインパルスを形成する必要が ある。低速ビームの段階で S/N が高く、パルス幅が 500ps 程度のパルスビームを形成できれば、加速管を 通すことによりシングルファインパルスを形成できる。現 有のチョッパーではサイン波を用いているため開時間を 調節することが出来ず、バックグラウンド成分の低減に は有効であるが擬似寿命成分は削除できない。SHB に よるバンチングの効率を上げパルス幅を短くすることで も擬似寿命成分の低減が図れるが、そのためには入射 する低速ビームのエネルギースペクトルの広がりが小さ いことが要求される。低速ビームのエネルギースペクト ルを実測したものが図 3-a である。設定された 1000eV の輸送エネルギーに対し 1060eV 程度までスペクトルが 伸びている事が確認された。これはチョッパーに用いて いる金属メッシュが粗いため、メッシュワイヤー間の空間 電位がメッシュへの印加電圧よりも低くなり、チョッパー 内電位が空間的に分布を持つことに起因する。このよう な電位分布の下では、単色ビームを透過させても通過 したビームのエネルギースペクトルは電位分布を反映し て広がってしまう。すなわちメッシュの空間電位分布は ビームのエネルギーに対する透過効率に深く関係する ことになる。示している。現有チョッパーのメッシュに 1000Vを印加した場合の空間電位分布を数値計算によ リ求め、ビームの透過効率を計算した結果を図 4 に示 す。

この透過効率をもとに、測定されたエネルギースペク トルをアンフォールディングしチョッパーのメッシュ内で の電位分布を 1000V 一定とした場合のエネルギースペ クトルを計算したものが図 3-b である。メッシュの電位分 布は SHB に対する実効的なエネルギースペクトルを悪 化させるため、チョッパーのメッシュをより細かくすること で実効的にエネルギースペクトルを改善することが可能 となえ SHB でのバンチング効率の向上が期待される。 図 3-a のエネルギースペクトルを用い低速ビームのバン チング挙動を数値計算したものが図5-a である。実測値 (図 5-b)と比較すると良い一致を見た。さらに電位分布 の影響を無視し図 3-b のエネルギースペクトルを用いて 計算した結果が図 6 である。この結果は、チョッパーの 電位分布の改善により 500ps のパルス幅と高 S/N 比を 得ることが出来、シングルファインパルスが形成できるこ とを示している。

図 5. メッシュ電位分布の影響がある状態での低速ビームバ ンチング挙動の計算結果

図 6. メッシュ電位分布の影響がない状態での低速ビームバンチング挙動の計算結果

4. まとめ

高速短パルス陽電子ビーム形成装置で発生したビー ムの時間構造を高速オシロスコープを用いて測定した。 この結果、高精度 PALS を阻害するサテライトパルスが 観測されたが、チョッパーのメッシュを細かいものに変更 し、空間電位分布の影響を取り除くことでシングルファイ ンパルスが達成できる見通しが得られた。

参考文献

[1] M. Maekawa *et. al.*: Proc. 24th Linear Accelerator Meeting in Japan (1999) 48.

[2] M. Maekawa *et. al.*: Proc. 12th Symp. Accelerator Science and Technology (1999) 87-89.