A (shortened) history of the RF measurements performed on the T24_vg18_disk structure

Mathias Gerbaux, Riccardo Zennaro, Andrey Olyunin

Key events

- Mid April: 1st brazing (regular cells)
- Around 20/04: 2nd brazing (cooling water system)
- 16 and 17/05 : Oxidation in the « clean » room
- 19/05 : Problem with the network analyzer cables
- 27/05 : Baking at 650°
- 04/06 : Tuning
- 15/06 : Ready for shipping

S-parameters

Some of the reflection measurements...

The same measurements (but closer)

Effect of the brazing and oxidation

Problem with the network analyzer cables

With better (but older) cables

Transmission after re-baking

Bead pulling

Bead pulling @ 11.422 GHz before 2nd brazing

Bead pulling @ 11.422 GHz after 2nd brazing

Bead pulling @ 11.422 GHz after oxidation

Bead pulling @ 11.422 GHz after oxidation and replacement of the bead

Bead pulling @ 11.422 GHz after rebaking

Tuning

- We can't tune individually each cell (we can only push, have no ruler in our bead pulling setup and the field at a given position is the result of the combined effect of all the cells).
- The field configuration does not change dramatically for a small (1 MHz) frequency change. On the contrary, the phase advance per cell is much more sensitive.
- We hence take as a reference the frequency for which we are the closer from the 120° phase advance per cell.

Effect of the screws and pins placing

Bead pulling @ 11.421 Ghz at the beginning

Bead pulling @ 11.421 Ghz after putting the pins ans screws

After 1st step (+ 1/8 turn)

After 2nd step (+ another 1/8 turn)

After 3rd step (+ another 1/8 turn except output matching cell)

After 4th step (+ 1/8 turn only for the output matching cell)

Stop. 20,000 s

Before (11.427 GHz)

After (11.427 GHz)

After 5th step (+ 1/16 turn only for the output matching cell)

Before/after tuning

Change of the frequency vs depth of the screws

Effect of the screws removal on the S parameters

Transmission after screws removal

Reflection before and after tuning

Miscellaneous

Phase correction for the waveguides of the tank

phase correction

Asymmetry of the petals

Marked asymmetry of the petals for the smallest aperture cells.

Bead diameter: 1.2 mm

$$\epsilon_{\rm r}$$
 = 20 tan δ = 0.1

Conclusion

- « Measural harassment » of this structure.
- We have understood a few things thanks to these measurement :
 - asymmetry of the petals
 - o non-linearity of the frequency shift with screws displacement
 - how to oxidize a structure within only 2 days
 - 0 ...
- Though not perfect, tuning worked well and was quite easy.
- Push-pull would be for sure easier and safer!
- Can't wait to have our new clean room!

Bead pulling @ 11.421 GHz after 2nd brazing

Bead pulling @ 11.421 GHz after rebaking

The bead was changed before this measurement