
Introduction to the KEK SADScript Environment:
Adding Custom Functions

Christopher K. Allen

KEK, Japan

This exposition is currently incomplete. However, it does include some useful information
on creating custom functions for the SADScript environment. The major shortcoming here is the
lack of information on passing matrix arguments to the compiled function. I was unable to identify
this procedure. Perhaps in the future someone more familiar with the SAD environment can update
this note, augmenting the areas which I have failed to include.

1 Introduction
In general, to add your own functions to SADScript there are several procedures you must follow.

Once completed, however, this function is available to all users of SADScript. In this short note we follow
the example of adding a function called MyFunct to the SADScript environment. The actual
computations done in this function will be contained in a subroutine MyFunctSub in the file
MyFunctSub.f.

1.1 Function Registration
You must register your SADScript function with

the interpreter. This can be done in the subroutine
tfinit in the file tfinitn.f. Within these
functions you must make a call to the subroutine
itfunaloc. An example registration is listed in
Excerpt 1. The arguments of itfunaloc are listed
in Table 1.

:

Argument Type Description

1st (e.g., ‘MyFunct’) String SADScript function name

2nd (e.g., 1037) Integer SADScript registration identifier (must be unique). Index on
function lookup table.

3rd (e.g., 2) Integer Number of function arguments

4th (e.g., map) Integer Array
(1 elem/arg)

SADScript expansion flag

0 – Any listed arguments are passed to the function as a structure
on the SAD stack frame

1 – SADScript interpreter expands listed arguments into separate
function calls, one call for each element in the list

5th (e.g., ieval) Integer Array
(1 elem/arg)

Mathematica-type evaluation scheme?
0 – Early evaluation (normal)
1 – Delayed evaluate non-mathematical function
2 – Delayed evaluate mathematical function.

map(1) = 0
map(2) = 0
ieval(1) = 0
ieval(2) = 0
i=itfunaloc('MyFunct', 1037, 2, map, ieval, 0);

Excerpt 1: example function registration

6th (e.g., 0) Integer Function Type
0 – normal function
1 – special function
2 – special function

Table 1: itfunaloc argument descriptions

1.2 Function Binding
SADScript functions are bound at runtime using their registration ID, or regId. There is a set of

subroutines that perform this action based on the numeric range of the regId.

regId Range File

220 to 2000 tfefun1

2000 to 3000 tfefun2

3000 to 4000 tfefun3

The binding is implemented with a FORTRAN indexed GOTO statement in the subroutine tfefun?.
Therefore, according to your
regId value, you must add
a line label to the index table
and place your function call
at the indicated line in one of
these files. An example of
this action is shown in
Excerpt 2 for the original
example started in Excerpt 1.
This addition was added to
subroutine tfefun1 since the
regId was 1037. Within the
subroutine tfefun1 there is
a line id = id0 – 1000
which creates the table index id
on the table is 5370. Thus, the
you add a call to your custom SA

The call to your custom
something like that seen in Exc
5370 you make the call to your s
where the actual computation is
from the subroutine tfefun1
special arguments to your su
These are the arguments passe
SADScript environment as a res
unpacked to get the variables act

1.3 SADScript Argum
The SADScript environmen

An example of this is shown
subroutine MyFunctSub. As y
values of these arguments are sh
 go to (5010,5020,5030,5040,5050,5060,5070,5080,5090,5100,
 $ 5110,5120,5130,5140,5150,5160,5170,5180,5190,5200,
 $ 5210,5220,5230,5240,5250,5260,5270,5280,5290,5300,
 $ 5310,5320,5330,5340,5350,5360,5370
 $),id

c ELEM TWIS LINE CalE TraP CalO DyAp RspM Mast FLAG
c Mcad exDA InDA MAP FFS RadF RadS Flag ExBL BLNm
c SetE PyAg TclA Tcl ClLi ExpB GetM ClTr LiTr RGBC
c CPro TcA1 CaSy TkOA CaSD TcSR MyFn

Excerpt 2: adding the new SADScript function binding
 seen in Excerpt 2. Since regId = 1037, the value of id is 37, the 37th label
binding eventually goes to label 5730 in the subroutine tfefun1 where
DScript function.

function should appear
erpt 3. At the line label
ubroutine MyFunctSub,

 implemented, then return
. Note that there are

broutine MyFunctSub.
d to tfefun1 from the
ult of a call to your custom f
ually intended for the new SA

ent Packing
t passes a set of standard arg
in Excerpt 4 where we hav
ou can see, we have five arg
own in Table 2.
5370 call MyFunctSub(isp1, itx, iax, vx, irtc)
 return

Excerpt 3: call to custom function subroutine
unction MyFunct. These arguments must be
DScript function.

uments to any function during its invocation.
e the FORTRAN declaration of our custom
uments isp1, itx, iax, vx, and irtc. The

Argu

Isp1

Itx

Iax

irtc

Vx

T
differ
point
argum

(1)

To ex
resul
 SUBROUTINE MyFunctSub(isp1, itx, iax, vx, irtc)

 IMPLICIT NONE
 INCLUDE 'inc/TFMACRO1.inc' ! SAD global simulation variables
 INCLUDE 'inc/TFSTK.inc' ! SAD global stack variables

C ARGUMENTS - The interpretations are mostly educated guesses
 Integer*4 isp1 ! stack offset pointer
 Integer*4 itx
 Integer*4 iax
 Integer*4 irtc ! return code
 Real*8 vx ! returned value for single value function?

Excerpt 4: SADScript standard arguments
ment Type Description

 Integer*4 SAD stack frame pointer. This is the stack base pointer, so subroutine
arguments are contained above this pointer location. The global variable isp
has the location of the top of the stack.

Integer*4 Return value type. SAD has a set of enumerations in TFCODE.inc specifying
the return type.
ntfoper (=0)
ntfreal (=1) scalar of type REAL*8
ntflist (=3) a list of REAL*4
ntflistr (=4) a list of type REAL*8
ntfstkseq (=5)
ntfstk (=6)
ntfstring (=101) a string
ntfsymbol (=201)
ntfpat (=203)
ntfarg (=205)
ntffun (=ntfoper)
ntfdef (=ntfsymbol)

Integer*4 Pointer to the returned value body. The argument iax points to a data structure
for passing function data. When the function returns a real scalar value then
iax should be zero.

 Integer*4 The return status code
0 – function call was successful
1 – error occurred in function call

Real*8 Convenience argument for functions returning a single scalar real value, i.e., set
this value to the return value of the subroutine.

Table 2: SADScript Standard Argument List

o determine the actually number of arguments passed to your SADScript function you can inspect the
ence between the global variable isp, which points to the top of the stack frame, and isp1 which
s to the stack frame base at the time of your function call. Letting nArgs denote the number of
ents passed to you function its value is computed according to

nArgs = isp – isp1.

tract the SADScript function arguments from the subroutine argument, and to return the subroutine
ts to the SADScript environment, we need to explore how the SAD stack frame is set up.

2 The SAD Stack Frame
SAD does much of its data passing

using a stack. The stack is eight-bytes
wide and is divided into “high” and “low”
four-byte words. This layout is shown in
Figure 1 for the case where SADScript
function arguments are stored on the stack.

Global
Variable

Type Description

Isp Integer*4 Pointer in the SAD stack frame ?
ivstkoffset

ips1 Head
ptr to bodyArg 1 type
ptr to bodyArg 2 type
ptr to bodyArg 3 typeips

Increasing
address space

Figure 1: SAD stack frame

Table 3: useful global variables in the SADScript environment

3 Including Your Modifications in the SAD Build

3.1 Source Files
In order for the SAD make system to include any source files in the build you should put them in the

src subdirectory of the SAD repository (which is currently oldsad). Any FORTRAN source files
placed here will automatically be compiled into object code. However, to include the object files in the
build, you must make modifications to the object Makefile oldsad/mk/sad.obj.mk.

There are some environment
variables you may wish to add to
your .cshrc file if you are using the
SAD repository main branch.

alias sad1 /usr/users/myuserid/oldsad/obj/OSF1/sad1.exe -c
setenv SAD_PACKAGES ~muserod/oldsad/Packages
setenv KBFRAMEDIR ~myuserid/oldsad/KBFrame

3.2 Modifying the Makefile
The SAD make system is composed of a set of make files distributed throughout the repository. The driver
for all these files is located in the top directory oldsad have the default name Makefile. To include
your object files in the SAD environment build you must add their file names and dependencies to the
proper makefile. The dependent make files are included in the directory oldsad/mk. Depending upon
with which CVS branch you are using, the name of the make is different. For the main trunk, this file is
called simply oldsad/mk/Makefile. For the amorita branch of the repository the dependent make file
is called oldsad/mk/sad.obj.mk.

Excerpt 5 is an example of this
modification process. You must
create a dependency so that make
knows to include your object files
in the build. In the example we
have created a dependency called
objmine. As you can see
objmine depends upon the object
files contained in the macro
OBJMINE. The definition of this
macro is given in the last line of the
excerpt, we see that it contains the
name of our example object file
MyFunctSub.o.

all_object: obj0 obj1 obj2 obj3 obj4 obj5 obj6 \
 objdec objauto objca objutil objsim \
 objosdep objglue objdynl objmine MAIN.o

objmine: $(OBJMINE)

OBJ_LIBSAD=$(OBJ0) $(OBJ1) $(OBJ2) $(OBJ3) $(OBJ4) \
 $(OBJ5) $(OBJ6) $(OBJAUTO) $(OBJF) $(OBJDEC) \
 $(OBJUTIL) $(OBJSIM) $(OBJCA) $(OBJRC) $(OBJTK) \
 $(OBJOSDEP) $(OBJENDIAN) $(OBJDL) $(OBJDYNL) \
 $(OBJMINE)

OBJMINE = MyFunctSub.o

Excerpt 5: makefile modifications

	Introduction
	Function Registration
	Function Binding
	SADScript Argument Packing

	The SAD Stack Frame
	Including Your Modifications in the SAD Build
	Source Files
	Modifying the Makefile

