BEPCII Control System

Jijiu Zhao
BEPCII Control Group
13 Feb. 2009, KEK
The project BEPCII is for upgrading the BEPC to reach a higher luminosity, $1 \times 10^{33} \text{cm}^{-2}\text{s}^{-1}$, 100 times to the BEPC.

BEPCII still serves high energy physics experiments and synchrotron radiation research. (total budget 650M CNY)
- Energy 1.89GeV at Collision mode ($\rightarrow 1.85\text{Gev}$)
- Energy 2.5GeV at Synchrotron radiation mode

The project was started in August 2001
- Project proposal
- Conceptual design

R&D started in October 2002

System development started in Jan. 2004

First beam into storage ring in November 2006
BEPCII

BEPCII consists of the Linac, Transport line and Storage Ring

- BEPCII adopted Double ring schema and super-conducting devices
- The old control system has been removed. We have to build a new control system and there are 20,000 channels in the control system
System architecture

Adopt “Standard mode” and EPICS system
It’s the first time that EPICS was adopted officially
Systems Components

- Host computer system
- Control network
- Sub-systems
 - Power supply control
 - Vacuum control
 - RF control
 - Cryogenic control
 - Linac control
- Timing system
- High level applications
- Oracle database
- Central console
Host Computer system

Host computer system in MCC building

- SUN Cluster system (v3.0)
 - 2 SUN V880 servers
 - 8 CPU each (1.2GHz Ultra SPARCIII)
 - 32GB memory each
 - 6*73GB disks each
 - 12*73 shared disk array: RAID 5 + 1 hot spare, NFS
 - Used as EPICS server and for HLA Calculations
- EPICS/ChannelArchiver data server
- Oracle server
- 28 Console computers – SUN Blade2000 and Linux PCs
SUN cluster installing and testing
Computers in main control room
Hardware

- More than 30 VME IOCs (MVME 5100 / 2431)
- And about 25 PC IOCs
- Device control and interface
 - Remote I/O: Power supply and linac control
 - Intelligent controller: Vacuum pumps, gauges
 - VME I/O modules: RF control
 - AB-PLC for cryogenic and Vacuum control
 - Omron PLC for machine protection system
- 1G/100M Ethernet
 - using Cisco C4506 switch, redundancy
- Field Buses
 - ControlNet, CANbus, RS232, RS485
Software

- EPICS Base R3.13.8 for VME IOC
- EPICS Base R3.14.7 for PC IOC
- Host
 - SUN Solaris 8 and PC Linux red hat 9
 - EPICS host tools:
 - MEDM, EDM, VDCT, SNL, Tcl / Tk, ALH, Channel Archiver, Probe, StripTool, SAD, etc.
 - Third party software
 - CVS for software management
 - File server with NFS
- IOC
 - VxWorks 5.4
 - Tornado 2.0 development environment
- HLA
 - developed and transferred from KEKB with SAD environment, after evaluation of HLA for SNS, PEP-II, APS and KEKB
- Oracle database store history data
Control Network

• Cisco 4506 series products, redundant system
• 200 nodes in the network, 2 VLANs
• Ethernet and Star Topology with 1G/100M Ethernet
PS Control

- About 420 PS on Storage ring and TL
 - including SC magnets PS in IR region
- 13 VME IOCs
- Remote I/O module PSC-PSI for PS on Storage Ring
- PSC and PSI were designed by BNL
PS Local Control Station
PS Control panels
Vacuum Control

- 48 point for vacuum pressures
- 360 pump, 18 valves interlock with vacuum pressure,
- 1000 channel for temperature monitor of vacuum chamber
Vacuum control

- 2 VME IOCs

- Vacuum interlock system with AB-PLC and ControlNet
 - ControlLogix 5555 and AB-1756 I/O modules
 - VME-ControlNet adaptor SST-5136CN-VME

- An IPC for temperature monitoring of vacuum chamber
 - An IPC as EPICS IOC
 - Remote controller communication with IPC by RS-485
 - Developed with LabView
 - Installed LabView-EPICS interface “shared memory”
Vacuum panel
RF Control

- The RF control system is developed by company Thomcast based on EPICS
- 2 Klystrons, 2 SC RF Cavities
- 2 VME IOCs, VME I/O modules, and interlock system with ICS modules
- LLRF system developed by IHEP
Linac Control

- EPICS based system
 - IOC: MVME2431 and Vxworks5.4
 - Remote I/O modules made in China
 - CANbus connect VME IOC and the remote I/O modules
- Linac control system was put into use in Nov. 2003. It’s the first EPICS-based control system in IHEP.
Cryogenic Control

- Cryogenic control is made by IHEP
 - valve boxes, tanks, dewars, coils, cooling pipes
 - 2 local stations for SCQ, SSM and 2 SCRF cavities
 - Using AB-PLC, ControlNet, VME IOCs
 - VME-ControlNet adapter SST-5136-CN-VME used for data exchange between IOC and PLCs

- Compressor control is made by Linde company
 - Using Siemens PLC S7, Profibus

- Data communication program has been developed between the two systems with Wincc/ODK and EPICS/CA
Cryogenic control

CR control system was put into operation in Jan. 2005
CR local control
Control Panel

SCQ/SSM control

SCRF Cavity control
High level applications

- Most high level applications transferred from KEKB
- Using SAD development environment
- Main components
 - Optics
 - Closed orbit correction
 - IP commissioning
 - Slow orbit feedback control
 - BBA, Respons matrix
 - Injection timing
Panels of Optics and COD applications

Fig1. COD

Fig2. Optics
BEPCII timing system layout

- Timing system consists of a main station and 12 sub-stations, including electron gun station, modulator station, Kicker PS station and Bi stations etc.
- Blue lines: event system optical cables
- Red lines: 499.8MHz signals
- Green line: 10MHz time base synchronized with Linac 2856MHz signal generator
BEPCII timing system hardware

- 2 EVGs, 19 EVRs
- 13 VME crates and controllers,
- 2 levels of fanout, 5 Fout-7 modules in total.
- GUN-TX and Gun-Rx for e-gun pulser timing
- 4 TD-4Vs for Kickers
- 18 sets of home-made E/O and O/E for linac
Event Timing System
Timing system crates
Control Panels

Libera timing for e+

Libera trigger enable control
Enable manual control
Go with kicker trigger

Manually enable or disable libera trigger
BEPCII
event
timing
clock
To select any bucket

• The event clock is set to 499.8MHz/5.
 – Reason: In EVG-200, the event clock can be generated from RF divided by 4,5,6,8,10 and 12, among which only 5 is a prime number.

• event-clock/7 is set to be the sequencer clock
 – Reason: 7 is a common factor of BEPCII ring RF and linac RF frequency.
To select any bucket

- Bn = MOD(Rn*35, 396), for BEPCII colliding mode
 - Rn is the SequenceRAM unit number, Bn is the bucket number.
 - Using the above formula, any unit from 0 to 395 in SeqRAM can be mapped to one and only one bucket in the ring, which has 396 buckets in total.

- The above formula can generate a table, SeqRAM unit to bucket number. Transform it to a table mapping bucket number to SeqRAM unit number.
Multi bunch injection control

BSR Multi_Bunch Timing v3.1 Feb. 2008

Multi Bunch Inj Control

Injecting Control Method
- Top_off Injection
 - Inject till all buckets reach limit.

for top_off injection
- Beam Current High Limit (mA) 120
- Beam Current Low Limit (mA) 10

for non-top_off injection
- Bunch Current Limit (mA) 3

Bucket Selection Method
- the smallest the first
- sequentially inject bucket smaller than limit

Start Multi Bunch Inj
Stop Multi Bunch Inj
Reload Bucket Pattern

Bucket Change Period in second 1
Vacuum Limit 4.5E-3

Select Injecting Ring
- BER
- BPR
- BSR

BFPCII Status
- ready to inject BSR
- bktPatternBSR loaded, 119 buckets
- eGun trigger is ON

Timing System Status
- Harmonic Number: 402
- Linac Injection Rate: 5 Hz

Bucket Pattern File at
- /home21/operator/bucket/bktPatternBER
- /home21/operator/bucket/bktPatternBPR
- /home21/operator/bucket/bktPatternBSR

Lock from Kicker Triggering to eGun Triggering
on/off kicker trigger => on/off eGun trigger
- Enable the lock
- Disable the lock

Status Display
Exit
Multi-bunch injection control

• Control when to inject and when to stop
 – Top-off injection, a control loop
 – Stop injection when all buckets reach the bunch current limit

• Bucket select method
 – The smallest the first
 – Next smaller than the bunch limit, according to the sequence in the injection pattern definition file

• Criterion
 – Beam current from DCCT, or bunch current from BCM

• Injection pattern definition file: ASCII files
BCM display of 20 * 20 buckets colliding
Performance

Performance: jitter of transport line beam signal to 499.8MHz RF signal is less then 16 pico seconds
Oracle Database

- The Oracle database used to store the machine parameters and control data
- It has a Web interface
- Including
 - Static parameters
 - History data from IOCs
 - Manager information
- We have developed the communication programs
 - Between IOC and Oracle
 - Between ChannelAchiver and Oracle
- e-logbook based on Oracle database
Static Data

- Magnet measurement data
- Drawings
Drawings
History data

Dynamic History Data Plot

2007-01-25 06:00:02 to 2007-01-26 14:00:02

PVname=BSR:LIFE Maximum=10.78 Minimum=0.0
PVname=R40:81:DCCT:current Maximum=183.2 Minimum=-0.9277

Time

BSR:LIFE BSR:CURRENT
History data

Dynamic History Data Plot
2007-01-25 08:02:11 to 2007-01-26 08:02:11

PV name=BI BPM:R4OPM08:A Maximum=6.117 Minimum=5.192
PV name=BI BPM:R4OPM08:B Maximum=6.155 Minimum=5.2
PV name=BI BPM:R4OPM08:C Maximum=6.54 Minimum=5.536
PV name=BI BPM:R4OPM08:D Maximum=6.282 Minimum=5.246
e-loodbook

- Developed BEPCII e-loodbook in Chinese
- E-loodbook saved in Oracle database
- Based on DESY’s version
Machine Protection system

- Adopt Omron PLC and PC-link
- Central interlock system
 - Interlock of BEPCII machine start up
 - Interlock between systems, such as the accelerator and Detector
 - Publish the BEPCII running information in IHEP campus
- Low level interlock system
 Vacuum, PS and Magnet cooling water, RF interlock……
New console installation
New Control Room
R&D

- From Oct. 2002 to Nov. 2003 is the R&D stage
- We built EPICS and Power supply prototype system
- Developing all of I/O driver and communication drivers that we needed
- Transferring SAD environment from KEKB to BEPCII Solaris 8

 Prototype of Corrector PS

 On line test of prototype for chopper PS
System Development

• We spent 2 years to developing the system in laboratory (Jan. 2004 to Dec. 2005)
• Make off-line and on-line test at Lab

• We have built both of hardware and software of the
 – Host computer system and EPICS environment
 – Redundant network system
 – Power supply control system
 – Vacuum control system
 – RF control system
 – Cryogenic control system
 – Event timing system
 – Oracle database
 – Commissioning applications
 – Machine protection system
 – A new console
Installations

In 2006 we spent 8 months to install control system on BEPCII site
System Test

• The system test on site BEPCII from Summer to Oct. 2006
First beam accumulated at Storage Ring

- BEPCII Control system was put into operation in 12 Nov. 2006
BEPCII commissioning

Stages
- Oct.10, 06 - Aug.24, 07 Commissioning backup scheme
- Oct.24, 07 – Mar.28,08 Commissioning with SCQ without detector
- Jun.22, 08 - Dec.18, 08 Commissioning and HEP operation with detector

Milestone
- Nov.12, 06 Start ring commissioning from transport lines
- Nov.14, 06 First turn in the ring
- Nov.18, 06 First e⁻ beam storage in outer ring (SR ring)
- Nov.25, 06 Start SR beam line commissioning and user operation
- Mar. 25 2007 Collision backup scheme
 - Single bunch collision: 9mA*9mA
 - Multi-bunch collision: 7*7, ~20mA/ring
- Jan.29 2008 Collision with 500mA * 500mA with SCQ
- Jul.19 2008 Collision with detector

Current Result
- Lum record: $1.3\times10^{32}\text{m}^{-2}\text{s}^{-1}$ @ $489\text{mA}\times530\text{mA}$ with 90 bunches
- Max. beam current : 600mA of both of e⁻ and e⁺ beam, Max. 93 bunches
- SR mode: 2.5GeV, 250mA with full energy injection, beam life time is 10 hours
Collaborations

– Collaboration with KEKB went through 10 years, KEKB provided us most of their HLA, which speeded development of BEPCII
– We have sent 12 young people to go to KEKB and learn EPICS system and control technology
– We have hosted two Asia EPICS Seminar and EPICS training course in Beijing in 2001 and 2002
– DESY cryogenic control group gave us valuable advices and transferred some source code, which is very helpful for developing BEPCII cryogenic control system
– SSRF Lab. lent us EVG/EVR modules to build the timing prototype at that time our device have not delivered
EPICS Web Page at IHEP

We join the EPICS collaboration and have got a lot of help from EPICS world
Summary

• Since September 2001, the BEPCII control system has gone a long road for system design and construction
• The project is successful with good quality and reliability
• It has been done on schedule and within the budget

• Thanks all of people who have gave us a lot of help in the past few years!
Control People
Thank you for your attention!