IOC for upgrading BPM DAQ software

WANG, Jian (王坚)
Univ. of Sci. & Tech. of China
IOC on WinXP for Oscilloscope

- My work in China
 - Several control systems in physical experiments
 - Observatory Control System in large telescope
 - Centralized Control System (CCS) in Inertial Confinement Fusion (ICF) experiments and try to introduce EPICS to ICF experiments

- IOC on win32
 - Different technologies of win32
 - IOC for upgrading BPM DAQ software
My work in China

- **Observatory Control System in large telescope**
 - Large Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is under construction
 - LAMOST software system consists of three levels
 - The highest level is OCS (Observatory Control System), the lowest level is the real-time system
 - the middle level is subsystems of LAMOST (DHS, TCS, ICS)
 - Deal with observational schedule through SSS (Sky Survey System)
 - Goal of OCS is to automate the entire observational process, and make the scientific observation more efficiently
LAMOST Software System

- TCS
 - DOME
 - TRACK
 - FIBER POSITION
- ICS
 - SPECTROGR
 - AGH
 - CCD
- DHS
 - DATA PROCESS
 - Q.A
- OCS
- SSS

Env.
command-driven model

Commands Layers: Interfaced with the different roles, the commands are divided to three levels

In order to guarantee that commands can be transported and executed correctly, protocols between OCS and subsystems are proposed

- Command Acceptance/Rejection Protocol
- Command Execution Feedback Protocol
- Status handling protocol

architecture model

- designed and implemented as a set of cooperating, distributed objects components that consist of objects
- many design patterns and architecture patterns were used to resolve relevant problems
 - MVC(Model/View/Controller) pattern, agent pattern, layered pattern, message bus pattern
- a component-based unified message bus is introduced in OCS
Centralized Control System (CCS) in ICF experiments

- Optical CCS
- Power CCS
- Target Diagnoses CCS
- Laser CCS
- Vacuum CCS

- FCS

Try to introduce EPICS to lower layers of ICF experiments
Different C/C++ compiler with different host platforms

- win32-x86: MS compiler
- win32-x86-borland: borland compiler
- win32-x86-cygwin:
- win32-x86-mingw:

Different products used the different MS technologies

- ActiveX(ActiveDSO in wavePro oscilloscope), COM(XStream in wavePro oscilloscope, IVI-COM in Tektronix oscilloscope), TekVisa (Tektronix oscilloscope)
- For the efficiency of C language is higher than C++, C language is selected firstly if possible when development of IOC
 - DLL could be used to integrated to IOC when writing a device support
IOC for upgrading BPM DAQ software

- test IOC based on IVI-COM and TekVisa
 - Tek DPO 7104: Win XP
 - Two methods for IOC
 - IVI-COM: seems memory did not released when one scan was done (with ITekScopeWaveformTransfer.FetchWaveform Method)
 - TekVisa: as normal programming, add the tekvisa library to lib path and add include file to include path in the makefile as follows
 - USR_INCLUDES += -I"C:\VXIpnp\WINNT\include"
 - xxxSupport_SYS_LIBS += visa32
IVI-COM

- IVI: Interchangeable Virtual Instruments
- Installed IVI TekScope Driver firstly
- In device support, C++ must be used for COM technology
- Code like follows
 - ::OleInitialize(NULL); //before create instance
 - ... //reference IVI-COM sample
 - ::OleUninitialize(); // when done
- Get waveform
 - IOC running on OSC
 - Medm remotely
Compare IVI-COM and TekVisa

-The IOC used IVI-COM running as scan periodic
 -The memory will be exhausted and at last it will be ended with an error

-The fastest speed of acquisition is lower than that used TekVisa

-So IVI-COM is unselected
Test IOC performance and common win32 application

- Develop an IOC based on TekVisa
 - Waveform acquisition only
 - Vary the record length of waveform from 1000 to 500,000
 - Vary the scan periodic cycle and scan passive
 - The minimal scan period could be 0.01 second
 - Add 0.01s, 0.02s, 0.05s to scan menu type
 - Get the waveform continuously to get the average of acquisition speed
 - Amount of waveform acquisition >= 1000
- A tekVisa test program have developed using VC++ 2005
Test IOC performance and common win32 application

- Curve and curvestream
 - Curvostream make OSC to continuously transfer waveform data as fast as it is acquired. Also it puts instrument to a talk-only mode and no response to other clients and other commands.
 - Need time to stop curvostream mode to place OSC back into its normal talk/listen mode
 - So if settings of OSC seldom are reconfigured and fast performance is needed, curvostream is suitable
 - If settings of OSC are needed to reconfigure quickly and frequently, just as mode switch very quickly, curvostream not suitable and curve is better
Scan passive, 10GS/s

Data

- **Ch4**: 329.52
- **Ch3**: 329.52
- **Ch2**: 329.52
- **Ch1**: 329.52

Axes

- **Y-axis**: Data length [k-points]
- **X-axis**: DAQ Speed [Hz]

Legend

- **Ch4**
- **Ch3**
- **Ch2**
- **Ch1**
IOC (passive scan) and common application under same condition

123.91:122.84

178.64:175.86
Scan periodic, 10GS/s,

- Two cycle
 - Vary scan period (>=0.01s)
 - Vary loop number in read function in device support
- pulse generator
 - 15M, 400mv
Upgrading BPM DAQ software

- Now beams of linac are switched to KEKB and PF twice a day
- Next switch frequency is several Hz (1~2 Hz)
- Final switch frequency will be 50 Hz
- So BPM system and Feedback system will be upgraded to promote higher energy, stability and quality of beam.
Monitor Station (Previous)

- Monitor Station
- Cable Combiner Box
- Linac Tunnel
- Klystron Gallery
- BPM

- Digital Oscilloscope (5GS/s)
- VME/OS9
- GPIB
- 8ch-Combiner
- 8ch-Combiner
- Linac Network

✓ VME + Oscilloscope (Tectronix TDS680, 5-GSa/s, 8-bits)
✓ VME ⇔ Oscilloscope via GPIB (GPIB is slower)
Software structure (Now)

UNIX
Windows/PC
Linux/PC
Touch-terminal

BPM Application
Read

BPM Application
Read

UNIX server

TCP protocol

UDP protocol

Shared memory
for #1
Write
recv

for #20
Read
send

for #1
Write

for #20
Read

BPM Application
Write

Tcl/Tk, Python, Visual Basic......

Porting
OS9, Tru64 (lib.)
=> Windows

Remove the VME and GPIB, use ethernet

DAQ Software

Windows XP
TekVisa

DPO 7104
Tektronix DPO 7104

- 10-GSa/s (4ch), 8-bits
- Windows XP based (P4 3.4-GHz)
- Gigabit-Ethernet
EPICS Based

UNIX
Windows/PC
Linux/PC
Touch-terminal

Tcl/Tk, Python, Visual Basic......

BPM Application
Read

BPM Application
Read

BPM Application
Write

UNIX server

Shared memory

for #1

for #20

Write

CA get

TCP protocol

CA protocol

Common Windows
=>
EPICS based

DAQ Software (IOC)

Windows XP
TekVisa

DPO 7104
DAQ Software (IOC)

- VDCT to design the records
subArray: store the SP result (position and current value) named $(user):SPDataSA, correspond to struct sp_mon

```c
#define SP_NSFP 12 /* max number of BPMs in one sector */

struct sp_data { /* single BPM structure */
  float x;   /* X */
  float y;   /* Y */
  float curr; /* current */
  float x_s; /* X of 2nd bunch */
  float y_s; /* Y of 2nd bunch */
  float curr_s; /* current of 2nd bunch */
  float x1;   /* Electrode X1 (mV) */
  float x2;   /* Electrode X2 (mV) */
  float y1;   /* Electrode Y1 (mV) */
  float y2;   /* Electrode Y2 (mV) */
  float cx1; /* Calibrated-Electrode X1 (V) */
  float cx2; /* Calibrated-Electrode X2 (V) */
  float cy1; /* Calibrated-Electrode Y1 (V) */
  float cy2; /* Calibrated-Electrode Y2 (V) */
  float x1_s; /* Electrode X1 (mV) of 2nd bunch */
  float x2_s; /* Electrode X2 (mV) of 2nd bunch */
  float y1_s; /* Electrode Y1 (mV) of 2nd bunch */
  float y2_s; /* Electrode Y2 (mV) of 2nd bunch */
  float cx1_s; /* Calibrated-Electrode X1 (V) of 2nd bunch */
  float cx2_s; /* Calibrated-Electrode X2 (V) of 2nd bunch */
  float cy1_s; /* Calibrated-Electrode Y1 (V) of 2nd bunch */
  float cy2_s; /* Calibrated-Electrode Y2 (V) of 2nd bunch */
}

#define ErrSiz 2 /* success, non-zero means error */

struct sp_mon { /* one monitor-station (VME) */
  Int32 n_bpm; /* number of BPMs here */
  time_t time; /* time-stamp at data-taking */
  time_t utime; /* time-stamp (micro-sec) */
  struct sp_data spdata[SP_NSFP]; /* the latest data of BPMs */
};
```
Device support

- **Device Type**
 - device(waveform, INST_IO, devWfTekDPO, "Tek DPOScope")
 - device(ao, INST_IO, devAOTekDPO, "TekDPOScope")
 - device(subArray, INST_IO, devSATekDPO, "Tek DPOScope")
 - device(stringout, INST_IO, devSOTekDPO, "Tek DPOScope")
subArray device support process

Init function: open device using tek_open and read parameter from file using cmpprepare

Init_record function: init for record related. In SPData, setup the OSC for acquisition firstly, such as channel selection, vertical value, horizontal value, delay value, waveform position, these setting also can be changed by client if not curvstream mode

sa_read function: get waveform, sp measure and calculate the sp data including position and current
SP get client

- Using the ca basic procedure such as ca_context_create, ca_create_channel, ca_get, ca_pend_io, ca_clear_channel, ca_context_destroy
- Get the SP Data and convert subarray to struct sp_mon and store to share memory when running client once
- Based on the application “sprecv” and “shmsem” library
CA Client in linux

- SP monitor client
 - Using the ca basic procedure such as `ca_context_create`, `ca_create_channel`, `ca_create_subscription`, `ca_pend_event`, `ca_clear_channel`, `ca_context_destroy`
 - Get the SP Data and convert subarray to struct `sp_mon` and store to share memory when SP Data is changed in IOC
 - Porting “sprecv” to “sp_monitor”
DAQ IOC Software Test

- 50Mhz pulse generator
- Some setting of OSC is 10Gs/s 100ps/pt; DIS:WAVE OFF; ACQ:STOPAFTER RUNSTOP; DATA:SOURCE CH1,CH2; :HOR:RECO 20000

- Use curve command
 - Scan periodic: max frequency = 81.54
 - Scan passive: max frequency = 135.14

- Use curvestream command
 - Scan periodic: max frequency = 195.31
 - Scan passive: max frequency = 194.20
Summary

- Different technologies of win32 to develop IOC for different oscilloscope and compare performance of some
- Develop IOC for upgrading BPM DAQ Software
 - Develop ioc for waveform acquisition and test performance with the common win32 application
 - Porting DAQ software to IOC EPICS based and test its performance
Thank you!