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Introduction

Introduction

Modern particle accelerator machines are complex and large scale structures. Large projects 

like Large Hadron Collider and International Linear Collider (ILC) consist of thousands of 

components that are spread over big distances in underground tunnels[1]. Machines of that scale 

and complexity raise a set of challenges for all subsystems of the accelerator. With constantly 

growing size and complexity of particle accelerators the role of the control system becomes more 

and more important for a successful operation. One of the biggest concerns for large machines is 

availability. Because of a huge number of components, even very reliable components, final 

availability of the accelerator might suffer of continuos failures in one of the subsystems.

Availability Downtime Per Year

90% 36.5 days

99% 3.7 days

99.9% 9 hours

99.99% 53 min

99.999% 5 min

99.9999% 32 sec

Table 1. Availability and downtime per year

 For example target availability for  the International Linear Collider is 75%[1], but in order to 

achieve that, the control system has to be available for 99-99.9% of time (15 hours of down time 

is “allocated” for the control system of the ILC. See Table 1). Design draft specifies that the ILC 

control system will consist from ~1200 “crates”, and that translates into 99.999% availability for 

each crate. Such availability has not been a requirement for present accelerator control systems. 

Therefore it sets a new challenge for control system designers, implementors and operators. A 

multilevel systematic approach should be taken in order to achieve these availability goals. 
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Introduction

Lets analyze availability indicators for current accelerators. Typical high energy physics 

accelerator currently has an availability of 75-85%[2]. Though there are some examples of much 

better availability: Pohang Light Source (2008) - 97% (with controls responsible for 2% of 

downtime)[3]; SOLEIL light source (2007) - 95.7% (with controls responsible for 2.7% of 

downtime)[4]; KEK Linac (2008) - 98.3% (with controls responsible for 13.3% of downtime)[5]. 

For KEK Linac it means that control system availability was around 99.76%. The KEK Linac 

control system consists of 30 VME crates, 150 PLCs, 30VXI, 15 CAMAC, 24 intelligent 

oscilloscopes[6]. ILC control system is 1195 ATCA crates, 8356 network switches and thousands 

of other lower level control components. ILC control system has 10 ~ 100 times more 

components than KEK Linac control system. Such tremendous increase in a number of 

components will dramatically reduce the availability indicators for the control system. Therefore 

availability issues have to be seriously considered for the future particle accelerator control 

systems. This research was devoted to that particular goal. 

The first chapter provides some introductory information regarding accelerator control 

systems, historical overview of the control system evolution and a modern view on building 

control systems. 

The second chapter of this work describes different approaches to improve availability of a 

particle accelerator. The general reliability theory is briefly introduced. Then the applications of  

that theory to accelerator control system are discussed. An accelerator control system can be 

roughly separated into four major parts: hardware, software, humans and procedures. Analysis is 

done for each of these four components. Each of these parts requires different approaches in order 

to achieve high availability.  This work covers improvement of the software and hardware 

components. Hardware reliability is improved through implementation of redundancy, and 

software reliability is improved through implementation of a test system, that ensures the 

software quality. Further chapters provide more detailed explanation on how these goals are met. 

Chapters 3,4,5 describe my contribution to improve reliability of accelerator control system. 

This work is mostly concentrated on improvement of software and hardware components using 

EPICS software. EPICS stands for Experimental Physics and Industrial Control System. It has 
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more than 15 years history of usage and has been being developed  during all these years. It is 

widely used in many accelerator laboratories all over the world, including KEK, where it is a 

basis for the KEKB control system[7]. 

Chapter 3 describes the EPICS redundant IOC. In order to achieve high availability (such as 

99.999%), redundancy is essential (as discussed in Chapter 3, section 3.1, 3.2). Redundancy 

allows to reduce time needed to recover from a failure to a few seconds or milliseconds, instead 

of  hours and days. The system is not stopped because of the failure and the stand-by component 

starts to operate immediately after the failure is noticed. The redundancy approach is a common 

technique used in highly available applications (more than 99.999% availability)[8]. The original 

EPICS software distribution lacked redundancy support.  This issue was addressed by developing 

EPICS redundant IOC. The initial design and development was made by DESY[9]. Unfortunately 

from the very beginning only vxWorks support was looked for. Later it was realized that other OS 

support is needed as well. As a part of my research, in collaboration with DESY, I generalized the 

redundant EPICS IOC to Linux, Darwin, and other operating systems[10]. The generalization 

was done using the Operating System Independent (OSI) library, therefore the ported version 

should work on any platform, where the OSI library is fully implemented. The generalized 

redundant IOC is an important improvement to the EPICS control system framework.  Several 

serious software bugs were fixed in the original Redundancy software.  The result of this work is 

a very important improvement to the existing RIOC implementation. First, it allowed to use 

RIOC on many operating systems, such as Linux and MAC OS X, therefore providing much 

wider application field for the RIOC. Second, it allowed to include the support for the RIOC into 

the official EPICS distribution from version 3.14.10[11].  Third, working on this project resulted 

in modification and splitting the original software into several libraries which can be used 

independently. An example of such usage is provided in the next chapter, describing the 

implementation of redundant and load-balancing Channel Access gateways. In chapter 6 the 

generalized version of the RIOC is extended to support the Advanced Telecom Computing 

Architecture (ATCA) platform. These projects would have been impossible without the 

generalization of the original RIOC and improvements done during this work. To summarize: the 

EPICS redundant IOC was designed and developed by DESY[9], but it was only available for 
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vxWorks operating system. I generalized the EPICS redundant IOC to other operating systems 

and made it available for wider range of applications[10]. Within this work the redundant EPICS 

IOC was implemented on Linux, Mac OS X and Solaris systems for the first time.  

 As mentioned above using the generalized versions of RIOC libraries, Channel Access 

Gateway was made redundant and load-balancing.  This new and original development is 

described in Chapter 4.  Channel Access gateways are in operation in many places. They allow 

separating control networks into several administrative subnetworks. Also they can be used as a 

security tool: providing restricted access to the control network, for example read-only access 

from public networks. Besides this administrative and security aspects gateways also optimize the 

number of Channel Access (CA) connections to the IOCs, because several CA clients can share 

one connection to an individual IOC. Due to these important functionalities gateways play a 

growing role in today’s installations. Performance and functionality have been continuously 

improved over the last years. The availability of this service is key for machine operations in 

many places. This was the driving force to implement redundancy also for the CA gateways[12]. 

The Channel Access gateway originated at APS by during the years has been developed by Jim 

Kowalkowski. Further development was done by several people at APS, LANL and BESSY[13]. 

I implemented the redundant and load-balancing Channel Access gateway, based on the original 

Channel Access Gateway.

 The redundant and load-balancing Channel Access Gateways were implemented within this 

research. The development was done using the generalized version of RIOC libraries discussed in 

the chapter 3. The implementation of the redundant CA gateway allowed to escape the single-

point of failure, and by introducing the load-balancing the performance and throughput was 

improved in the number of 2. Load-balancing version of the CA gateway brings availability 

improvements as well, due to the fact that half of the connections are handled via the secondary 

gateway, these connections will not be affected when the failure occurs on the primary gateway. 

In chapter 5 new hardware standard ATCA and its application to control system are described. 

Within this research a support for Advanced Telecommunication Computing Architecture 

(ATCA) was added to the RIOC software. This addition, called ATCA-driver, allows to monitor 

the ATCA-hardware and provide better availability. This driver can help predict hardware 

failures and  allows to decrease the Channel Access clients reconnect time from 30 to 2 seconds. 
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Using reliable software in conjunction with reliable hardware can give us even more reliable 

solutions. Recently Advanced Telecommunication Computing Architecture standard is gaining 

attention in High Energy Accelerator field as platform for modern controls and Data Acquisition 

(DAQ) systems. ATCA is an open standard developed by consortium of telecom vendors and 

users; and from its very early days it is aimed to high reliability, high bandwidth and modularity. 

Nowadays it is widely used in telecom industry and is widely supported by many big vendors. 

The ILC control system requirement for a single control shelf is 99.999%.  ATCA hardware 

available on the market provides this level of availability or better, therefore ATCA was suggested 

to be used in ILC control system. Even though ATCA provides redundant cpu boards, power 

supplies, interconnections and other facilities, redundant IO boards and software that can work 

with ATCA hardware and utilize its capabilities must be developed[1]. 

For the reasons mentioned above I developed a driver for the Redundant EPICS IOC (RIOC) 

which provides support for ATCA. Using the Hardware Platform Independent library (HPI) it 

allows the RIOC to monitor the status of the hardware it’s running on. Using this information, 

fail-over decisions can be made even before the “real” failure happens. For example, if the 

temperature starts to rise there is some delay until system crashes because of overheating. During 

that time the fail-over sequence can be triggered. Therefore the fail-over happens in a more stable 

and controlled environment. An obvious and very important benefit is that client connections can 

be gracefully closed and clients would reconnect to the stand-by IOC within 2 seconds. In case of 

a real hardware failure it would take up to 30 seconds (default Channel Access timeout).

This ATCA RIOC driver can be also utilized on any computer which has an HPI support. 

Therefore providing increased availability for the platforms other than ATCA. For example 

modern computer severs are usually equipped with the temperature, voltage etc. monitoring 

hardware. OpenHPI distribution of HPI supports such hardware on Linux operating system[14]. 

The ATCA and HPI library are designed and created by other people. The ATCA RIOC driver 

was developed by me.

Chapter 6 presents another approach to improve the reliability - by means of improving the 

quality of the software. An important part of this process is the software testing and quality 

assurance. In early years EPICS supported only one operating system for the server side - 

vxWorks, and one operating system for the client side - Sun OS; and it was well tested at 
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Argonne National Laboratory. But in recent years EPICS has gained support for many operating 

systems and hardware platforms and now it supports more than 10 operating systems[15]. Each 

institution uses its own collection of OS+EPICS running on different hardware. Most of these 

combinations are not very well tested, due to a lack of convenient, easy to use and reliable system 

integration testing mechanism. Therefore it leads to a potentially dangerous situation when an 

untested and unproved software is used for the operation. Obviously a decent automated test 

system is needed for EPICS software distribution[16].

EPICS has a decent unit-test system included in the base distribution. It has been continuously 

extended by core-developers as EPICS evolve and new features have been added. Basically a 

unit-testing is a testing of small pieces (functions) of code, to check that they perform correctly. 

But it does not mean that these pieces would work  when combined together. For that purpose 

there is another test package, which consists of system tests, when real IOC’s are installed on 

distributed machines and then it is checked if these systems perform correctly altogether. The unit 

tests and the system test software was developed by EPICS community. I designed and developed 

the original software for automating the system test procedure. 

Originally that system test package for EPICS consisted of several programs/IOCs and text file 

instructions how to run them. But it is not convenient and takes a lot of time for developers and 

users to understand how to run these tests, prepare different machines, upload, configure and start 

the IOCs, preform a test and compare the results. As a part of my research I have developed a 

system that automates the process of a system testing and system integration testing, and provides 

a flexible environment to create these tests. This newly developed software supports a wide 

variety of configurations by default and can be easily configured using simple configuration file. 

It is developed in the high-level object oriented scripting language Ruby, which makes it easy to 

extend and add new functionality. Usage of this automated test systems greatly simplifies the 

testing process. It allows to run a predefined set of tests on a predefined set of computers in a 

fully automated manner. It requires to create a configuration file, specifying the computers and 

corresponding test that must be performed. Then only one command must be issued by human to 

run all the tests. If compared to manual testing, it saves tremendous amount of human time and 

effort.  Due to automation chances for human error are greatly reduced too. After all tests are 

executed the system provides a detailed report. 
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1 Control Systems overview

Nowadays, a control system of a particle accelerator is a very important subsystem playing a 

significant role in operation of the machine. But it was not always like that. First particle 

accelerators did not have any computerized control system and were operated using analogue 

devices and interfaces. When the computer industry developed enough, relatively cheap and 

powerful computers became available in the late sixties. As computers became affordable for 

physics laboratories, physicists started to experiment with the new possibilities that computers 

provided. This was the beginning of the computerized control system era for particle accelerators. 

Since its conception a computerized control system evolved through the following periods: 

• non-centralized computer adjuncts to the accelerator

• centralized computer control, vendor-oriented, with very substantial custom solutions 

(example PDP-10, shown on Figure 1.1)

• distributed networked computer control, standards oriented,with mostly commercial 

solutions

7
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These eras are not, however, mutually exclusive; even today systems characteristic of the 

earliest period can still be found, even at the newest accelerators. Of course, interwoven through 

these periods is the history of the computer industry itself, from mainframe computers to mini-

computers, to workstations, to personal computers, to commodity single board computers. Today, 

accelerator operators and physicists assume that a powerful computer control system should be 

part of an accelerator. The success of a controls group in delivering high capability controls 

solutions that are transparent and user friendly is a major component of what a controls system 

can contribute to the successful operation of a facility. Another important role of an accelerator  

control system is to provide a tool which allows the scientists to implement their ideas and 

theories in hardware. For that purpose an accelerator control system must provide flexible tuning 

capabilities, different abstraction layers and simulation capacity[17].

Most modern particle accelerators control systems are distributed computer systems, built on 

open standards. Current trend is to use more “commercially of the shelf” available components 

and solutions. The distributed control system provides a great flexibility, computational power 

and scalability; on the other hand it is more complex than the centralized model and raises a lot of  

challenges for the designers, implementors and maintainers. Some of those problems rise from 

the distributed nature of the system. Along with a greater scalability the problem of the reliability 

rises. Even if the most reliable components are used, when we combine thousands of these 

components the probability of a failure rises drastically. Another issue emerges from the physical 

distribution over a large space, often not easily accessible for the service and maintenance, and 

those factors play an important role in the system reliability. Therefore distributed systems 

require a careful design if the high reliability is sought. Overall reliability constrains and 

maintenance requirements for an accelerator control system are more strict than for the other 

accelerator subsystems. Normally during the year there are one or more maintenance periods 

during which most of the subsystems are stopped. Nevertheless the control system is often 

needed to be operational even during these maintenance periods in order to do the maintenance of 

the other subsystems. Therefore when the control system is designed these considerations should 

be taken into account. 
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1.1 The “standard model” of accelerator control system

Most modern distributed accelerator control systems incorporate so called “Standard model” for 

the accelerator control system (Figure 1.2). The standard model defines three layers of abstraction 

of the controlled equipment: 

9
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• Presentation Layer 

• Equipment control Layer 

• Device Interface Layer 

The highest level of abstraction is the Presentation Layer, includes operator consoles, 

simulation systems, archives, log managers, alarm handling and other components. The 

operations software runs at this level. An example of Presentation Layer can be seen on Figure

1.3.

10
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The Equipment control Layer consists of Input Output Controllers (IOC), that are connected to 

the device controllers via different fields buses, which belong to device interface layer. Typically 

these IOC controllers are VME cpu boards (Figure 1.4), running real-time operating system like 

vxWorks, or general purpose operating system like Linux. An example of such system 

representing the Equipment Control Layer is shown on Figure 1.5. It worth noting that modern 

developments in embedded technology allows to run IOC and device controller on the same chip. 

That makes Device Interface Layer and Equipment Control Layers indistinguishable.

11

Figure 1.4: MVME5500 cpu board



Control Systems overview

There are two schemes for designing accelerator control system of the standard model. One 

is to develop nearly all of the software by themselves, for example, SRRC (Synchrotron 

Radiation Research Center) in Hsinchu, Taiwan. In the past it was common practice to develop 

in-house control systems. The other is to make use of professional toolkits, for example, business 

software SCADA or use one of the available controls software developed specifically for physics 

experiments, such as EPICS, TANGO, DOOCS and many others. In recent years this approach is 

common, laboratories and organizations all over the world prefer to collaborate and synergize 

their efforts on development of common control system software. This approach proved to be 

very successful[15].
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2 Improving the control system reliability

2.1 Reliability Basics 

There are several possible definitions of reliability and availability. Common definition of 

availability as a measure of the ultimate uptime is shown in Equation 2.1: 

where uptime is the time the system is required to provide its function, and downtime is the 

time the system was not available for operation due to failures or unplanned maintenance. The 

classic definition of reliability is the probability that a person of system will perform required 

function under stated conditions for a specified period of time. Therefore time is an essential part 

of the reliability definition and expected uptime, repair and maintenance times, idle times and  

unplanned occurrences all affect the measurement of a reliable system. 

Repair and maintenance times are necessary to provide a reliable system over a long period of 

time. 

Idle time is defined as time that a system could be providing the required function, but is not. 

In an accelerator system, this would include times that beam is available, but is not being 

delivered to a user. Scheduling problems, experimental set ups, other equipment failures can all 

cause idle time.

Unplanned occurrences will always be a part of complex systems such as accelerators. While 

they are hard to plan for, they do have to be accounted for in the reliability equation.   Power 

outages, failure of equipment, even weather can cause a system to be unreliable. 

We also should take into account that reliability is highly dependent on the  type of the desired 

operation more. If it is short time operation with long maintenance and repair time then it is pretty 

easy to keep the reliability high. If, however the operation is required for long periods of 
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uninterrupted service with little time of maintenance and repair, reliability will suffer.  The 

simplest representation of availability in terms of reliability parameters MTBF and MTTR is 

shown in Equation 2.2. 

Where MTBF - mean time between failures and MTTR - mean time to repair.  And as can bee 

seen from that equation, general approach to improve the reliability of any system would be to 

increase MTBF and to decrease MTTR. For highly available systems (99.999% and better) the 

redundancy becomes essential, because of the non-zero MTTR value. Redundant implementation 

provides a hot stand-by component, which replaces the failing one as soon as failure is noticed. 

Redundant systems allow to reduce MTTR to seconds or milliseconds, instead of hours or days in 

a non redundant system. 

Careful monitoring and logging is important in order to achieve high availability. Hardware 

has a finite lifetime and it in terms of reliability it passes different stages within this lifetime. As it  

can be seen from the figure there are “burn-in”, normal, and “wear-off”  periods. It is crucial to 

understand where you are on this graph in order to maintain the desired level of availability and 

properly interpret the data,  it is good to remember that it is common for reliability assumptions to 

presume a constant failure rate[18].

2.2 Reliability of a particle accelerator and control system

Particle accelerators are very complex machines and consist of thousands of components.  A 

typical high energy physics (HEP) accelerator currently has an availability of 75-85%. With so 

many more components that could potentially fail, the ILC availability would be unacceptably 

low unless significant attention is paid to component reliability.  With the increasing number of 

components the MTBF decreases and MTTR increases because of the increased complexity of 

the machine and physical distribution.  The study shows that in order to achieve high 75-85% 

reliability  for ILC project, MTBF of some components has to be improved 2-10 times [2]. 

Therefore reliability considerations when designing a new accelerators play very significant role.
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Requirements for the ILC control system are even higher and translate into 99% availability.  

When we take into account that by design draft ILC control system consists from ~1200 ATCA 

crates we will get 99.999% availability requirement for each crate. In order to achieve this 

availability goals single boards running within the crate must have even higher availability of 

99.9999% and better. For modern hardware and software solutions this means that Redundancy 

must be implemented in such places. Otherwise this high numbers of availability are impossible 

to reach due to long MTTR. 

2.3 Components of the CS 

Most systems can be broken into four major parts: Hardware, Software, People and 

Procedures[19]. Accelerator Control system can also be divided in the same manner. Each of 

these components has its own characteristics and must be looked at in different ways in order to 

maintain a reliable system.

2.3.1 Hardware

By Hardware we understand the active hardware components of the system. Such as 

computers, network devices, power supplies etc. Initially hardware device is supposed to be 

working and flawless. But when the time passes and under the influence of external forces and 

natural processes of wear and tear the device or part of it will eventually fail. Repairable devices 

may be repaired and put back into operation. The ones that cannot be repaired are replaced by 

spare units. Thus repairing or replacement of the failing hardware component restores the 

system to its original not failed state. For example, if a pump fails, replacing the pump with 

another similar pump will restore the system to a working state. 

Proper commissioning of new equipment (“burn-in”) will point out infant mortality problems 

and incompatibilities, while a good maintenance program can help with equipment as it ages. It is  

important to keep track of failures of all different components of the system and analyze that 

data. This will help to understand when and what subsystems reach its wear-off stage and 

decommission or replace such systems.
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2.3.2 Software

Computer software, or just software is a general term used to describe a collection of computer  

programs that perform some tasks on a computer system.

SOFTWARE components do not age like hardware.  The unintended results in software are 

there from the beginning due to poor design or implementation  errors. These unintended results 

may be “hidden” in the system and the system may function properly for the long periods of time 

without any visible problem. But from time to time, when certain conditions are met the system 

fails. These unintended results only occur when all the conditions are met for them to occur, 

therefore extensive testing is even more important for software than hardware. 

Unlike hardware, when software becomes unreliable it usually needs to be rewritten, not just 

replaced with another copy of the same software. All the copies of the same software contain the 

same errors, thus the new copy will also fail under the same conditions as the original one. In 

order  to fix the software, the software error (“bug”) has to be properly analyzed and studied so 

that to understand the nature of the problem and to find the design flaws in the software. 

Therefore it is very important to keep detailed operation log of the system and running software. 

This information is essential when it needs to recreate the critical conditions in the synthetic 

environment, either to find the bug, or to make sure that the new version of the software works 

properly under these conditions.

2.3.3 People

People make mistakes.... 

No matter how good a person is good at their job, they will make mistakes from time to time. 

That is human nature. And the goal of reliability engineering for people is to take that nature into 

account. Proper training and good working environment are important considerations in operator 

reliability. Human factors such as controls layout, work schedules, even something simple as 

picking the correct chair can affect the reliability of a system. 

General considerations are simple: the environment should help an operator to perform best 

and to avoid simple mistakes. Interfaces should be natural and easy to use. 
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2.3.4 Procedures

A procedure is a specified series of actions or operations which have to be executed in the same 

manner in order to always obtain the same result under the same circumstances (for example, 

emergency procedures). Less precisely speaking, this word can indicate a sequence activities, 

tasks, steps, decisions, calculations and processes, that when undertaken in the sequence laid 

down produces the described result, product or outcome. A procedure usually induces a change. It 

is in the scientific method.

Clear and easy to follow procedures should be in place in order to achieve high availability. 

Failure analysis may show that some procedures are not optimal and repeatedly lead to errors. 

Obviously, in such case procedures have to be redesigned.
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3 EPICS Redundant IOC

3.1 Experimental Physics and Industrial Control System

EPICS is a set of software tools and applications which provide a software infrastructure for use 

in building distributed control systems to operate devices such as Particle Accelerators, Large 

Experiments and major Telescopes[15]. EPICS software is a good representative of a modern 

accelerator control software. Even though some flaws and improvements are described in this 

work, compared to other available control software EPICS is a reliable and  powerful software, 

providing great degree of flexibility and performance. 

EPICS uses Client/Server and Publish/Subscribe techniques to communicate between the 

various computers. Most servers (called Input/Output Controllers or IOCs) perform real-world 

I/O and local control tasks, and publish this information to clients using the Channel Access (CA) 

network protocol. Figure 3.1 Shows EPICS logo which was inspired by schematic representation 

of Clients and Server connected via network. Clients and Servers are shown as colored boxes. CA 
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is specially designed for the kind of high bandwidth, soft real-time networking applications that 

EPICS is used for, and is one reason why it can be used to build a control system comprising 

hundreds of computers.

Originally all EPICS IOCs had to run the vxWorks Real-Time Operating System from Wind 

River, but since 2004 it has been possible to run IOCs on GNU/Linux, Solaris, MS Windows, 

MacOS and RTEMS. Portable software is available that allows non-EPICS control systems to act 

as CA servers. CA clients have always been able to run on a wide range of computers and 

operating systems — most flavors of Unix, GNU/Linux, Windows, RTEMS and vxWorks. EPICS 

is also the name of the collaboration of organizations that are involved in the software's 

development and use. It was originally written jointly by Los Alamos National Laboratory and 

Argonne National Laboratory, and is now used by many large scientific facilities throughout the 

world. Development now occurs cooperatively between these various groups, with much sharing 

of I/O device support and client applications.
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EPICS consists of a set of software components and tools with which Application Developers 

can create a control system (Figure 3.2). The basic components are: OPI: Operator Interface. This 

is a UNIX based workstation which can run various EPICS tools. IOC: Input Output Controller. 

This is VME/VXI based chassis containing a Motorola 68xxx processor, various I/O modules, 

and VME modules that provide access to other I/O buses such as GPIB. LAN: Local area 

network. This is the communication network which allows the IOCs and OPIs to communicate. 

EPICS provides a software component, Channel Access, which provides network transparent 

communication between a Channel Access client and an arbitrary number of Channel Access 

servers. 

Basic Attributes of EPICS

• Tool Based: EPICS provides a number of tools for creating a control system. This 

minimizes the need for custom coding and helps ensure uniform operator interfaces.

• Distributed: An arbitrary number of IOCs and OPIs can be supported. As long as the 

network is not saturated, no single bottle neck is present. A distributed system scales 

nicely. If a single IOC becomes saturated, it's functions can be spread over several IOCs. 

Rather than running all applications on a single host, the applications can be spread over 

many OPIs.

• Event Driven: The EPICS software components are all designed to be event driven to the 

maximum extent possible. For example rather than having to poll IOCs for changes, a 

channel access client can request that it be notified only when changes occur. This design 

leads to efficient use of resources as well as to quick response times.

• High Performance: A SPARC based workstation can handle several thousand screen 

updates a second with each update resulting from a channel access event. A 68040 IOC 

can process more than 6,000 records per second including generation of any channel 

access events.
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EPICS DATABASE

The heart of an IOC is a memory resident database together with various memory resident 

structures describing the contents of the database. EPICS supports a large and extensible set of 

record types, e.g. ai (Analog Input), ao (Analog Output), etc.

Each record type has a fixed set of fields. Some fields are common to all record types and 

others are specific to particular record types. Every record has a record name and every field has 

a field name. The first field of every database record holds the record name, which must be 

unique across all IOCs attached to the same TCP/IP subnet.

A number of data structures are provided so that the database can be accessed efficiently. Most 

software components, because they access the database via database access routines, do not need 

to be aware of these structures.

CHANNEL ACCESS

In EPICS, there is a software layer named as CA which connects all clients with all servers. 

It’s the backbone of EPICS and hides all the details of the TCP/IP network from both clients and 

servers[20]. CA also creates a very solid firewall of independence between all client and server 

code, so they can run on different processors, and even be from different versions of EPICS. CA 

mediates different data representations, so clients and servers can mix ASCII, integral, and 

floating (as well as big- endian and little-endian) types where each uses its natural form.

The design of CA provides very high performance of allowing throughput rates on the order of 

10,000 “gets” or “puts” per second under heavy load, yet minimizing latency to about 2 

milliseconds under light load. If the medium allows it, many clients and servers can 

simultaneously sustain these rates. Since EPICS is a fully-connected and flat architecture, every 

client and every server make connections with no ‘relay’ entities, so there are no bottlenecks 

beyond the physical limits of the medium. CA also uses a technique called ‘notify by exception’ 

or callback (also called “publish and subscribe”). Once a client has expressed an interest in 

certain data to a server, the server notifies the client only when the data changes. This not only 

minimizes traffic, but signals both the health of the server and the freshness of the data. With CA 
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protocol, all data carry time-stamps, validation information based on both the quality of 

connection, and validity down to the hardware layer as explained later. Thus, a critical client  

implementing a global feedback loop can assure it is operating only with fully validated data[21].

In summary, EPICS provides a software toolkit for implementing control systems following 

the `standard model' paradigm. Scientific labs, industrial partners, and other users augment the 

toolkit. EPICS control systems can achieve modularity, scalability, robustness, and high speed in 

hardware and software, yet remain largely vendor and hardware-independent. EPICS provides 

seamless integration of several data acquisition bus standards. The software development 

environments for intelligent local controllers and workstations can be identical. Good 

documentation, training, and support are available. Standard systems can be configured with text 

editors and other simple tools, yet full customization is available to sophisticated sites.
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3.2 Redundant IOC introduction

As it was explained in the previous chapter, redundancy is one of the key techniques used to 

achieve high reliability. Until recently EPICS based control system did not have a support for 

redundancy at all. Therefore the sites that do require redundancy had to use third party 

implementations. For example DESY has been using redundant controllers for more than 20 

years. The experience with commercial implementations and the requirements for the new XFEL 

(x-ray free electron laser) project were the main driving forces for a new development of 

redundant IOC’s in the EPICS environment[9].  Two major fields of application were defined: 

• Redundancy for cryogenic plants. In this case failures can be caused by malfunctioning 

hardware components like power supplies, fans, CPU boards or communication links. 

Over the years it was sometimes necessary to manually switch mastership between 

processors because some maintenance work had to take place during a runtime period. 

(runtime periods typically last for one year or more) Another case where manual 

switching of mastership was proven to be useful was due to major software changes. 

While this operation can be avoided in the current commercial implementation by issuing 

online changes to the database etc. – it is important for the EPICS case where online add 

and delete of records or databases is not available in due time. 

• Redundancy for controllers in the XFEL tunnel. While the switching in the first case is 

mainly caused by manual action, we expect this to happen automatically in the XFEL 

tunnel. Here we expect radiation damage to the equipment like memory and CPU. 

Loading new programs is probably not be as critical as in the first case because of more 

frequent maintenance days which would allow for such operations.  As a consequence the 

processors must be disjoint from each other by at least one hundred meters. The fail over 

methods and the error detection of malfunctioning processors must concentrate on this 

case. 

By the design draft one major goal was set: Any redundant implementation must make the 

system more reliable than the non-redundant one. Precaution must be taken especially for the 

detection of errors that shall initiate the fail-over. This operation should only be activated if there 

is no doubt that maintaining the actual mastership definitely causes more damage to the 
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controlled system than an automatic fail-over. The fail-over time in any case was defined to be 

more than several seconds and less than 15s[22]. The system implemented shows failover times 

around 3s. 

Originally, the project was intended to support only vxWorks and the source code was very 

specific to it. However, later it was observed that support for other operating system is desirable. 

Here at KEK we use a software-IOC on Linux which functions as a “gateway” from an old 

control system to the EPICS-environment. In addition, for the ILC project ATCA-based systems 

under Linux control will be used. Redundant IOCs are highly desirable for this project. Thus, the 

redundant IOC has been ported to EPICS libCom/osi; this implies that the current implementation 

should work on any EPICS-supported OSs[10]. 

3.3 Redundant IOC architecture 

3.3.1 Hardware Architecture

The hardware architecture consists of two redundant IOCs controlling a remote I/O via shared 

media such as the Ethernet (see Figure 3.3). The redundant pair shares two network connections 

for monitoring the state of health of their counterpart, where the private network connection is 

used to synchronize the backup to the primary and the global network is used to communicate 

data from the primary to any other network clients requiring the data[9].
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3.3.2 Software Components

An EPICS redundant IOC consists from four major parts Redundancy Monitoring Task 

(RMT), Continuous Control Executive (CCE), State Notation Language Executive (SNLE)[22] 

and IOC-part (which is same as non-redundant IOC). RMT – is a key component of that system. 

RMT is responsible for monitoring all other parts of the system, checking connectivity and 

making decisions regarding fail-over.  The CCE is responsible for database synchronization 

between peers. The SNLE is responsible for synchronization of State Notation Procedures 

between peers. IOC part is almost the same as in the original EPICS IOC, with a few 

modifications that allow to control database scanning threads and channel access server thread 

form RMT. Since version 3.14.10 the base distribution of the EPICS software already includes all 

the needed changes for the Redundant IOC, therefore no modification is done to the “original 

IOC” part.  
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Redundant software, such as EPICS IOC, may have internal state that must be preserved 

between fail-overs and switchovers. Depending on the particular software corresponding RMT-

driver has to be implemented. It is driver,s responsibility to do all the synchronization, locking 

and verification. RMT is only informing its drivers about the state of the unit and its partner and 

gives the control commands such as start, stop, test i/o etc. In IOC’s case database records and 

SNL programs have to be synchronized between master and slave peers. Therefore CCE and 

SNLE components are implemented to perform this functionality. Within IOC there are some 

parts, that are needed to be controlled from the RMT depending on the state of the unit. For 

example on the master unit channel access server should be up and running, but on the slave unit 

it should not. Same thing with database scanning threads. Database is copied from the master to 

the slave unit, thus IOC’s database update mechanisms should be stopped on the slave unit.Thus, 

CCE, SNLE, database scan threads and channel access server are controlled by RMT and are 

called “RMT drivers” accordingly. Any other software which is need to be redundant has to 

implement RMT-driver API interface , that is described further in this chapter. RMT itself is 

implemented as a state-machine with the following states[22] (See Figure 3.4):

• Initial state

• Master 

• Slave

• CMD to Fail

• Master I/O Fail

• Slave I/O Fail
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3.3.3 RMT API

Redundancy Monitoring Task defines current state of the node and communicates with its 

partner. As for the IO drivers (and other parts of the system, that RMT has the control of) there 

should be some mechanism to control them. For that reason RMT API was defined as an interface 

between the RMT and software components in the IOC which have to be controlled by the RMT. 

A component can be a major part of the EPICS IOC like CCE, SNLE or some IO-driver. All these 

components share the same interface to the RMT. Some components may be much simpler than 

the others, therefore the component may implement the RMT API only partially. The interface 

must be implemented as functions defined in the component and callable by RMT. The addresses 
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of these functions are the entry table to the component. During the initialization, the component 

has to check whether its running within Redundant IOC. In case of redundancy it has to call 

rmtRegisterDriver() with the address of the entry table as an argument. Then the component goes 

to the stopped state and from now its RMT’s responsibility to call the corresponding functions to 

start and stop the component. In case of non-redundant operation the component works normal 

(start). This allows to use the same code for redundant and non-redundant operation. 

The RMT API defines the following functions: 

• start: Get access to the IO and start processing.

• stop: Do not access the IO and stop processing.

• testIO: Initiates a procedure to test access to the IO. This function may be used by IO 

drivers. getStatus: Get status of the driver.

• shutdown: This function is called before the IOC is rebooted. It terminates transient 

activities, deactivates interrupt sources and stops all driver tasks. 

• getUpdate: This routine tells the component to get an update from the redundant IOC. It is 

normally called by the RMT on the inactive IOC.

• startUpdate: This routine tells the component to start updating data from the redundant 

IOC (monitoring).  It will first read all fields (depending on the mode) from the redundant 

partner. It is normally called by the RMT on the inactive IOC.

• stopUpdate: This routine tells the component to stop updating data from the redundant 

counterpart. This routine is normally called by the RMT on the inactive IOC.

The RMT can call these functions using an entry table that is transferred from the component 

to the RMT during initialization[23]. 

The CCE and the SNL executive are two such RMT-controlled components and they 

implement the RMT-driver interface mentioned above. Other components may be IO drivers, or 

any other piece of software. For example, the channel access server (RSRV) in redundant IOC 

implementation is one of the RMT-controlled components and it implements the RMT-driver 

interface. 
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Both standalone and IOC-related software such as device drivers can be made redundant using 

RMT.  One of the functions of RMT is to check status of its drivers and exchange this 

information with its partner. Each RMT driver implements its own logic for checking whether it 

is “OK” or “NOT OK” depending on the particular driver and implementation. The drivers and 

hardware that do have some internal state, needed to be preserved have to implement their own 

synchronization mechanisms. RMT and EPICS redundant IOC does not provide general 

mechanisms for synchronization and locking. There are software environments created to ease 

the development of redundant and highly reliable systems. Such software may be adopted for the 

usage with the EPICS Redundant IOC. See chapter about ATCA for more discussion on that 

topic. 
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3.4 Redundant IOC generalization: bringing RIOC to other 
architectures

The initial development and implementation of the EPICS redundant IOC was done for vxWorks 

operating system only. This resulted in the software that was unusable on any other operating 

system other than vxWorks. However there was a lot of interest in redundancy on other operating 

systems. The Redundant IOC developed at DESY seemed like a good basis to create more 

general software, that could be used in wide set of application. An example of such application is 

channel access gateway (caGateway). We wanted to make it redundant and we were looking for 

redundancy controllers for that project. Redundancy Monitoring Task seemed to fit very well 

with the only one problem. RMT worked on vxWorks only, and caGateway worked only on 

Linux. Therefore I joined the development of the redundant IOC at DESY with the goal to 

implement multi-platform EPICS redundant IOC. 

3.4.1 Porting process

The original EPICS redundant software was written in very wxWorks dependent style. There was 

a problem in front of me, how to make that software to support Linux, vxWorks and possibly 

other operating system. The common approach to create multi-platform software is to use 

additional “wrapping” API. EPICS is a multi-platform application too and it uses the same 

approach. EPICS uses so called libCom/OSI (Operating System Independent Library) as a 

“wrapping” API. libCom/OSI is a part of EPICS project and it was introduced in version 3.14. 

EPICS had been vxWorks only software too for many years, until version 3.14 that brought 

support for multiple operating systems. LibCom/OSI was developed to hide the operating system 

differences for the most common functions used in EPICS software. Therefore libCom/OSI was a 

perfect candidate to be used to make Redundant IOC operating system independent. 

The process of porting required all vxWorks specific function calls to be replaced with the 

EPICS libCom/OSI (Operating System Independent library). During the porting process some 

serious errors were found and fixed in the Redundant IOC code. vxWorks is a real-time system 

and Linux is not, those two systems have very different process models as well. vxWorks runs all 

the processes in real-mode, all the processes share the same memory address space and there is 

no memory protection mechanism. Therefore memory access errors may be not so easy to find on 

30



EPICS Redundant IOC

vxWorks, because writing to some other “process” memory does not result in “segmentation 

fault” or similar system error. The CCE software had several such bugs, but on vxWorks they 

were not visible during normal testing conditions. But as far as those bugs were present there, 

they might have presented themselves under certain conditions. As soon as the software was 

ported to libCom/OSI and run on Linux operating systems many “segmentation fault” error 

appeared. Careful investigation of the memory core dumps and source code analysis allowed me 

to find and fix those bugs. Eventually Redundant IOC run successfully on Linux machine. 

Testing and evaluation was done to run the generalized version of Redundant EPICS IOC on 

vxWorks to ensure that no functionality was broken during the porting process.

 In order to accomplish the porting of the Redundant EPICS IOC  the following new OSI 

functions were introduced:

• epicsMutex.h: epicsMutexLockWithTimeout()

• epicsMutex.h: epicsMutexOsdLockWithTimeout()

• epicsThread.h: epicsThreadDelete()

• epicsTime.h: epicsTimeGetTicks ()1

One of the goals of the porting was to create general software for redundancy, that could be 

used not only with the EPICS-related software. Therefore divided and packaged the generalized 

version of Redundant IOC into several independent libraries: rmtLib, cceLib.  Depending on the 

application requirements it is now possible to include/exclude the needed functionality with 

simple editing of the Makefile. 

Further, some modification of the EPICS base were done to implement CCE hooks and the 

RMT-driver interface to the CA server (RSRV), and in database scan tasks. These modifications 

were also made operating system independent. The following is the list of affected source files: 

• base/src/db/dbAccess.c 

• base/src/db/dbScan.c

• base/src/dbStatic/dbBase.h 

1 These modifications were not included into the base distribution, some of them were incorporated as a part of the 
RIOC distribution, while others were replaced by alternative solutions. See the discussion related to redundancy 
in EPICS tech-talk mail list for the details.  
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• base/src/dbStatic/dbLexRoutines.c 

• base/src/rec/aiRecord.dbd 

• base/src/rsrv/camsgtask.c

• base/src/rsrv/online_notify.c 

• base/src/rsrv/cast_server.c 

• base/src/rsrv/caservertask.c 

(see Appendix for details) 

Those modifications2 were sent to the core developers of the EPICS system and later resulted 

in the support for Redundancy in EPICS base distribution. This functionality was introduced in 

version 3.14.10[11].

3.4.2 Results and performance

The generalized version of the redundant IOC was successfully used on vxWorks, Linux, Mac OS 

X, and Solaris. The porting process allowed to reveal several serious bugs in the original code. 

The generalized software was tested for performance issues on Linux platform. The computers 

used for the tests were regular PC-compatible computers running Red Hat Fedora 5 linux system. 

Tests showed that the system synchronization speed limit was around ~5000 records/second for 

the PC with Intel Pentium 4 3GHz 1x core, 2x 100 Mbit Ethernet cards; functioning solely as a 

redundant IOC. 

3.4.3 Failover Performance 

In my tests the failover time was in range of 0.3-3  seconds. The following is the event log of the 

slave peer, you can see the event when manual fail over command is issued. 

2 These modifications were not included into the base distribution, some of them were incorporated as a part of the 
RIOC distribution, while others were replaced by alternative solutions.  See the discussion related to redundancy 
in EPICS tech-talk mail list for the details.  
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0057 2009-07-17 09:44:25.646 'RMT','synchronisation state changed InSync=1'
0058 2009-07-17 09:45:24.925 'RMT','LS=SLAVE, RS=CmdToFail, PuEth=10, PuUP=1, PrEth=9, 
PrUP=1, DrR=0, DrF=0, DrIS=9, DrNiS=0, InSync=1'
0059 2009-07-17 09:45:25.246 'CCEXEC','PRR StopUpdate(0)'
0060 2009-07-17 09:45:25.246 'RMT','Partner ist CmdToFail -> switch to MASTER'
0061 2009-07-17 09:45:25.246 'RMT','LS=MASTER, RS=CmdToFail, PuEth=10, PuUP=1, PrEth=9, 
PrUP=1, DrR=0, DrF=0, DrIS=9, DrNiS=0, InSync=1'
0062 2009-07-17 09:45:25.649 'scan0.2','PRR started'
0063 2009-07-17 09:45:25.655 'scan5','PRR started'
0064 2009-07-17 09:45:25.655 'scan0.5','PRR started'
0065 2009-07-17 09:45:25.656 'scan0.1','PRR started'
0066 2009-07-17 09:45:25.656 'CAS-TCP','PRR started'
0067 2009-07-17 09:45:25.656 'CCEXEC','PRR started'
0068 2009-07-17 09:45:25.657 'scan10','PRR started'
0069 2009-07-17 09:45:25.657 'scan2','PRR started'
0070 2009-07-17 09:45:25.657 'scan1','PRR started'
0071 2009-07-17 09:45:26.593 'RMT','LS=MASTER, RS=SLAVE, PuEth=10, PuUP=1, PrEth=9, 
PrUP=1, DrR=9, DrF=0, DrIS=0, DrNiS=9, InSync=1'
0072 2009-07-17 09:45:27.455 'RMT','synchronisation state changed InSync=0'
          LS=MASTER, RS=SLAVE, PuEth=10, PuUP=1, PrEth=9, PrUP=1, DrR=9, DrF=0, DrIS=0, 
DrNiS=9, InSync=0epics> 

With the bold font I marked the time when the switch-over process begins and ends 

consequently. The time difference between this two points is: 0.732 second, this is a typical 

switch over time. 

And another switchover example, with the same configuration 

0076 2009-07-17 09:49:33.264 'RMT','LS=SLAVE, RS=CmdToFail, PuEth=9, PuUP=1, 
PrEth=8, PrUP=1, DrR=0, DrF=0, DrIS=9, DrNiS=0, InSync=1'
0077 2009-07-17 09:49:34.772 'CCEXEC','PRR StopUpdate(0)'
0078 2009-07-17 09:49:34.772 'RMT','Partner ist CmdToFail -> switch to MASTER'
0079 2009-07-17 09:49:34.772 'RMT','LS=MASTER, RS=CmdToFail, PuEth=9, PuUP=1, PrEth=8, 
PrUP=1, DrR=0, DrF=0, DrIS=9, DrNiS=0, InSync=1'
0080 2009-07-17 09:49:34.920 'RMT','LS=MASTER, RS=SLAVE, PuEth=9, PuUP=1, PrEth=8, 
PrUP=1, DrR=0, DrF=0, DrIS=9, DrNiS=0, InSync=1'
0081 2009-07-17 09:49:36.312 'CCEXEC','PRR started'
0082 2009-07-17 09:49:36.313 'scan10','PRR started'
0083 2009-07-17 09:49:36.313 'scan5','PRR started'
0084 2009-07-17 09:49:36.314 'scan2','PRR started'
0085 2009-07-17 09:49:36.314 'scan0.5','PRR started'
0086 2009-07-17 09:49:36.315 'scan0.2','PRR started'
0087 2009-07-17 09:49:36.315 'scan0.1','PRR started'
0088 2009-07-17 09:49:36.315 'scan1','PRR started'
0089 2009-07-17 09:49:36.316 'CAS-TCP','PRR started'
0090 2009-07-17 09:49:38.108 'RMT','synchronisation state changed InSync=0'
          LS=MASTER, RS=SLAVE, PuEth=9, PuUP=1, PrEth=8, PrUP=1, DrR=9, DrF=0, DrIS=0, 
DrNiS=9, InSync=0epics> 

Switch-over time: 3.052 second. This is one of the worst cases. In case of a automatic failover 

here is the transcript: 

0146 2009-07-17 09:54:33.314 'PRIVETHN','private ethernet is down'
0147 2009-07-17 09:54:33.314 'RMT','LS=SLAVE, RS=UNKNOWN, PuEth=9, PuUP=1, PrEth=8, 
PrUP=0, DrR=0, DrF=0, DrIS=9, DrNiS=0, InSync=1'
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0148 2009-07-17 09:54:33.314 'CCEXEC','PRR StopUpdate(0)'
0149 2009-07-17 09:54:33.315 'PUPLETHN','public ethernet is down'
0150 2009-07-17 09:54:33.324 'RMT','Communication lost on both channels -> switch to 
MASTER'
0151 2009-07-17 09:54:33.324 'RMT','LS=MASTER, RS=UNKNOWN, PuEth=-1, PuUP=0, PrEth=-1, 
PrUP=0, DrR=0, DrF=0, DrIS=0, DrNiS=9, InSync=1'
0152 2009-07-17 09:54:34.875 'CCEXEC','PRR started'
0153 2009-07-17 09:54:34.876 'scan10','PRR started'
0154 2009-07-17 09:54:34.876 'scan5','PRR started'
0155 2009-07-17 09:54:34.878 'scan2','PRR started'
0156 2009-07-17 09:54:34.878 'scan0.5','PRR started'
0157 2009-07-17 09:54:34.879 'scan0.2','PRR started'
0158 2009-07-17 09:54:34.879 'scan0.1','PRR started'
0159 2009-07-17 09:54:34.879 'scan1','PRR started'
0160 2009-07-17 09:54:34.880 'CAS-TCP','PRR started'
0161 2009-07-17 09:54:34.992 'RMT','synchronisation state changed InSync=0'
          LS=MASTER, RS=UNKNOWN, PuEth=-1, PuUP=0, PrEth=-1, PrUP=0, DrR=9, DrF=0, 
DrIS=0, DrNiS=9, InSync=0epics> 

Time required for switchover since the partner was noticed missing is: 1.566 second. To 

measure “real” time lost in the switchover I implemented the following test. The calc record is 

being scanned every second and it is incremented by 1. When the switchover happens, it is likely 

that some cycles will be dropped and the expected value and the value received after the switch 

over will be different. It can be clearly seen from the following pictures data and pictures. The 

first column is time and the second column is the variable value. Figure 3.5 and Figure 3.6 show 

the change of the process variable. The gap in the middle is 30 second Channel Access timeout; 

after the gap the client is reconnected to the stand-by IOC and the value is received from there. 

00.898630 1523
01.900604 1524
02.902560 1525
03.904522 1526
04.906492 1527
05.908453 1528
06.910414 1529
07.912377 1530
08.914340 1531
09.916303 1532
10.918278 1533
11.920230 1534
12.922198 1535
50.900448 1570
51.902407 1571
52.904357 1572
53.906313 1573
54.908271 1574
55.910227 1575
56.912179 1576
57.914133 1577
58.916090 1578
59.918043 1579
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The calculated time loss is 2.904 second. 
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3.4.4 Conclusion

The generalization of the Redundant IOC to libCom/OSI and extensive testing of the software 

during the porting process eventually led to inclusion of the support for Redundancy in the 

EPICS base distribution. This work had a great influence on Redundant IOC software to reach 

production state. The generalized version can be now used to provide redundancy for software 

not being EPICS IOC. The next 2 chapters describes one of the application developed with the 

generalized version of Redundant IOC.  
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4 redundant Channel Access Gateway

4.1 Channel Access Gateway description

Channel Access (CA) Protocol works on top of TCP/IP stack. For its discovery purposes channel 

access uses broadcast capability of TCP/IP. Therefore discoverability of an EPICS IOC is limited 

by the borders of a “broadcast-domain”, which is usually equal to size of a network subnet. 

Nevertheless modern LANs usually consist from more than one network subnets (Figure 4.1). 

Sometimes that division is  done for administrative and security reasons and  sometimes the 

networks grow too big. In any case the broadcast packets cannot (or better say should not) cross 

between two subnets. That configuration prevents broadcast storms and it is good for network 

throughput. However it creates some problem for protocols that rely on broadcast functionality 

and channel access is one of them.
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For example if there are several subnets in a lab, and there are EPICS IOCs and EPICS clients 

spread across different subnets, then some of these IOCs and clients cannot find each other. When 

CA client needs to find some specific data (which is called “process variable” in EPICS 

terminology - PV), the client sends UDP broadcast with the request for the need process variable. 

When the IOCs receives that broadcast it searches its own database for the presence of the 

required PV and if it is found the IOC sends the reply to the client. Then client connects to the 

IOC.  But if the IOC belongs to another subnet, then the searching broadcast cannot reach the 

IOC. To resolve this problem channel access gateway is used. An example of such usage is shown 

on Figure 4.2 CA Gateway Usage at KEKB and Linac. 
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4.1.1 Channel Access Gateway operation 

CA Gateway (CAG) can be seen as Channel Access server on one subnet (A) and as Channel 

Access client on another subnet (B). There are some clients on subnet A, that need to get 

connected to CA servers on subnet B. Let’s say that we have a client CAC1 on subnet A, that 

wants to access a process variable named PV1. Process variable PV1 is served by Channel Access 

Server CAS1 on subnet B. So let’s how CA Gateway works. 

First CAC1 sends a broadcast request for PV1 on subnet A. CAG receives that request and 

looks its internal database for that name. If that name is unknown to CAG it puts it into the 

database and issues a broadcast request for PV1 on subnet B. CAS1 replies to CAG, because it 

has that variable and thus CAG updates the its internal record that PV1 is available on subnet B 

and served by CAS1. Next time the request for PV1 comes, it will not search for it, but directly 

connect to CAS1. Anyway, after the search process is finished, CAG sends a reply back to CAC1 

stating that PV1 is available on CAG. Next step CAC1 connects to CAG server side and CAG 

client side on subnet B connects to CAS1. So CAG works as “pipe” from subnet B to A. 

But what happens if CAS1 will look for a PV2 that is not provided by any servers on networks 

A and B. Then there will be a record in CAG database that will show that and next time the reply 

comes for PV2, CAG will not send a broadcast request on subnet B.  

4.1.2 Channel Access Gateway -> single point of failure! 

Channel Access Gateway is a software that forwards broadcasts between the subnets and helps 

Channel Access clients and servers to find each other on different subnets. That architecture 

implies that CA gateway becomes the single point of failure. When the CA gateway stops 

working all the subnets it was connecting become unreachable to each other. This makes the CA 

gateway the perfect candidate to implement redundancy. The redundant ca Gateway eliminates 

the single point of failure and reduces the repair time drastically. 

Therefore the redundancy for ca gateway was sought. Channel Access gateway does not have 

any internal state that needs to be synchronized within redundant pair. This simplifies the 

implementation. Still the redundancy controller is needed, because if two gateways start to run on 

the same networks they will create problems for the CA. Two gateways will both replicate the 
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broadcasts from the clients and then they will both replicate the reply from the server. This kind 

of behavior disturbs the consistency of the CA network. Therefore Redundancy controller is 

essential to manage the status of the CA Gateways.

As it was described in the previous chapter, Redundant IOC consists from the Redundancy 

Monitoring Task and other components. The RMT plays the role of the Redundancy Controller. 

The generalized version of RMT can be used on Linux (and other operating systems supported by 

EPICS lib/OSI) to make any software redundant. The RMT performed very well as a redundancy 

controller for EPICS Redundant IOC, and because my involvement in the project, the RMT was 

chosen as a Redundancy Controller software to implement Redundant Channel Access Gateway.  
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4.2  Redundancy without load-balancing 

The first and the main goal was to implement redundant Channel Access Gateway. The 

Redundant CA Gateway should perform as “non-redundant” CA Gateway in terms of 

functionality. The implementation is a little bit different on the other hand. 

4.2.1 Redundant Channel Access Gateway Architecture

As the EPICS Redundant IOC, redundant Channel Access gateway consist from the “redundancy 

pair” in this case it is two computers running Redundant Channel Access Gateway software on 

them. Both of these computers have two Ethernet interfaces, those interfaces belong to different 

subnets - the subnets that CA gateway is supposed to interconnect. 

At any given point of time only one of the gate should forward the broadcast requests and 

replies. The other gateway has to standby and come into operation in case of the failure of the 

first one. If we just run two gateways with identical configuration on two same subnets, then the 
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replies and search broadcasts will be always doubled (see Figure 4.4 and Figure 4.5). This makes 

and inconsistency problem for Channel Access Clients. In Channel Access, each process variable 

should have unique name within one broadcast domain. Therefore two gateways will interfere the 

normal operation of the Channel Access. For that reason the standby (“slave”) gateway should 

not send any replies to the channel access clients.  

When I was designing this software, I had several options solve this problem. One way is link 

RMT and CA Gateway into one binary and use RMT API to control CA Gateway. This approach 

requires to modify the source code of the CA Gateway, which is not a bad thing by itself, but 

potentially it may introduce some bugs. Taking this point under consideration and having another 

way of implementing CA Gateway I chose the latter one, that is described further.
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CA Gateway does not require any synchronization between peers within “Redundancy Pair”, 

therefore it does not really need to be “fully” controlled by the RMT. All we need is to have it 

running and serve client requests when it is needed (“master mode”). And when it is not needed 

(“slave mode”), the client request must not be served. UNIX operating system paradigm is to use 

small building blocks, each is doing some small task; and use those blocks to solve some 

sophisticated tasks. That approach I chose to solve my problem. Every modern UNIX-like system 

has IP firewall. And using simple shell-script it is possible to add or remove rules to this firewall. 

Thus during runtime we can control the IP-stack of the machine in a such way that some 

particular packets are blocked, and we can switch on/off this behavior. 

It was decided to block the replies from the standby CA Gateway using firewall rules. Another 

option would be to block broadcast requests or replies to/from the CA servers, but as it was 

described in the previous section that would break normal operation of the CA Gateway. If the 

replies from CA servers are not seen by CA Gateway, then it assumes that that PV is not present 

on the subnet and it will  mark it as such in its internal database. Therefore when the switchover 

will occur and client will try to search for that PV on that standby gateway it will not reply to 

them, because of that record. On the other hand we could block the request from the CA client all 

at once, then the database of the standby CA Gateway would be empty until the failover. But 

when the failover would happen and the clients start to connect through that gateway, a huge 

number of broadcasts would be required on the servers side. Therefore it is very advisable to keep 

a track of the PVs on the standby CA Gateway and block only the replies from it to the CA clients 

until it becomes master. In this scheme when the failover happens, the CA Gateway will be able 

to connect the CA  without issuing additional CA broadcast storm on the servers subnet. 

The required shell scripts that block and unblock the replies from the CA gateway were 

written. Another script was written to monitor the status of the CA Gateway. Unix “kill” 

command was used for that. When this job was done it was time to implement the RMT driver, 

that would call these scripts. 
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4.2.2 General Purpose External Command Driver for RMT 

When I had to implement the driver, that would run the scripts, described above, I chose to do it 

in some generic way, so that driver could be used for other purposes. This driver uses simple text 

configuration file, where user can specify any arbitrary external program to be called when 

“Start”, “Stop” and “Check status” functions from RMT are called. It can also easily be extended 

to support other function of the RMT API. This allows to use RMT run any external command on 

some particular event. It gives very rich capabilities to monitor and log the work of RMT and 

redundant software implemented with its help. For example every time the switchover happens, 

RMT can send an e-mail or play a sound or do whatever else, or use the status of some program 

running as one of the aspects in decision making “switch-over” or “not switch-over”. 

4.2.3 Redundant Channel Access Gateway Implementation summary 

The redundancy without load-balancing was implemented by using the RMT as a stand-alone 

application, which runs separately from the CA gateway. It provides the benefit of not modifying 

the source of the gateway, but raises the problem of how to control the gateway. Because the 

RMT and the CA Gateway are separate processes, RMT cannot start and stop CA Gateway using 

RMT-API. 
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Therefore, the chosen solution was to use firewall rules to block replies from the Gateway 

process (Figure 4.6). In order to add and delete firewall rules, the RMT-driver was implemented 

that would run external scripts. Upon becoming a master this driver makes a call to an external 

“start-script” (which may be any executable file), and upon becoming a slave, it calls an external 

“stop-script”. This script driver may be used in other applications and may call any external 

application on a specified status change.  In our case, stop-script adds a firewall rule that blocks 

replies from the gateway to the clients, while start-script removes this firewall rules, making it 

possible to send replies to the clients. Hence, at any given time there is only one replying gateway 

that replies to the clients. The other gateway is on standby.  This scheme worked well and hence I 

proceeded to the next step - implementing load-balancing CA gateway. 

4.3  Redundancy with load-balancing 

This task appeared to be more tricky. Before I decided to use RMT as a standalone application, in 

order to reduce impact on the original gateway. However, to introduce load-balancing the RMT 

needs to have more control over the gateway. At least a load-balancing CA gateway has to be 

informed of the current status of its partner.  I our approach of having them as separate processes 
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it was decided to use the Unix signals mechanism to inform the gateway process about the status 

change. Some modification was done to the gateway source, which allows the reception of two 

signals. One of them signifies  that the partner has become “alive”, and the other signifies that the 

partner has become “dead”.

 The logic of a load-balancing gateway is simple: when the partner is alive, every other reply 

from the gateway includes its partner's IP address (this is the same functionality of the CA which 

is used in the CA directory service).See Figure 4.7 and Figure 4.8. When the partner is dead, the 

Gateway replies normally. 

Hence, both the gateways perform  the same function if they are alive at the same time. Upon 

receiving a PV search request from a CA client they perform a search on the IOC network; if the 

search is a success, they create a “virtual-circuit connection” to the corresponding IOC. At this 

stage, the CA gateway adds this PV to the list of known PVs. Subsequently, a reply to the client is 

sent (containing either the partner's IP address or it's own IP address). However, on the slave side, 

the RMT's "script-driver" adds a firewall rule blocking replies. Therefore, the clients receive only 

one reply from the master.  The master load-balances the further requests between itself and its 

46
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partner. Therefore, after receiving a reply from the master gateway, the CA client establishes a 

connection to one of the two gateways. If we would block the incoming request from the client 

instead of the reply from the gateway, the client cannot connect to the slave gateway later because 

its list of know PVs would be empty and it will deny all incoming connections. 

4.3.1 Conclusion

The load-balancing Channel Access gateway has several benefits compared with the non-load 

balanced redundant CA Gateway and original CA Gateway.  The load balancing gateway 

provides all the benefits that redundant CA Gateway does plus more. It can handle two times 

more load and bandwidth than original CA Gateway and provides much more stable environment 

that original CA Gateway and even better than redundant CA gateway. In case of a failure or 

switchover only half of the clients would need to reconnect trough the standby gateway, because 

the other half is already connected through the standby. It means that for half of the clients it will  

not be even noticeable that one of the gateways went down. The other benefit of load-balancing is 

faster response, less load and better utilization of available resources. In case of a redundant only 

CA GAteway the standby machine is not performing any useful work other than waiting to catch 
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up the operation in case of a failure. Load balancing gateway uses both machines and thus can 

handle twice as much connections in the extreme case, or just put less load on each of the 

machines.  

As a result of putting all this together, we achieve a load-balancing redundant CA gateway. 

Some minor changes to the CA Gateway source code are required. These changes include signal 

handling, load-balancing functionality and new command line options for configuring the IP 

address of the partner and signal numbers. Altogether the load balancing Channel Access gateway 

provides better performance and stability along with redundancy.
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5 Redundant IOC on Advanced Telecommunication 
Computing Architecture: Reliable software + Reliable 
hardware 

ILC project chose the Advanced Telecommunication Computing Architecture platform for its  

Control System[1]. Other projects(DESY/XFEL, PANDA, ITER, etc.) show growing interest to 

this standard as well. Although ATCA is already a mature hardware platform, providing extensive 

capabilities (including redundancy), the accelerator control software for this platform is yet to be 

developed. The telecommunication industry makes a great effort in developing high availability 

standards and middleware, that can be used by application developers. In this work I present my 

experience using these standards and middleware to add a support for ATCA hardware to the 

Redundant IOC. 

5.1 Advanced Telecom Computing Architecture (ATCA)

ATCA standard is defined by PCI Industrial Computer Manufactures Group with 100+ companies 

participating. The first standard was published in 2004 and it has been already widely supported 

by major vendors. It is primarily targeted to requirements of carrier grade communications 

equipment and incorporates the latest trends in high speed interconnect technologies, next 

generation processors and improved reliability, manageability and serviceability. Availability of  

ATCA crate is designed to be 99.999%. That and other features of ATCA standard made it the 

platform of choice for the ILC control system. 
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ATCA defines extensive monitoring and controlling capabilities. All the components of an 

ATCA system are interconnected via (usually) redundant Intelligent Platform Management Bus 

(IPMB).

One particular board – Shelf Manager (SM) - plays a centre role in the management of the 

system(Figure 5.2). SM is responsible for polling and controlling other hardware via IPMB. 

Usually SM implements some simple logic for monitoring overall system health and some fail-

over procedures (which are vendor and hardware specific). 
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Figure 5.1: ATCA crates and boards
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SM provides the access to the hardware for third-party via Hardware Platform Independent 

library (HPI) or SNMP. HPI covers all the differences in actual implementation of the ATCA 

standard and provides hierarchal representation of all available hardware. 
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Figure 5.2: Shelf manager - local control center within the ATCA crate
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5.2 SAF Specifications

5.2.1 Service Availability forum

The Service Availability Forum™ is a consortium of industry-leading communications and 

computing companies working together to develop and publish high availability and management 

software interface specifications. The SA Forum then promotes and facilitates specification 

adoption by the industry. Two main specifications by SA Forum are - Hardware Platform 

Interface (HPI) and Application Interface Specification (AIS)[8]. The SAF specifications are 

primarily aimed at telecom industry, but they can be used for physics HA applications as well. 

SAF specifications represent current best practices in telecom industry and guidelines for 

building HA systems. Even if the accelerator society decides not to use them, its beneficial to get 

acquainted with these specifications.
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Figure 5.3: SAF Application Architecture
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The SAF HA application architecture can be seen on the Figure 5.3.  Where SMI stands for 

Software Management Interface - part of the AIS specification.  Basically HPI provides hardware 

independent API to address the hardware and AIS provides the API and infrastructure needed for 

HA, such as synchronization, event propagation etc.

5.2.2 Hardware Platform Interface (HPI) 

The HPI specification separates the hardware from management middleware and makes each 

independent of the other.  The HPI concerns, primarily, the management of individual hardware 

components, called entities.  The main purpose of the HPI is hardware control and monitoring. 

The HPI provides hot swap, the ability to replace hardware components  within an operational 

system. Many of the mechanisms for providing service availability (such as managing standby 

components, failover and fault recovery) are provided by the AIS, rather than by  the HPI. 

However, the HPI is self contained and can operate independently of the AIS. 

The HPI-to-AdvancedTCA Mapping Specification details how the SA Forum’s HPI maps to 

PICMG’s AdvancedTCA specification. By standardizing how the two specs should be 

implemented together, the mapping specification gives developers a standard method to access 

functionality in both specifications, thereby saving time, money and resources.  Benefits of using 

HPI : 

• Shorter development cycles 

• Development cost savings 

• Lower total cost of ownership 

• Improved design flexibility 

• Reduced development risk 

• Faster innovation 

The HPI is primarily used with ATCA, but HPI is a platform independent specification, 

therefore it does not require ATCA. There are HPI implementations that can run on common 

server-grade IBM PC compatible computers (OpenHPI)[14].
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5.2.3 Application Interface Specification (AIS) 

The SAF AIS standardizes the interface between SAF compliant High Availability (HA) 

middleware and service applications. The core element of the AIS is Application Management 

Framework (AMF). AMF provides service availability by coordinating redundant resources 

within a cluster to deliver a system with no single point of failure. Another important part is 

Software Management Framework (SMF) embodies standard mechanisms to deploy, configure 

and monitor the software used within the cluster. Besides AMF and SMF, the AIS defines a set of 

auxiliary services, that altogether provide standard API and infrastructure for building HA 

applications.

Although, in this research the AIS specifications were not used, they are should be a matter of 

a great interest for anyone involved with HA applications development for the ATCA platform. 

5.3 Redundant IOC on ATCA

As mentioned earlier, the ATCA platform requires a special software to be developed in order to 

utilize its capabilities. One of the features of the ATCA platform is the implied redundancy of the 

major components of the system. This makes it a perfect candidate to use in conjunction with the 

EPICS redundant IOC. 

It is possible to run “vanilla” RIOC on ATCA hardware. It is beneficial to use ATCA to run 

EPICS RIOC in a sense of using reliable hardware, but it does not differ much from using two 

separate PCs. ATCA provides extensive monitoring and management capabilities, which are not 

utilized by “plain” EPICS RIOC. HPI driver for EPICS RIOC was developed in order to make 

EPICS RIOC aware of ATCA hardware.  
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Within the ATCA shelf all the components are interconnected via redundant Intelligent  

Platform Management Bus (IPMB) as shown on the Figure 5.4. Instead of accessing IPMB 

directly, we used HPI library to develop an extension for EPICS RIOC (in a form of RMT driver). 

That extension allowed to include the status of the ATCA hardware into the fail-over decision 

process.  Due to high level of abstraction and hardware independence of HPI it is possible to 

monitor any available set of sensor on the system without modification to the source code. The 

configuration is done by editing plain text configuration file.

The ability to monitor the hardware of the system allowed us to improve the reliability of 

EPICS RIOC. For example, if a CPU temperature starts to rise, there is some limited time before 

it will crash. And if properly monitored, we can initiate the fail-over process before the actual 

hardware failure happens. For the EPICS RIOC applications it gives us two major benefits: 
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• Fail-over happens while the system is still working, so actual transition happens in a 

stable and controlled environment.

• Channel Access connections can be gracefully closed. That will drastically reduce the 

reconnect time for Channel Access Clients (CAC). Normally in case of “hard” failure of a 

master RIOC it takes up to 30 seconds for CAC to reconnect to the slave RIOC (30 

seconds is a default EPICS connection time-out, actual time-out may be changed by user). 

Even though the slave EPICS RIOC notices the problem instantly and within 2 seconds 

takes over. 

The usage of HPI allowed us to avoid any hardware specific programming in the first place, 

but also made our solution portable to platforms other than ATCA. For example an open source 

implementation of HPI - OpenHPI - it can run on top of Linux 2.6 sysfs. And if the hardware 

allows provide access to the sensors. Therefore, without any source-code modification our 

“hardware-aware” EPICS RIOC can be used on server-grade Linux computers.  
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6 EPICS test system automation 

As it was described in second chapter, in terms of achieving reliability software is principally 

different from hardware. Software failures cannot be fixed by replacing the failing software 

component with the new one. To eliminate the occurrence of the same failure in the future the 

software has to be analyzed and rewritten. Naturally all software has “hidden” failures, that will 

occur only when certain conditions are met. Until then the software keeps running as supposed 

and there is no sign that someday, when these conditions happen, the software will fail. Therefore 

thorough testing and quality control is such an important thing in software development. Testing 

of the software is a continuos process, ideally it happens along with the development of the 

software. There are several “levels” of software tests, depending on the target of the test: 

• Unit testing: is aimed to test the smallest piece of code, such as function or class. Unit 

testing ensures that these small pieces perform according to the specification. EPICS 

software is distributed with unit test system included, anyone can use it by issuing the 

command “make runtests”.

• Integration testing. The goal of integration testing is to ensure that the blocks of code 

tested at the unit test stage are working properly when combined together.  

• System testing is performed on a complete system, when all the building blocks are 

connected together. System testing ensures that the system as a whole performs correctly 

and according to the specification. 

• System integration testing is aimed to verify system's interaction with other third party 

components. 

6.1 EPICS Testing

EPICS is a complicated and large software project and of course  it has its quality and test 

systems. EPICS has extensive unit-test system, developed within the years of EPICS existence. 

These unit-test are supplied with every version of EPICS distribution and could be executed after 

building the base using command “make runtests”. It is advised to run these test on every 

machine where EPICS is used to ensure compatibility. EPICS supports multiple Operating 
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Systems since release 3.14 when EPICS libOSI (Operating System Independent Library) was 

introduced. Both client and server applications can run on Linux, Windows, Mac OS X, Solaris, 

vxWorks, RTEMS, Tru64UNIX, FreeBSD. 

It is very common situation when even within one laboratory more than one OS is used in 

EPICS environment. vxWorks and RTEMS operating systems are used for real-time applications, 

software IOC running on Linux and Windows are used for less critical applications. Client 

programs such as display managers and archivers are usually run on different flavors of unix-like 

systems (Linux, Mac OS X) and Windows.  Versions of these OS also may differ very widely. 

And from version to version, or from one distribution to another there may be so many significant 

and not so much differences. Besides OS differences, EPICS can run on a wide variety of 

hardware platforms. Thus the variety of software and hardware platform that EPICS can be used 

on is really huge. All this makes it virtually impossible to test all the possible combinations of 

operating systems and hardware. During the release phase EPICS distribution is tested by the 

core-team, but this test does not cover all the usage cases of EPICS in the real world. Therefore it 

is essential for the end users of EPICS to test it on the usage-sites themselves. As mentioned 

earlier unit-testing is pretty simple and user-friendly process, but everything that goes beyond 

unit-testing is not that easy in such a heterogeneous environment where EPICS is usually used. 

6.1.1 MrkSoftTest package 

Anyway, for years there has been a package called mrkSoftTest, which represents a system 

integration level test package for EPICS. It begins its history when EPICS only supported 

vxWorks, but even then it could have been used on different hardware platforms. Differences 

such as byte-order have to be checked to ensure system interoperability. Later when EPICS 

became multi-platform the necessity of these checks increased even more. So nowadays this 

package includes several tests, which check CA network links, alarm functionality, correctness of 

conversion functionality between  local and remote systems. Typical test scenario involves one or 

more IOCs and several Channel Access  clients. 
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6.1.1.1 Typical Test Scenario

Common test scenario can be described by the following actions (steps), including the operator 

actions (bold font): 

• Connect to remote station via SSH/Telnet/ SH. Figure 6.1

• Configure & start EPICS IOC. Figure 6.1

• Repeat steps 1-2 for required number of times to start other IOCs Start CA client(s), 

locally or remotely Issue the required sequence of control commands for IOC and/or 

start additional CA clients. Figure 6.1

• IOCs and CA clients interact, running the test software. Figure 6.2
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Figure 6.1: Typical test scenario – start the IOCs and CA clients manually



EPICS test system automation 

•  IOCs and CA clients print out the results. Figure 6.2

• Gather the output from all the programs. Figure 6.3

• Compare the output to the reference file. Figure 6.3

• Shutdown all the IOCs and CA clients. Figure 6.3

This procedure is quite complex by itself, but becomes more complicated when we introduce 

differences between OS and Hardware. Commands and output may differ for different 

architectures and particular configuration. 
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As it can be seen, human interaction takes very big part of these system integration tests. But 

most people do not remember how to run these test, and have to read the instruction every time 

they run these test. Overall this becomes very time and effort consuming operation. Because of 

the difficulty and inconveniences of mrkSoftTest package only a few people do run these tests, 

mostly they are EPICS-core developers. General users do not run these test at all, even though it 

is highly advisable. What could  be done to make people use these test more often? The answer is 

simple: make these tests easy to run! Something like “make runtests”.
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EPICS test system automation 

6.2 Solution: Automation

To solve this problem EPICS test automation package (EPICS TAP) was developed. EPICS TAP 

simplifies the process of running system integration tests and hides all the low level details from 

the person running these tests. EPICS TAP was developed using high level scripting language 

Ruby. EPICS TAP framework uses a common to unit testing terminology and it was partly 

inspired by my exposure to Ruby's Test::Unit framework. Although, the interface might look 

familiar, the implementation is very different. The main purpose of the EPICS TAP framework is 

to executes a series of external commands on a set of network connected computers, and to hide 

the possible differences from the end user.

6.2.1 EPICS Test Automation Package Architecture

EPICS TAP provides an object oriented environment for developing system tests. EPICS TAP 

consists from several classes, that are aimed to encapsulate the differences and details of test 

scenarios from the end-users and to simplify the implementation for developers. All classes are 

defined in the EPICSTestUtils and the Cfg modules. The class diagram is shown on the Figure

6.4.
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6.2.1.1 Cfg module 

This module defines some functions and a class to work with EPICS TAP configuration file. 

This system is designed to be very flexible and to allow easy to create/understand hierarchal 

configuration file. 

class Cfg::Config < Hash 

This class extends the Hash class. It redefines the default method_missing method, so it 

searches itself for the required key and if not found, then the parent hash is searched for the 

required key. It allows to use ‘.’ to access the values in the configuration and use hierarchal 

definitions of values. 

def Cfg.default

default configuration parameters. The configuration file must contain :defaults section
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def Cfg.h

shortcut for hosts configuration parameters defined in the :hosts section of the 

configuration file.

def Cfg.load

This is the core of this module. It read the configuration file and builds the configuration tree, 

that can be used in EPICSTestUtils. 

Here is a simple example of Cfg capabilities, such as path-like naming, hierarchal structure 

and different methods to access the data. 

require 'EPICSTestUtils'

Cfg.load("config.yml")
Cfg.h.each_pair do |k,v|
  puts k + "=" + v.hostname
end
puts Cfg.h.localhost.hostname
puts Cfg.h["localhost"]["hostname"]
puts Cfg.c.TestCA.IOC0.hostname
puts Cfg.c.TestCA.COMMAND0.hostname
puts Cfg.c.TestAlarm.COMMAND0.hostname
puts Cfg.c.TestAlarm.IOC0.hostname

puts Cfg.h.localhost.hostname
puts Cfg.h.localhost.default

and the corresponding configuration file in YAML format:

# = test configuration file
# good for reference
:default: &default
  debug_level: 4
  user: tyoma
  topDir: /Users/tyoma/epics/soft-test
  epicsTopDir: /Users/tyoma/epics/base-3.14.10
  binDir: bin
  referenceDir: reference
  autostart: yes

# == :hosts:
# should contain at least +localhost:+ definition, as long as others which you intend 
to use for your tests
# typical config has +localhost host1 host2 host3+
:hosts: &hosts
  localhost:
    hostname: tyomac
    epicsHostArch: darwin-x86
  host1:
    epicsHostArch: freebsd-x86
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    hostname: burdock
    epicsTopDir: /usr/home/tyoma/base-3.14.8.2
    topDir: /usr/home/tyoma/soft-test
  host2:
    epicsHostArch: linux-x86
    hostname: durian
    epicsTopDir: /usr/users/control/epics/R3.14.9/base
    topDir: /usr/users/tyoma/epics/soft-test
  
# So... the rigth way to configure all this stuff should be. 
# 1. Default config < Host Config  
# 
# “<<” Means include the named variable

:defaultIOC: &defaultIOC
  ioc: common

:defaultCommand: &defaultCommand
  type: SH

:defaultCommandSSH: &defaultCommandSSH
  type: SSH
  host: localhost
  user: tyoma

:defaultTestCase: &defaultTestCase 
   IOC0:
    <<: *defaultIOC
   COMMAND0:
     <<: *defaultCommand
   COMMAND1:
     <<: *defaultCommand
 
:testCases:
  TestAlarm: 
   IOC0:
    <<: *defaultIOC
    bootDir: iocBoot/iocalarm
    cmd: stcmd.host
    host: host2
   COMMAND1:
     <<: *defaultCommandSSH
   COMMAND0:
     <<: *defaultCommand
  
  TestCA:
    <<: *defaultTestCase
    IOC0: 
      <<: *defaultIOC
      bootDir: iocBoot/iocca
      cmd: stcmd.host
      host: localhost
      autostart: no
    COMMAND0:
      <<: *defaultCommand
      autostart: no
    COMMAND1:
      <<: *defaultCommand
      autostart: no

  TestConvert:
    <<: *defaultTestCase
    IOC0: 
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      <<: *defaultIOC
      ioc: convert
      bootDir: iocBoot/iocconvert
      cmd: master.main
      host: localhost
    IOC1: 
      <<: *defaultIOC
      ioc: convert
      bootDir: iocBoot/iocconvert
      cmd: client.main
      host: host1
    COMMAND0:
      <<: *defaultCommand

  TestLinkInfoLocal:
    IOC0: 
      <<: *defaultIOC
      ioc: linkinfo
      bootDir: iocBoot/ioclinkinfo
      cmd: stcmdlocal.host
      host: localhost

  TestLinkInfoRemote:
    IOC1: 
      <<: *defaultIOC
      ioc: linkinfo
      bootDir: iocBoot/ioclinkinfo
      cmd: stcmdremote.host
      host: host2
    IOC0: 
      <<: *defaultIOC
      ioc: linkinfo
      bootDir: iocBoot/ioclinkinfo
      cmd: stcmdlocal.host
      host: localhost

  TestPut:
    IOC0: 
      <<: *defaultIOC
      bootDir: iocBoot/iocput
      cmd: put.main
      host: host2

  TestSoftCallback:
    IOC0: 
      <<: *defaultIOC
      bootDir: iocBoot/iocsoftcallback
      cmd: stcmd.host
      host: host2
    COMMAND0: 
      host: localhost
    

  TestRemoteIOCSh:
    IOC0: 
      <<: *defaultIOC
      bootDir: iocBoot/iocalarm
      cmd: stcmd.host
      host: host2
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  TestCase2: 
   <<: *includes
   ioc: exampleIOC
   varname: val
   tmpDir: tmp/exioc
   IOC0:
    <<: *defaultIOCSSH
    host: host1
    bootDir: iocBoot/iocalarm
    cmd: stcmd.host
   COMMAND0:
    host: host1 
   COMMAND1:
    host: host2

6.2.1.2 EPICSTestUtilModule

This module defines the classes used to build test scenarios and several helper classes and 

methods to simplify the process.

AutoRunner 

This is a helper class, that allows to run the same exact TestCases within a TestSuite or 

standalone. If there is no TestSuite instance defined, then AutoRunner instance creates an instance 

of TestSuite and add there all the TestCases visible in the current runtime scope. 

EPICSTestUtils.run variable defines whether AutoRunner is executed or no. 

TestSuite

Test Suite is a collection of Test Cases. Test Cases are independent instances described in the 

next section. Test Suite is an administrative instance can be used to group test in any possible 

way. When the TestSuite instance is created, by default it sets the EPICSTestUtils.run = false  

variable to disable the AutoRunner. Test Suite class provides the following hooks available for 

developer: 

• suite_setup - empty by default

• suite_teardown - empty by default

• run - runs all the TestCases within the TestSuite. 

Example of the TestSuite usage:

testSuite << TestAlarm.new(formatter,config)
testSuite << TestCA.new(formatter,config)
testSuite << TestLinkInfoLocal.new(formatter,config)
testSuite << TestLinkInfoRemote.new(formatter,config)
testSuite << TestPut.new(formatter,config)
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testSuite << TestSoftCallback.new(formatter,config)
testSuite << TestConvert.new(formatter,config)
testSuite.run

Test Case

Test Case represents a set of tests that share the same environment, configuration and can be run 

consequently. For example if we want to test channel access put, get and monitor functionality on 

two IOCs, then we can put these three tests into one test case. Each test within TestCase is 

implemented as a member function. The TestCase class defines many hooks available for 

developers to redefine: 

• setup_iocs - this function finds IOCs configured for this particular test case. The default 

implementation reads the configuration file and configures the IOCs according to it.  Each 

IOC is represented by an object of IOCLocal or IOCSSH class, local and remote 

consequently. 

• setup_commands - same as previous, but for arbitrary external commands, that may be 

needed during test. External Commands are represented by SH or SSHCommand classes. 

(Channel Access Clients usually are these external commands) 

• global_setup - default is empty. This is a placeholder function available for test 

developers. It is called before anything is executed, but IOCs and commands are already 

configured and corresponding objects are available. 

• start_iocs - starts the IOCs

• start_commands - start the commands 

• global_setup_after_start - empty by default, at this point IOCS and commands are usually 

running 

• setup - empty by default, called before each test in a test case

• teardown - empty by default, called after each test in a test case

• global_teardown - empty by default, called after all tests in a test case

• stop_iocs - stops the IOCs

68



EPICS test system automation 

• stop_commands - stop the commands 

Some of these functions are just placeholders and some have some default behavior, in any 

case they represent very flexible scheme to accommodate a wide variety of possible test 

scenarios. And if it is not enough it can be easily extended by redefining the case_setup and 

case_teardown functions. 

Actual tests are implemented either as class member functions with the name starting with 

test_ or as objects of Test class (this is deprecated interface). The TestCase default 

implementation automatically finds the methods starting with test_ and executes them in 

alphabetical order. 

Here is the example of test case:

#!/usr/bin/env ruby
require "EPICSTestUtils"
class TestCA < EPICSTestUtils::TestCase
  def global_setup
    cmd[0].startcmd="#{cmd[0].localBinDir}/testcaput 5000 5"
    cmd[1].startcmd="#{cmd[1].localBinDir}/testcaget 5000 1"
    @client_caput = cmd[0]
    @client_caget = cmd[1]
    @unresponsive_message = /Warning: "Virtual circuit unresponsive"/
    @disconnect_message = /Warning: "Virtual circuit disconnect"/
  end

  def setup
    cmd[0].start
    cmd[1].start
    ioc[0].start
  end

  def teardown
    cmd[0].exit
    cmd[1].exit
  end

  def global_teardown
    ioc[0].exit
  end

  def test_courtesy_exit
    start_time = Time.now
    ioc[0].command("exit")
    response_caput = @client_caput.read_stderr(0.3)
    response_caget = @client_caget.read_stderr(0.3)
    assert(response_caput =~ @disconnect_message)
    assert(response_caget =~ @disconnect_message)
  end

  def test_sudden_death
    ioc[0].suspend
    response_caput = @client_caput.read_stderr(15)
    response_caget = @client_caget.read_stderr(15)
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    assert(!(response_caput =~ @unresponsive_message or response_caget =~ 
@unresponsive_message))
    sleep 6
    response_caput = @client_caput.read_stderr(2)
    response_caget = @client_caget.read_stderr(1)
    assert(response_caput =~ @unresponsive_message)
    assert(response_caget =~ @unresponsive_message)
  end
end

Formatter Class

This is a generic class, that is used inside the TestCase to format the output of the tests. Actual 

formatters have to inherit from that class or define the same interface. EPICSTestUtils provides 

two predefined formatters: TAPFormatter - to format output in Test Anything Protocol and simple 

text formatter (Formatter class).  Here is the TAPFormatter class: 

class TAPFormatter < Formatter
  def header(context)
    puts "# #{context.title} starting"
    puts "1..#{context.count_test}"
  end

  def print_test_result(name, result, num = nil)
    if num
      puts "#{num} #{result} # #{name}"
    else
      puts "#{result} # #{name}"
    end
  end

  def report(context)
    if context.result == :OK then puts "ok - #{context.title} #{context.description} # 
#{context.explanation}"
    else puts "not_ok - #{context.title} #{context.description} # #{context.result} 
#{context.explanation}"
    end
  end
  def put(string)
    puts "# #{string}"
  end
  def footer(context)
    puts "# #{context.title} is over"
  end
end
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6.2.2 Conclusion

Introduction of EPICS TAP made running tests as simple as typing “./runAlltests.rb” and then 

wait until it finishes. Depending on the configuration some changes are required to the 

configuration file (such as ip-addresses and OS system types).  EPICS TAP ruby classes can be 

used to write additional test cases as well. EPICS TAP provides fully automated infrastructure for 

testing EPICS implementations. 

Compared to manual testing, an automated testing saves a lot of human time and prevents the 

chance of a human mistake, recalling the list from section 6.1.1.1, now the sequence of actions 

looks like this: 

• Edit the configuration file

• ./runAllTests.rb

• wait for the tests to finish (i.e. Go drink coffee)

• Get the result in simple readable format: 

# TestAlarm starting
1..1
1 OK # test_alarms
# TestAlarm is over
# TestCA starting
1..2
1 NOT_OK # test_courtesy_exit
2 OK # test_sudden_death
# TestCA is over
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7 Conclusion and summary of the results 

In this study, improvements to reliability accelerator control system were performed. The results 

of this study are summarized and concluded as follows.

As it was shown in the Introduction and the second chapter of this work, availability 

requirements raise a new challenges for designer and implementors of the accelerator control 

systems.  In this work a control system is viewed to be composed four basic components – 

hardware, software, people and procedures. Each of these components requires specific methods 

to achieve high availability. General guidelines to achieve high availability were presented in the  

second chapter. The rest of this work is devoted to improvements of hardware and software 

components of an accelerator controls system. 

The key technique to achieve high availability for hardware is redundancy. Redundant systems 

allow to reduce the time needed to recover from a failure to mere seconds, compared to hours or 

days in a non redundant system (this is the time needed to replace or repair the failing 

component). In this work an implementation of EPICS redundant IOC is examined. 

The original EPICS control software distribution lacked a support for redundancy. Therefore 

in collaboration with DESY EPICS redundant IOC was developed. I took part in this project on 

the stage of testing and operating system generalization to bring the EPICS redundant IOC to a 

wide range of operating systems. This was done using EPICS operating system independent 

library (libCom/OSI). Besides getting a multi-platform version of the EPICS redundant IOC, this 

work resulted in inclusion of redundant IOC support into the official EPICS distribution. The 

generalized version of the EPICS redundant IOC can be used on Linux, vxWorks, Mac OS X and 

other EPICS supported platforms. Part of this software, namely Redundancy Monitoring Task, 

was distributed as an independent library, that was used to add redundancy to other software. 

Redundancy idea can be expressed, as elimination of a “single point of failure”. High 

Availability design requires to reduce the number of such points to minimum. In recent EPICS 

control systems installations  Channel Access Gateway software plays an important role. It is 

used for administrative and security management: it can be used to add a security layer, to divide 

a network into several segments in order to reduce the amount of broadcast traffic in each 
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segment, or to reduce the load on the IOC by multiplexing the client connections.  Naturally it  

becomes a single point of failure in such systems. Failure of a single caGateway may “cut-off” 

the whole network segment. In order to address this issue, a Redundant Channel Access gateway 

was developed as a part of this research. Further improvement of the Channel Access Gateway 

resulted in a load-balancing redundant Channel Access Gateway. Usage of load-balancing 

redundant gateway not only improves availability, but also provides better throughput and 

response time. 

Recently high-energy physics community shows growing interest in a new hardware platform 

- Advanced Telecommunication Computing Architecture. The ILC project selected this platform 

for its control system. ATCA is a feature rich hardware platform, specifically designed for highly 

available applications. It provides extensive control and monitoring capabilities. In order to fully 

exploit these features new software must be developed. The design of ATCA platform implies the 

usage of redundant systems. For that reason I extended the EPICS Redundant IOC to support this 

platform. The developed ATCA driver allowed to monitor the status of all available hardware 

within an ATCA crate and use this information for better fail-over decision making. By constant 

monitoring of temperature, voltage, fan speed and other parameters it is possible to predict the 

failure and to switch to the stand-by controller before the main controller fails. This gives better 

systems stability and improved client performance. Reconnection times from clients are reduced 

to 2 seconds, compared to 30 seconds for non-ATCA aware redundant IOC. It brings improved 

availability to EPICS redundant IOC running on ATCA platform. 

From the software point of view, high availability goes in parallel with High Quality of 

software. Therefore decent Quality Assurance methodology and techniques much be in place in 

order to achieve High Availability for the accelerator control system. To address this issue, EPICS 

test automation package was developed. Its purpose is to automate and facilitate testing of EPICS 

software on a wide range of hardware configurations and operating systems, to hide the 

differences of these hardware/software combinations and relive humans from complicated and 

error-prone manual testing. The system developed uses simple configuration and text-format files 

to describe the “test-scenarios”. It provides a flexible software framework to develop new test. 

Using this package greatly simplifies the testing process, reduces time and provides versatile 

environment for batch testing on a set of machines.
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These studies and developments can be applied to any existent and future accelerator control 

systems to enhance the availability. Furthermore, the approaches described in the second chapter 

of this work are general and can be used in any environment to improve availability. Practical 

applications were developed for the EPICS system; the ideas and methods of expressed in this 

work can be adapted for systems other than EPICS.
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A. Appendix 

A.I. Files 

• RIOC source, available from DESY or from 

http://burdock.linac.kek.jp/kek/files/projects_02_Sep_2009.tar.bz 

• rmt.apps (examples, redundant gateway etc.) are available here 

http://burdock.linac.kek.jp/kek/files/rmt_apps_02_09_2009.tar.bz2 

• EPICS TEST automation package is available from github 

git://github.com/akazakov/epicstest.git or from (only rubyscripts) 

http://burdock/kek/files/rubyStuff2_02_09_2009.tar.bz2

• ruby scripts and mrksoft are here: http://burdock.linac.kek.jp/kek/files/soft-

test_02_09_2009.tar.bz2 

A.II. Building RIOC 

• download and build EPICS BASE 

‒ Download EPICS base distribution from 

http://aps.anl.gov/epics/download/base/baseR3.14.11-pre1.tar.gz 

‒ and unpack it to ~/epics/base-3.14.11-pre1 directory 

‒ setenv EPICS_HOST_ARCH linux-x86

‒ make

• get the source of redundancy software from desy 

‒ put it into ~/projects/redundancy/11august2009/iocRedundancy

‒ edit configure/RELEASE and set EPICS_BASE to ~/epics/base-3.14.11-pre1

‒ make 
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• create an application needed to be made redundant  

‒ Edit configure/RELEASE and set REDUNDANCY to the directory where you 

installed the iocRedundancy:

‒ REDUNDANCY = /path/to/iocRedundancy/version

‒ Edit your application Makefile:

‒ Add 'rmt.dbd', 'cce.dbd' and 'snlexec.dbd' to your appname.dbd:

‒ appname_DBD += rmt.dbd

‒ appname_DBD += cce.dbd

‒ appname_DBD += snlexec.dbd

‒ Add 'rmt', 'cce' and 'snlexec' to the list of libraries which will be linked with your 

application:

‒ appname_LIBS += rmt

‒ appname_LIBS += cce

‒ appname_LIBS += snlexec

Now your IOC is redundant. Consult the example configuration files from RIOC distribution. 

Enjoy. 

A.III. Building load-balancing redundant CA gateway  

• build the gateway

‒ download and unpack epics extensions directory from 

http://aps.anl.gov/epics/extensions/configure/index.php 

‒ download and unpack gateway distribution into extentions/src 

‒ apply patch gateway2_0_3_0_load_balancing.patch (in rmt.apps: 

http://burdock.linac.kek.jp/kek/files/rmt_apps_02_09_2009.tar.bz2 ) 

‒ make 
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• go to rtm.apps/run.bananas to consult the master.conf and slave.conf 

‒ change the IP addresses to reflect you configuration

‒ modify start_master_lbgw.sh and start_slave_lbgw.sh  files to reflect your 

configuration 

• run those scripts on master and slave.

Load balancing gateway should be running now. 

Enjoy.

A.IV.  Ca gateway implementation notes

According to gateway’s nature it feels to have both of them up and running all the time. This 

will allow to load balance them seamlessly to clients.  Assume that both gateways has the same 

configuration and in terms of network availability and access rights. So it means that both 

gateways can access the same IOC and PVs on these IOCs. In that case the working scheme 

might be very simple and the amount of synchronization data is minimal. Since version 

CA_V411 of channel access protocol, response to CA_PROTO_SEARCH request can have a 

server IP address. Let one of the Gateways be Master and the other one is Slave.  First after initial 

startup gateways “handshake” and “decide” who is the Master. And from that moment gateways 

do not need to exchange any data except “heart-beat” and “health-status”.  And all search requests 

are answered by Master gateway. And master decides which IP address to put into the reply. It 

may be very simple as round-robin, or change the IP every next time.   And obviously RMT can 

carry the function to make Master/Slave decisions, monitor connection status and probably some 

other parameters. 
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Step 1: Redundancy without Load-Balancing

rmtScriptDriver

The function of the driver is to run predefined external command when RMT changes state. It 

is very simple driver, and only start, stop, startUpdate, getStatus functions are implemented. But 

it is enough. It is implemented as a library (as RMT & CCE are). So the procedure of linking the 

driver to your source code is similar. Please refer to RMT & CCE Porting to *nix for more 

details. In short, you need these lines in Makefile: 

• rmtStarter_DBD += rmt.dbd 

• rmtStarter_DBD += rmtScriptDriver.dbd 

• rmtStarter_LIBS += rmt

• rmtStarter_LIBS += rmtScriptDriver

To start configure and register driver use the following iocsh command: rmtScriptDriver  

start_script stop_script

Where start_script and stop_script are the executables you wish to run Master/Slave state 

change. Inside the driver they are executed via system(const char *string), which invokes the 

system shell with the parameter string. And this function waits until shell finishes. If it is not the 

desired behavior, replace it with something like execve(). 

start_script and stop_script 

At first it was thought to block incoming CA_SEARCH request. But it appeared, that 

caGateway does create its internal PV variables (and does connection to the actual IOC) upon 

receiving search request. And when we block all the searches, caGateway then will deny all our 

direct connections to TCP:5064. Thus it was decided to block caGateway replies. To do this we 

invoke simple shell scripts when state changes. But there is one thing we have to remember. 

When SLAVE rmt is exited, it leaves DROP firewall rule, it’s nothing bad, until you remember 

about it. First of all we create separate “chain”  and redirect all desired traffic into it. 

#!/bin/sh /script/nc_iptables -N RMT /script/nc_iptables -A OUTPUT -p udp --sport 5064 
-j RMT 
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 Now we can add/delete rules to that chain, and even flush it without affecting other firewall 

rules which might be present. And here is the start script:

#!/bin/sh /script/nc_iptables -F RMT

And the stop script:

#!/bin/sh /script/nc_iptables -A RMT -p udp --sport 5064 -j DROP

Master/Slave versions of the scripts are the same. But to run iptables on Linux you have to be 

root. So overcome this problem, we’ll use a simple wrapper (which I found on the internet):

#include <errno.h> #include <stdio.h> #include <unistd.h> #include <sys/types.h> 
#define ALLOWEDUID      15284 static char cmd[] = "/sbin/iptables"; static char 
*smallenv[] = { "PATH=/sbin:/bin:/usr/bin", NULL }; main(argc,argv) int argc; char 
*argv[]; { uid_t realuid = getuid(); if(realuid==ALLOWEDUID) { char *oldargv0 = 
argv[0]; int e_errno; char buf[1024]; extern int errno; argv[0] = cmd; setuid(0); 
execve(argv[0],&argv[0],smallenv); e_errno = errno; setuid(realuid); sprintf(buf, 
"%.255s: %.255s", oldargv0, argv[0]); errno = e_errno; perror(buf); exit(255); } 
setuid(realuid); fprintf(stderr, "%.255s: Permission denied\n", argv[0]); exit(254); } 

And then: gcc nc_iptables.c -o nc_iptables chown root:kryo nc_iptables chmod 4110 
nc_iptables

So now if the user belongs to group kryo, and UID == ALLOWEDUID he’ll be able to 

execute iptables with root privileges. As you could notice this wrapper functionality is quite 

similar to sudo. Which also can be used. 

Step 2: Load-balancing

This step required some modifications to the source of caGateway. And some kind of interface 

between caGateway and was introduced. RMT Changes: RMT’s funtionality was extended to 

support sending signals to external process when the partner becomes alive/not alive. This 

functionality works only on Master side. To turn this functionality on, add the following string to 

startup script: rmtSignalPIDSet PID OK_SIG FAIL_SIG Where PID is pid of external process (so 

obviously it means you have to start caGateway first). OK_SIG is sent when the partner is up and 

healty, and FAIL_SIG is sent when the partner is healthy.  We assume the partner being healthy if: 

• RMT has connection with it 

• All Interfaces are up 

• No failed drivers are present 
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Also second “GLOBAL ETHERNET” check was added. It is configured with these options. 

System2IP=”1.2.3.4” System2Port=”1234” If they are not present, second check is not used. And 

logic of RMT was changed accrdigly. If one of the global checks fails on Master it switches to 

Slave ONLY if BOTH global checks are OK on Slave. caGateway changes: -partner_ip 

-partner_alive_sig -partner_dead_sig command line options have been added. First is partner IP 

address. Other two are signals to catch when the partner is alive/dead. At startup it is assumed 

that the partner is dead. Only after receiving correct signal load-balancing starts to work. And 

when it works every other search reply contains the partner’s IP address. 

A.V.  RIOC on ATCA 
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