Approach to the more stable injector linac for SuperKEKB

Hiroysu Ego

June 12, 2020

Contents

- Linac status
- Deterioration in accelerating structures
- 5-year upgrade plan in progress
- Summary

Linac status

Linac has many accelerating units with damaged structures

e⁻ 7.68 GeV (max) e⁺ 4.39 GeV (max)

- Damaged unit
 - : Markedly damaged unit

: Unit with the structure repaired temporally for water-leak

Deterioration in accelerating structure I

Many structures suffering from power reflection and/or excessive field emission

Deterioration in accelerating structure 2

Severely damaged structure

surface

Deterioration in accelerating structure 3

Fatal case : water leakage

Water leakages occur to a few structures a year

5-year development plan for stable operation

New S-band structures for wiping out the markedly damaged structures

Providing an additional RF source to a special unit

Development of a new pulse compressor for the special unit

\$ 4,000,000 for R&D and manufacturing 16 structures, the pulse compressor and so on

5-year schedule

FY 2018	FY 2019	FY 2020	FY 2021	FY 2022	
New S-band structure					
Completed ! R & D Fabricatio	Completed ! R & D Completed ! Fabrication of four structures				
		Material procurement for 12 structures	Fabrication of	f 12 structures Conditioning Installation	
		RF source addition			
			Device procurement	Installation	
Pulse compressor					
			Fabrication	Installation	
		prototype high-power te	st		

Complete cure : new designed S-band structures

Four structures completed and under high-power tests

- Demonstrated high-power performance as designed
- Stable operation at a rated power of 40 MW with extremely low breakdown
- Ready for mass-production

Beam energy dependent on beam charge

	Low charge case	High charge case of 4 nC
HER [GeV]	7.68	7.27
LER [GeV]	4.39	4.15
Injection condition	 Long beam life Good injection rate 	Short beam lifeBad injection rate

If we need a high charge of 4nC for injection, the beam energy in linac reduces to 94.5% of the full energy.

The case of full energy acceleration but unstable

	E _{CM} [GeV]	LER [GeV]	HER [GeV]	6S
Low charge injection	11.923	4.510	7.880	ОК
Maximum charge injection	11.279	4.266	7.454	ОК

After the 5-year upgrade

Current status

	Есм [GeV]	LER [GeV]	HER [GeV]	6S
Low charge injection	11.613	4.390	7.680	ОК
Maximum charge injection	10.986	4.153	7.265	NG

The case giving priority to stable acceleration with two stand-by units

After the 5-year upgrade

	Есм [GeV]	LER [GeV]	HER [GeV]	6S
Low charge injection	11.498	4.360	7.580	ОК
Maximum charge injection	10.877	4.125	7.171	NG

Current status

	Есм [GeV]	LER [GeV]	HER [GeV]	6S
Low charge injection	11.203	4.240	7.400	ОК
Maximum charge injection	10.598	4.011	7.000	NG

5-year plan is necessary for the 6S operation but insufficient for the stable operation.

Summary

- Deterioration in S-band structures progress hindering the operation of SuperKEKB
- 5-year plan wiping out the markedly bad structures
- First one of the new S-band structures tested and resulted in good performance
- Continuous manufacture of the structures indispensable for stable and sustainable operation of SuperKEKB even after the 5-year plan, especially if we should do 6S operation.
- Energy scan for the 6S operation dependent on not only the Linac status but also the life time in the storage ring and the beam injection rate.