Approach to the more stable injector linac for SuperKEKB

H. Ego

on behalf of the electron/positron injector linac

B2GM, June 17, 2019

Contents

- Fire accident
- Top-up beam operation
- Deterioration of accelerating structure hindering the stable beam operation
- How do we tackle the problems ?
- Summary

Fire in Accelerator assembly hall (Nextef)

Severe damages to the linac components in B- and C-sectors by soot attacks

Top-up beam injection for four storage rings

- Photocathode RF gun for HER injection
- Thermionic gun for LER, PF, PF-AR injection

by courtesy of M. Satoh

by courtesy of M. Satoh

Stored current stability during simultaneous top-up

by courtesy of M. Satoh

Emittance measurements (1 nC) with multiple wire scanners

Unstable beam-emittance growth

→ Increase in background noise to SuperKEKB

Electron beam orbit jitters by dispersion leakage from J-arc

Dispersion correction and Q-magnet adjustment

Unexpected change of dispersion in the sectors after the J-arc

Orbit feedback

Horizontal dispersion leak to the accelerating structures in ECS of SY3

Introduce of curing Q-magnet

Details will be reported in the next B2GM

Deterioration in accelerating structure I

Main PF-type accelerating structures fabricated about 35 years ago

don't work well

$r_a \left[M\Omega / m \right]$	57.8 (57.3 - 58.3)
τ [neper]	0.335 (0.302 - 0.368)
T_f [us]	0.51 (0.462 - 0.558)
$V_a/P^{1/2}$ [MV/MW ^{1/2}]	7.29 (7.00 - 7.58)

Deterioration in accelerating structure 2

Designed performance of the accelerating unit

Many structures suffering from power reflection and/or excessive field emission

What's wrong with the structures?

Deterioration in accelerating structure 4

The couplers severely damaged !

Rough and discolore surface

Deterioration in accelerating structure 5

Fatal case : water leakage

Approximately three structures with water leak a year

Deterioration in accelerating structure 6 **Energy map** required energy and available maximum energy e⁻ 1.500 / 1.82 unit : GeV ~5% energy margin e+ 1.100 / 1.27 e+ 4.00 / 4.21 e⁻ 7.00 / 7.42 e⁻ 2.93 No energy margin for the 6S operation at e⁺ 4.17 and e⁻ 7.29 with a beam charge of 4 nC

How do we tackle the problem ?

No sound spare of PF-type structures

Spare structure under high-power check in the shield room

Spares also suffer from power reflection and excessive field emission

How do we tackle the problem ?

Complete cure : new designed S-band structures

Four structures under fabrication and coming in this FY

Aiming unit voltage over 180 MV with new structures

Newly designed coupler and cell-shape lowering strength of surface electric field and possibility of discharge

- First-aid procedures from the fire accident Entire recovery in this summer
- Simultaneous top-up beam distribution to four storage rings by pulse-to-pulse switching
- Markedly deterioration of PF-type S-band structures threatening the operation of SuperKEKB
- New S-band structures coming in this FY Continuous manufacture indispensable for stable and sustainable operation of SuperKEKB