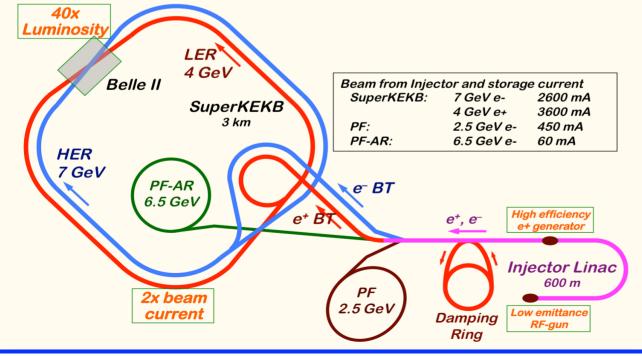
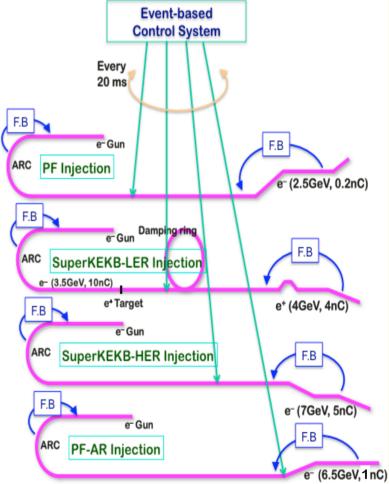


Injector Linac Energy Margin

Answers to injector questions at Moday talk


Kazuro Furukawa Injector Linac, KEK


Linac Mission in FY2016-FY2017

Super KEKB Hest for BSM

Mission of Electron/positron Injector in SuperKEKB

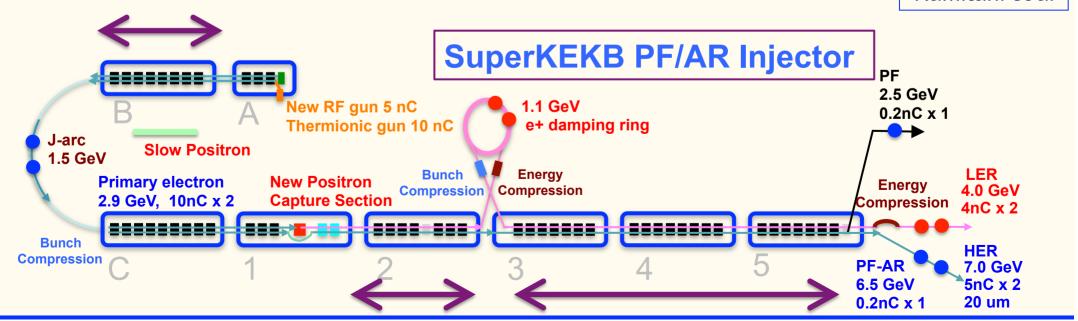
- For 40-times higher luminosity in SuperKEKB collider
- * Low emittance & low energy spread injection beam with 4-5 times more beam current
 - **X** New high-current photo-cathode RF gun developments
 - New positron capture section
 - **Damping ring construction**
 - Optimized beam optics and correction
 - Precise beam orbit control with long-baseline alignment
 - **Simultaneous top-up injection to DR/HER/LER/PF/PFAR**
- Balanced injection for the both photon science and elementary particle physics experiments

The single injector would behave as multiple injectors to multiple storage rings by the concept of virtual accelerator

Linac Energy Margin in Phase II

- Construction budget is so tight that no backups are prepared for many components (common understanding)
- As the acceleration units are indispensable, for Y(4s) in Phase-II at least a single backup/stand-by unit (~150 MeV) is prepared for each of three linac sections
 - ♦ Sections: J-Arc (1.5 GeV), SY2-DR (1.1 GeV e^+), SY3-Linac-end (7 GeV e^- / 4 GeV e^+)
 - 51 units for acceleration and 9 units for beam manipulation
- However, Y(6s) was out of consideration for Phase-II
 - It may be possible to operate for Y(6s) without backups (J-Arc 1.7 GeV)
 - ***** Need to reach an understanding with PF / PF-AR for possible interference
 - Sefore that, we surely have to establish low emittance beam injection
- There are many failure modes of units, typical ones are;
 - High power klystrons [a few times a year]
 - **Two and a half days to replace a klystron**
 - High power klystron pulse modulators [once or twice a year]
 - imma From a shift to several days depending on the failures
 - Fatal damage in accelerator structures [once in a few years]
 - Several days to replace a structure
 - Frequency of the appearance has been increasing

Kamitani et al



Linac Energy Margin in Phase III

Unit #13 will be added in Phase-III (+150 MeV)

- Securing well-performed accelerator structures in #44, the unit will be converted to high-gradient by adding another klystron (+70 MeV)
- On failures, the J-Arc energy may be changed to help other sections depending on the failure mode
 - If really relevant, DR energy may be changed to help e+ (?)
- In the long run, degraded accelerating structures should be refurbished
 Kamitani et al

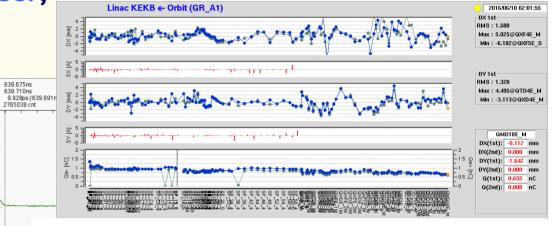
Why Smaller Margin while dropping Energy 8 GeV \rightarrow 7 GeV

- No backup/stand-by before J-Arc in KEKB operation
- Optimized for SuperKEKB ring injection reliability with larger beam currents and smaller emittance

Kamitani et al

- A unit was removed to make a room for DR BT
- Positron deceleration capturing
- Lower acceleration in large aperture structures in the positron capture section
- An unit before J-Arc was converted into a stand-by for availability
- C-band structures were converted into S-band to help emittance preservation
- Degraded accelerating structures after 35 years of operation
- Larger beam current with larger beam loading

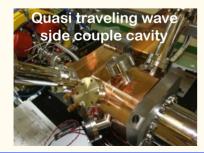
Development of Photo-cathode RF Gun

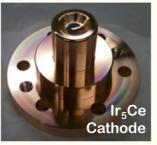

Succeeded in injection during SuperKEKB Phase 1 commissioning for 11 days

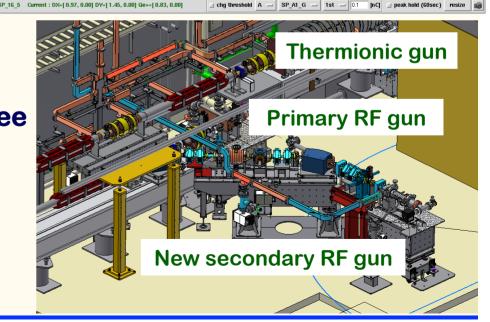
Mark 2 -

EWHM :

Bunch width

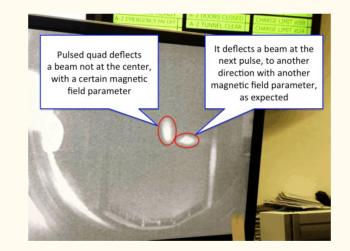

- Employs Yb-doped-fiber and Yb:YAG laser, Ir5Ce cathode, quasi travelling wave side-coupled cavity
- Need stability improvements
- Beam instrumentation improvement and comparison with simulation codes underway




Beam orbit measurement

 Secondary RF gun is being constructed as a backup

Incorporate suggestions by review committee for availability

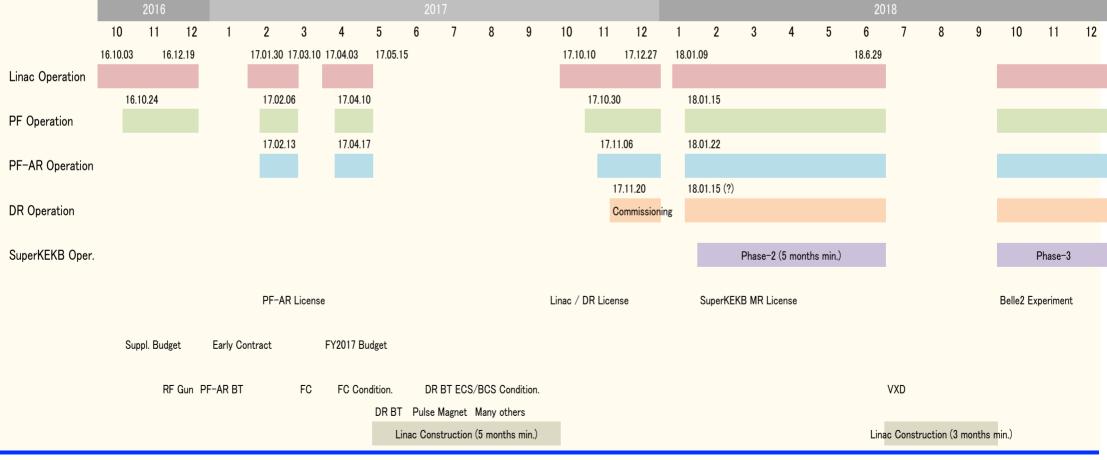


Development and installation of pulsed magnets

- Pulsed magnet power supplies were postponed to 2017 because of resource availability
- 30 quads, 36 steerings, 2 bends, 13 girders will be fabricated and installed in 2017
- Quade with aggressive design at 1 mH, 330 A, 340 V, 1 ms with energy recovery up to 75%
- Sessential for SuperKEKB low emittance injection and simultaneous injections
- *** 4+1 ring injections with virtual accelerator concept**
- Risks against schedule and possible backup operation procedure are investigated

- \blacksquare Long term tests at a stand
- **¤** Satisfies specifications
- **×** Some more control capability
- **×** Synchronous operation in 2017

- **Beam test with two quads**
- **Successful 25 Hz beam switches**
- Basic features are completed
- implie Event timing synchronization needed implie



- \blacksquare In-house drawings to save rsc.
- **¤ 0.1mm alignment precision**
- Ready for Phase-3 upgrade

Possible Rescheduling

- Under limited resources rescheduling of fabrication, purchase, tests, installation, commissioning is planned
- Because of construction concentration in JFY2017, 5-month shutdown of injector is planned
 - for KEKB it could allocate 9-month shutdown in 1997, synchronizing with light source upgrade

K.Furukawa, KEK, Feb.2017. 8