

SuperKEKB during 2024a/b

48th B2GM June 3 - 7, 2024 at KEK

Y. Ohnishi

2024ab Operation

- LER Current: 1450 mA
- HER Current: 1160 mA
- Number of Bunches: 2346
- Peak Luminosity: 4.08 x 10³⁴ cm⁻²s⁻¹
- Integrated Luminosity: 71.4 fb⁻¹ / 77.4 fb⁻¹
- Issues
 - Sudden Beam Loss (SBL)
 - Short Lifetime in LER
 - Beam Pipe Deformation due to SR Heating
 - **Poor Injection Efficiency in HER**

2

- 1. Sudden Beam Loss
- Copper Coating of Collimator Head, Additional Monitors (Acoustic Sensors, Loss Monitors, Specific TBT BPM) 2. Beam-Size Blowup due to Beam-Beam Interactions
 - Chromatic X-Y Coupling Correction, Reduction of Machine Error in IR
- 3. Beam-Related Background
 - More IR Radiation Shields
- 4. Injection Efficiency and Emittance Blowup in the Beam Transport Line
 - Wider Aperture at Injection Point, Suppression of CSR by using Beam Pipe Offset (Shielding Effect) in BTp
- 5. Difficulties to Keep Beam Orbit Stable
- Beam Pipe Deformation due to SR Heating, BPMs Push Quadrupole Magnets. Isolation of BPM Is Tested. 6. Short Lifetime and Narrow Dynamic Aperture with β_v^* Squeezing
 - Sextupole and Octupole Optimization
- 7. Beam-Size Blowup due to -1 Mode Instability in LER \rightarrow Reduce Impedance and BxB FB Optimization

Measure Against Seven Major Issues

SBL \rightarrow **the Next Talk**

Soctions		1 [0/]	Countormocouro	Motorial	Clearing electrode for w
		L [70]	Countermeasure	Wateria	 Attract electrons by electro Very thin electrode has been
Iotal	3016	100			 Very thin electrode has been on 0.2 m 0.1 mm tungsten on 0.2 m
Drift space (arc)	1629 m	54	TiN coating + Solenoid	Al (arc)	 Small impedance and effective transfer
Steering mag.	316 m	10	TiN coating + Solenoid	AI	 Have been tested in KEKB Expected reduction ratio:
Bending mag.	519 m	17	TiN coating + Grooved surface	AI	 Also demonstrated in Cesr Manufacturing has already
Wiggler mag.	154 m	5	Clearing Electrode New	Cu	
Q & SX mag.	254 m	9	TiN coating	Al (arc)	
RF section	124 m	4	(TiN coating +) Solenoid	Cu	
IR section	20 m	0.7	(TiN coating +) Solenoid	Cu or ?	
 Knocking test A "knocker" wa the burst had be We succeeded i knocking the be 	s set at a bear een observed in reproducing am pipe!	m pipe in a frequently. <mark>g the phenc</mark>	bending magnet, where omena three times by Knocker Stuc	dy in 2016	 Have been tested in KEKB, in CesrTA Extrusion test of aluminum I was successful. With TiN coating
	Spec. Lum. [%] Luminosity (hb/sec]	Preas Luminosity .00 Integrated Luminosity .00 0.7 HER 0.6 0.5 0.4 0.3 0.2 0.1 0.8 LER 0.6 0.4 0.4 0.2 0.1 0.8 0.6 0.04 0.04 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Startificial beam aborts	ocker ole Magnet	

Y. Suetsugu, MAC 2011, 2016

Candidates of SBL Source

Wiggler Section Photons Emitted from Beam Create Electrons.

Clearing Electrode (Prototype) Low Beam Impedance

Clearing Electrode

Dust in the Vacuum

"Dust in the Wind" is a song recorded by American progressive rock band Kansas and written by band member Kerry Livgren, first released on their 1977 album "Point of Know Return".

Beam-Beam Performance

 $\times 10^{31}$ (cm⁻²s⁻¹/mA²) Specific luminosity

Crab Waist ON and OFF

* HBC = High Bunch Current (393 Bunches)

Nonlinear Collimator

About 60 % Improvement for BG Reduction 20 % Reduction of Impedance

Reduction of Impedance: Nonlinear Collimator

Drop Beam Halo with Larger Aperture. \rightarrow Low Impedance

Beam Halo Can Be Scraped by Larger Collimator Aperture.

Nonlinear Collimator

This Can Reduce Impedance.

Beam Loss and Radiation Dose at OHO Experimental Area

D05V1 Works to Reduce Stored Beam Background.

Nonlinear Collimator (D05V1) Can Not Be Closed Very much due to High Radiation Dose at OHO Experimental Area.

We have to Use D06V1 to Reduce Radiation Dose. We Consider More Radiation Shield.

13

Beam Pipe Deformation due to SR Heating

Isolation Between BPM Block and Quadrupole Magnet

HER

BPM Block (Beam Pipe) Pushes Quad.

- BPM Block (Beam Pipe) Moves in the Horizontal Direction due to SR Heating.
 - BPM Block (Beam Pipe) Doesn't Touch Quad.

New Support

After

HER

Isolation Works Very Well.

In addition, **Optics Feedback Systems Are Working.**

Orbit Offset Induces Optics Degradation.

LER also Has Similar Problem.

Quad. Displacement

BPM Block Displacement

Lifetime

Touschek Effect

 $\tau_T \propto \frac{\sqrt{\varepsilon_y}}{I_{b+}}$

Lifetime: 300 s = Loss Rate: -4.7 mA/s at 1.4 A.

6.9 mA/s Can Be Provided by Linac > 4.7 mA/s 2-Bunch Injection: 2.7 nC (80% eff.) and 1.8 nC (60% eff.) with 23 Hz Repetition (BCE: -5 %) But It is Difficult to Increase Beam Current Larger than 1.4 A. The Reason is Unclear.

Lifetime in LER

Lifetime VS Bunch Current

I = 0.8 A with 2346 Bunches

Vacuum Effect

 $\tau_V \propto \frac{1}{n_b I_{b+}}$

 $au_T \propto rac{\sqrt{arepsilon_y}}{1}$

Touschek Effect

Lifetime in HER

Vertical Emittance VS Bunch Current

Lifetime at 1.2 A is about 1000 s. Loss Rate is -1.2 mA/s.

1.8 nC, 2-Bunch Injection with 23 Hz Repetition \rightarrow 15 % Injection Efficiency

Linac: 1st Bunch 1.9 nC, 35 % eff. 2nd Bunch 1.4 nC 20 % eff. 23 Hz Repetition \rightarrow 2 mA/s

Plan and Achieved Beam Currents

A) High Current Plan LER: 1.8 - 2.0 A / HER: 1.2 - 1.4 A

B) Beta Squeezing Plan \rightarrow 2nd Week until End $\beta_{v}^{*} = 0.8 \text{ mm}$ (includes Adiabatic Squeezing)

First Week in June

We Need to Investigate the Reason that We Can't Increase Currents Larger than 1.4 A in LER.

Dynamic Aperture, Physical Aperture, Beam-Beam, Vacuum, Instabilities, etc.

> Poor Injection Efficiency in HER Dynamic Aperture, Physical Aperture

Improve Luminosity Performance Vertical Angle Scan in LER, CW 60 % in HER

+ SBL Study

 $I_{b+}I_{b-}n_{b}$ (mA²)

Strategy Toward 2.4 x 10³⁵ cm⁻²s⁻¹

- Increase Bunch Current. Max. Number of Bunches is 2346 (Design Value).
 - Sudden Beam Loss Problem Has to Be Fixed. Clearing Electrode Is SBL Source ? How to ?
 - Sudden Lifetime Drop in LER (Found in 2024b Run)
 - Larger Dynamic Aperture and Physical Aperture Should Be Realized by Sextupole Setting and Better Detector Background Controls. (Trial and Error)
- Beam Injection
 - Emittance Blowup in the Beam Transport Line (BT) Has to Be Fixed. No Concrete Solution so far. Nonlinear Magnetic Field in BTp
- 0 Luminosity Performance at High Beam Currents \bigcirc
 - Single Beam Blowup Has to Be Suppressed Enough.
 - Reduce Machine Error (SR Heating Problem, also LER)
- How to Squeeze Beta Function at IP ?
 - First Target is 0.8 mm. Then, Try 0.6 mm.
 - Machine Study Is Needed to Make Larger Dynamic Aperture (Longer Lifetime).

Strategy for 10³⁵

Appendix

We Consider Lower β_x at Skew Sextupoles to Reduce Injection Beam Background as well as Stored Beam Background.

Lower β_x at the skew sextupole is preferable for the vertical size larger than $35\sigma_y$.

Main Application Area

Injection

