Hiroyasu EGO

KEK Injector Linac division

BPAC Feb. 05, 2024

Upgrade status of the injector LINAC

Issues: difficulties in stabilizing beam condition

- Summary

Upgrade works and countermeasures against the issues

Issue : Difficulties in stabilizing beam acceleration

Issue : Water leaks, field emission, discharge in the structures limit the operation of the rated acceleration

Countermeasures : New high-gradient accelerating structures

Water-leakage

Discharged damages

Discharged damages of waveguide circuits

Linac upgrades : Accelerating structures

UPGRADE : Successful completion of 5-year upgrade plan against deterioration of accelerating structures

- One unit (#44) reinforces beam-acceleration from 20 MV/m to 28 MV/m

Remaining issues

- 10 deteriorated structures are still to be replaced
- Water leakage may occur in the future (Two structures suffered from the leak in 2023)
- Production of 12 new structures start from this fiscal year (3-year plan)

• 12 water-leaked structures were replaced with the new structures in the summer of 2023

H. Ego

Issue : Difficulties in stabilizing beam condition

Best tuning condition is destroyed gradually in a day

Beam orbit and emittance of electron beam tuned fine in the morning

Beam orbit unstable and emittance worse charge lost in the afternoon

Issue : Beam-degrading areas

Issue : Beam loss, emittance deterioration in the J-ARC

Countermeasure : Large-aperture pulsed Q magnets

- At the entrance and exit of 180 deg. J-ARC region, a good optics matching is indispensable to mitigate beam loss and emittance growth.
- Simultaneous matching for both of HER and LER injection beams requires the pulsed Q magnets.
- From the simulation results, four pulsed Q magnets at the entrance and exit of J-ARC are required for the matching.

BPAC Feb. 05, 2024

UPGADE : Installation of the new pulsed Q magnets in J-ARC

- Large-aperture pulsed Q magnets installed in the summer of 2023
- New high-power pulsed power supply of energy-recovery type driving the pulsed Q magnet up to 600 A 400

- Energy recovery low-loss, compact, high power supply
- Drives the large-aperture pulsed quadrupole magnet up to 600 A
- Rise and fall speed 2.5 ms supporting pulse-to-pulse current change
- Energy recovery efficiency > 83%

0 V	
7	
•	

Linac upgrades : Beam optics 2

Issue : Weak focus for HER electron beam in 1-2 sector (positron-capture section)

Countermeasure : Large-aperture pulsed Q magnets

- The four pulsed Q magnets can optimize both the eand e+ beams, the betatron functions can be decreased.
- Simulations shows that they can help to decrease the emittance growth to less than half.

Linac upgrades : Beam optics 2

UPGRADE : Installation of four large-aperture pulsed Q magnets

Linac upgrades : Beam Control - Machine learning

Issue : Loss of positron charge

UPGRADE countermeasure : Machine-learning control + Large-aperture pulsed Q magnets

Issue : Low injection efficiency of 2nd bunch in double-bunch operation

Countermeasure : High-speed pulsed kicker

 Double-bunch acceleration (spacing: 96 ns) is employed for both e⁻ and e⁺ beam deliveries at an injection frequency (< 25

 Injection efficiency of the 2nd bunch is usually lower than that of the 1st bunch in both e⁻ and e⁺ beam operations.

• One of the reasons is the beam orbit difference between 1st and 2nd bunches.

UPGADE : High-speed pulsed kickers

HSPK at the entrance of J-ARC

- Fast kickers kicking only 2nd bunch transversely to correct
 - the orbit difference between 1st and 2nd bunches
- Sufficient current response time (< 96 ns)

C. Mitsuda, T. Natsui, Y. Okayasu

HSPK at the exit of LINAC

HSPK at SY3 in HER-BT

BPAC Feb. 05, 2024

Linac upgrades : Injection efficiency

ECS reduces the longitudinal emittance of electron beams for HER

UPGRADE : Installation of BTe in 2024

S-band 3m-long TW structures

- High-power RF sources prepared
- Successful operation of 3 m-long TW accelerating structures up to a rated power of 55 MW in the test bench
- Waveguide system under fabrication

We are exploring what causes the degradation of beam quality in

UPGRADE : To be shown in the next BPAC

N. Iida, Y. Seimiya, T. Yoshimoto

Findings:

- No bunch-charge dependence of beam emittance in BTp arcs 2 and 3 was observed.
 => No wakes, No CSR wakes.
- There would be magnetic errors to explain the horizontal emittance growth.

BT		

- Upgrades in this year carried out as planned
- New accelerating structures against deterioration smoothly installed and operated
- Beam optics improvements by installing new large-aperture pulsed Quads at J-ARC and positron capture section
- Demonstrated high-speed kickers for 2nd bunch orbit correction
- Arrangements of RF sources and accelerating structures for ECS in the electron BT Waveguide system under fabrication and ECS installation to be carried out in this FY
- Beam degradation in the BT lines to the MR rings under exploration

Summary

2018	2019	2020	202	
	New S-band structure			
	4 prototypes	tests & installation		
Design			12 struct	
		New pulse c	ompressor	
	Design	prototype	real #1	
			Des	
		Decian	Broto	
		Design		

Thank you

