Injector challenges

2020.2.10 M. Satoh (KEK, Acc. Lab.) for Injector Linac Group

14th annual Belle PAC Review meeting, Feb. 10-12, 2020

Contents

- Injector operation status
- e- and e+ beam sources
- Accelerating structures
- Beam controls
 - -Energy and orbit feedback loops
 - -Dispersion correction
 - -Emittance
- Summary and plan

Linac Beam Parameters for KEKB/SuperKEKB

Stage	KEKB (final)		Phase-I		Phase-II		Phase-III (interim)		Phase-III (final)	
Beam	e+	e–	e+	e–	e+	e–	e+	e-	e+	e–
Energy	3.5 GeV	8.0 GeV	4.0 GeV	7.0 GeV	4.0 GeV	7.0 GeV	4.0 GeV	7.0 GeV	4.0 GeV	7.0 GeV
Stored current	1.6 A	1.1 A	1.0 A	1.0 A	-	_	1.8 A	1.3 A	3.6 A	2.6 A
Life time (min.)	150	200	100	100	-	-	-	-	6	б
	primary e- 10	0 primary e- 8						primary e- 10		
Bunch charge (nC)	$\rightarrow 1$	1	$\rightarrow 0.4$	1	0.5	1	2	2	→ 4	4
Norm. Emittance	1400	310	1000	130	200/40	150	150/30	100/40	<u>100/15</u>	<u>40/20</u>
$(\gamma \beta \epsilon) (\mu mrad)$					(Hor./Ver.)		(Hor./Ver.)	(Hor./Ver.)	(Hor./Ver.)	(Hor./Ver.)
Energy spread	0.13%	0.13%	0.50%	0.50%	0.16%	0.10%	0.16%	0.10%	<u>0.16%</u>	<u>0.07%</u>
Bunch / Pulse	2	2	2	2	2	2	2	2	2	2
Repetition rate	50 Hz		25 Hz		25 Hz		50 Hz		50 Hz	
Simultaneous top-up injection (PPM)	3 rings (LER, HER, PF)		No top-up		Partially		4+1 rings (LER, HER, DR, PF, PF-AR)		4+1 rings (LER, HER, DR, PF, PF-AR)	

Injector overview

- Photocathode RF gun for HER injection
 - Thermionic gun for LER, PF, PF-AR

Pulse to pulse switching: rf e- gun/thermionic e- gun

Thermionic DC e- gun (GU_AT) w/ 2 subharmonic bunchers and 2 bunchers • e+ production e-: 10 nC (for LER injection)

- •e- study/HER injection: 1 nC
- •PF injection: 0.3 nC
- •PF-AR injection: 0.3 nC

<u>**RF e- gun</u>** (GR_A1 for HER injection)</u>

Pulsed bend rep. up to 25 Hz (LER + PF + PF-AR)

(magnet coil and chamber heating issue) It will be replaced by new one in summer shutdown 2020.

Simultaneous beam operation (w/ thermionic and rf e- gun) Stable simultaneous top up injection to 4 storage rings (HER, LER, PF, and PF-AR) w/ thermionic gun, rf gun, pulsed magnets.

Simultaneous Top-up Injections

• SuperKEKB integrated luminosity improvement

M. Yoshida, SuperKEKB review, Mar. 14th, 2018

8

HER injection beam (rf e- gun) status

- HER injection has been done w/ only rf gun from PhaseIII day 1. (Mar. 11th, 2019)
- Laser system has no significant fault.
- In summer shutdown of 2019, photocathode (Ir₇Ce₂) was replaced by new one (Ir₂Ce) for aiming at better quantum efficiency (Qe).
 - Discharge, frequent VSWR, gradual decrease of bunch charge
- In this winter shutdown,
 - Even after applying thermal cleaning of cathode, bunch charge is not stable.
 - Finally, photocathode was replaced by previous one (Ir₇Ce₂) toward next run. Now, under rf conditioning.

Qe of photocathode (Ir7Ce2, Ir2Ce)

QE Comparison

Laser cleaning / Focused laser size

- 2nd Laser only
- Scan using focused laser beam without RF

e+ source setup 1

Positron target and capture section

Pulse to pulse

e-/e+ beam switching

- Pulsed steering magnet control e- beam orbit.
- Low emittance e- beam goes through a hole at center of beam line.
 W target (Φ4 mm)

hole (Φ2 mm) for low emittance e- beam

LER injection beam status

- Bunch charge
 - Stable and enough bunch charge in this stage
 - Primary e-: 11 nC (from gun), 9 nC (on W target), e+ : 1.2 nC (linac end), 0.8 nC (BT)
- Flux concentrator (FC)
 - Previous FC was damaged by large discharge during PhaseII. It was removed in Sept. 2018.
 - Current FC was installed in Jan. 2019.
 - 2 ~ 3 kA operation current (design 12 kA) for stable operation. no significant fault.

Requirements for material of the FC head are

- Good brazing characteristic
- High yield strength even after brazing
- High electric and thermal conductivity
- New FC made of Cu-alloy (NC50: Cu-Si-Ni) has been tested w/o fault (\sim 12 kA).
- New FC will be installed in summer shutdown of 2020 for aiming at design operation current.

After large discharge...

Slit gap got narrow. Not possible to apply high voltage unless the gap will be expanded.

After large discharge

Accelerating structures

- Approx. 230 accelerating structures employed
- Many aged (40 years-old) structures are degraded
 - Risk of 7 GeV / 4 GeV acceleration for Y(4S)
 - Cannot reach Y(6S)
- As a 4-5 year plan, structures are being fabricated since the last year
- First tests will be performed at the assembly room
- Possibly, a couple of structures would be installed during summer

Feedback loops

- Energy feedback (J-ARC, LTR, ECS, BT) work fine.
 - Energy stability at BT line < 0.025%
- Orbit feedback at some locations.
 - Large drift (~ 1 mm) can be corrected
 within ~ 0.1 mm w/ feedback.

x[mm]@SP584

mm]@SP584

RUN

x[mm]@SP564

Orbit FB

 \odot

y[mm]@SP564

Dispersion measurement and correction

- Horizontal dispersion leakage from J-ARC causes the beam position jitter.
- Applying fudge factors to quads in J-ARC, dispersion is well corrected.

²² Y. Seimiya

Residual Dispersion in the BT line

- The dispersion functions have been corrected for each BT ARC one by one.
- Non-negligible residual dispersion is still observed

Vertical emittance vs. HER Injection efficiency

Injection efficiency and background

1. Injection efficiency and background

The injection efficiency increased as emittance decreased by tuning day by day.

Phase3.2 2019c(Autumn) These efficiencies are calculated at the low current beam in the HER. \rightarrow The effect of <u>Touschek</u> lifetime can be neglected.

N. Iida, SuperKEKB workshop, 2019

20

Measured emittance

e+ beam (Phase3.2(6.Nov.2019))

e-beam (Phase3.2(4.Dec.2019))

Emittances increase

Beam study will be continued

e+

e-

• C→Sector3

Phase3.3

• **BT1** \rightarrow **BT2**

Beam study will be continued

Beam abort caused by abnormal injection beam

Y. Seimiya, F. Miyahara, T. Miura, Y. Enomoto, H. Kaji et al.

Injection beam just before abort can be monitored by, Fast beam position monitor(BPM) in LINAC

b.

One station for the power supplies (PS) was set to 0 [A] due to a trigger missing of the PS.

LER D6V2 LM abort Beam energy was 50 MeV lower.

1. Jun., 2019 21:19

The klystron 51 was down at the time. The estimation was -46.5 MeV which is consistent with the beam position.

N. Iida, 31. Jan., 2020

Summary and plan

- Stable simultaneous top up injection to 4 storage rings (HER, LER, PF, and PF-AR) w/ thermionic gun, rf gun, pulsed magnets.
- HER injection has been done w/ only rf gun from PhaseIII day 1.
 - Laser system has no significant fault.
 - Photocathode: Ir7Ce2 => Ir2Ce (summer of 2019) for higher Qe, however, bunch charge gradually decreased.

In this winter shutdown: back to Ir7Ce2 photocathode

- Laser cleaning can cure degradation of Qe
- Flux concentrator for e+ beam has no significant fault.
 - New flux concentrator will be installed for higher e+ bunch charge for higher e+ bunch charge.

Summary and plan (cont'd)

- <u>Smaller emittance, higher injection efficiency, smaller</u> <u>background.</u>
- Emittance growth (need more beam study)
 - btwn BT1 BT2 (e-, e+)
 - DR Sector3 (RTL) (e+), SectorC-Sector3 (e-)
 - Steering magnets and BPMs will be installed in e+ capture section (solenoid section) at Sector1.
 - Movable girder and precise orbit control will help for emittance preservation.
- Single shot beam w/ bad quality (energy, orbit) could cause abort.
 - Install collimator at ECS (end of linac) in this summer shutdown.
 - Reduce failure rate of PS control software

Backup

- Fire at acc. structure assembly room on Apr. 3, 2019
 - Southern part of the injector was much damaged as well as the assembly room
- Interim injector recovery by Apr. 26, 2019
- Full injector recovery during summer shutdown
- The assembly room cleaned up
 - Restoration in April
 - S-band structure tests and RF conditioning soon

Scaffold to clean up walls and ceiling at acc. structure assembly room

Injector operation hours and failure rates

Injection efficiency and background

e+ vertical emittance was improved

Monitors

- Beam position monitor (x 103)
 - Four strip line electrodes (x 97)
 - Measurement precision ~ 10 μm
 - Eight strip line electrodes (x 6) (J-ARC, LTR x2, PF BT, HER BT, LER BT)
- Profile monitor (x 104)
 - Al2O3/CrO3 (AF995R, Demarquest Co.). (t: 1 mm, 0.1 mm), YAG:Ce (t: 0.1 mm)
- Wire scanner (WS) (x 6)
 - SectorA, B, C, 2, 3, 5
- Streak camera (ST) (x 2)
 - SectorA, \subseteq , 3
- RF monitors for klystron, SLED, acc. structure

Pulsed magnet system

- Pulsed quads (x 28) (w/ ceramic duct) and steering (x 36) were installed at Sector3 to Sector5 in 2017 (on movable girder).
- Pulsed bend, additional quad and steering were installed in 2018 summer and winter shutdown.
- PXIe based control system (Windows 8.1, LabVIEW, EPICS) have worked fine w/o any serious trouble.
- Power supply stability: 0.01% (24 hours)

e+ source setup 2

FC head + BC + target = FC assembly

Movable girder for accelerating structure

- Six movable girders have been installed in Sector3 (in summer shutdown of 2019).
 - Four 2-m-long accelerating structures are mounted on one girder.
- It could help to suppress emittance growth due to misalignment.

Date

2020